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Background: Major depressive disorder (MDD) is a prevalent mental health

condition characterized by persistent low mood, diminished interest in

pleasurable activities, and anhedonia. Some patients with depression

experience high levels of anxiety, complicating clinical treatment. However,

the underlying pathological mechanisms remain unclear.

Methods: The sample comprised 178 participants, including 73 MDD with high

anxiety symptom subjects, 55 MDD with low anxiety symptom, and 50 healthy

controls registered from multiple sites based on the REST-meta-MDD Project in

China. Resting-state functional magnetic resonance imaging (rs-fMRI) data were

recorded. Large-scale static and dynamic functional connectivity analyses were

conducted to identify specific brain connectivity distinguishing MDD with low

and high anxiety symptoms.

Results: While MDD patients with high and low anxiety symptoms exhibit

overlapping alterations in dynamic functional connectivity between the

auditory cortex and nodes of the salience network, their distinct clinical

profiles may be associated with differential functional connectivity patterns

between the components of the default mode network (DMN) and the visual

network (VN), as well as between the components of the basal ganglia network

(BGN) and VN.

Conclusion: The VN–DMN–BGN functional circuit may help elucidate the

underlying pathological mechanisms associated with varying levels of anxiety

in depressive disorders. Understanding this neural correlation could contribute to

the development of targeted therapeutic strategies for MDD.
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1 Introduction

Major depressive disorder (MDD) is one of the most common

mental disorders and is a highly heterogeneous condition characterized

by depressed mood, loss of interest or pleasure, and anhedonia (1).

Understanding the neuropathological mechanisms of MDD could

enhance our ability to diagnose and treat the disorder more

effectively. Notably, some patients with MDD exhibit significant

anxiety symptoms, while others do not experience pronounced

anxiety (2). This variability highlights the complexity of the disorder

and suggests that different underlying mechanisms may be involved,

potentially influencing treatment strategies. However, the biological

mechanisms remain unclear. Elucidating these mechanisms is essential

for identifying novel targets for clinical intervention in MDD.

Researchers have indicated that MDD may be associated with

dysfunction in emotional regulation, involving the core brain

regions such as the hippocampus, prefrontal lobe, amygdala, and

hypothalamus (3, 4). Abnormalities in the connectivity and activity

of these regions may contribute to the impaired emotional and

social functioning in individuals with MDD. Additionally,

alterations in sensory thresholds may lead to either heightened

sensitivity or diminished responsiveness to sensory input, further

affecting daily functioning and social interactions (5). Recent

evidence also suggests that the visual network is implicated in the

neuropathological mechanism of both MDD and anxiety disorder

(5–7). Understanding how sensory perception networks contribute

to depression may offer valuable insights for developing targeted

therapeutic interventions aimed at restoring normal sensory

processing and improving emotional regulation (8).

Moreover, MDD is related to mediated neural activity in non-

motor regions, such as the nodes within the default mode network

(DMN) (9–13). Most interestingly, a recent study indicated that the

symptoms of MDD subjects are associated with reduced visual

network (VN) and DMN regions during stimulation with especially

rapid visual stimuli (13). Different treatment approaches have been

shown to modulate GABA levels in the VN in individuals with

MDD (14). The visual cortex has also been reported to exhibit

globally reduced activity, which is associated with impaired visual

psychophysical performance (15, 16). These findings suggest that

the DMN and VN may be involved in the neuropathological

mechanisms of MDD. However, the distinct neural pathways

differentiating MDD with high anxiety symptoms from MDD

with low anxiety symptoms remain unclear.

The resting-state functional magnetic resonance imaging (rs-fMRI)

has emerged as a powerful tool in clinical neuroscience (17–20).

Clinical neuroscience has adopted transdiagnostic methodologies to

explore the neurobiological abnormalities of mental disorders (21, 22).

A highly synchronized network at the resting state is thought to

represent distinct primary sensorimotor, emotional, or cognitive

processes. Specifically, static and dynamic functional connectivity are

crucial methodologies for investigating brain function and elucidating

the pathological mechanisms underlying depression. Static functional

connectivity examines the consistent patterns of brain activity over

time, providing insights into the stable relationships between different

brain regions (23). This approach has revealed altered connectivity in
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networks such as the DMN in individuals with depression, highlighting

disruptions in emotional regulation and self-referential thought

processes. In contrast, dynamic functional connectivity captures the

temporal fluctuations in brain connectivity, reflecting the brain’s

adaptability and responsiveness to changing cognitive and emotional

demands (24, 25). Dynamic connectivity analyses can reveal periods of

heightened connectivity that correlate with depressive episodes, as well

as moments of disconnection that may indicate resilience or recovery.

Together, these approaches provide a comprehensive framework for

understanding the complex interplay of brain networks in depression

(26). By integrating both static and dynamic perspectives, researchers

can better identify biomarkers for depression, inform treatment

strategies, and ultimately enhance our understanding of MDD.

Based on previous research, we hypothesized that MDD patients

with high anxiety symptoms would exhibit distinct functional

connectivity (FC) within primary systems, as well as in associated

modulatory networks, compared to those with low anxiety symptoms.

To test this hypothesis, we conducted large-scale static and dynamic FC

analyses using multi-site datasets of patients with MDD. We propose

that these differential functional changes may offer insights into the

underlying biological mechanisms of MDD.
2 Materials and methods

2.1 Participants

This study was based on the REST-meta-MDD Project of resting-

state fMRI initiated in China (27–29). The fMRI data were downloaded

from the website of a public database (rfmri.org/REST-meta-MDD). In

the REST-meta-MDD Project, the Hamilton Depression Scale

(HAMD) was used to evaluate the depression symptom severity of

patients. The severity of anxiety was examined using the Hamilton

Anxiety Scale (HAMA) in MDD patients. Depression patients with a

HAMA score greater than 14 were defined as the high-anxiety

depression (HAD) group, while those with a score less than 14 were

defined as the low-anxiety depression (LAD) group. Matched healthy

controls (HCs) were also recruited. The sample comprised 178

participants, including 73 MDD with high anxiety symptom subjects,

55 MDD with low anxiety symptom subjects, and 50 healthy controls.

Subject demographics are displayed in Table 1. All data were identified

and anonymized. All subjects provided informed consent in

accordance with the requirements of the ethics committee of the

local institutional review boards.
2.2 Data acquisition and preprocessing

All resting-state fMRI data were preprocessed at each site

according to a standardized preprocessing protocol on Data

Processing Assistant for Resting-State fMRI (DPARSF) (27). The

detailed preprocessing steps were as follows: discarding the first 10

volumes, slice-timing correction, realignment, coregistration,

normalization, and nuisance regression. Nuisance signals include

the Friston-24 head motion parameters, white matter, and
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cerebrospinal fluid. Participants with mean framewise displacement

(FD) larger than 0.2 were excluded. Finally, a linear trend was

included as a regressor to account for drifts in the Blood Oxygen

Level-Dependent (BOLD) signal, and temporal band-pass filtering

(0.01–0.1 Hz) was applied to all time series.
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2.3 Atlas-based static and dynamic
functional connectivity analyses

Static and dynamic FC analyses were performed. An overview

of the analytic steps is shown in Figure 1. For each subject, key

nodes within the whole brain were defined based on Power’s 264

functional regions of interest (ROIs). To assess the static and

dynamic FC among these regions, a series of steps were

performed. Pearson’s correlation coefficients were calculated

among 264 ROIs. The resulting values were transformed to

approximate a Gaussian distribution using Fisher’s r-to-z

transformation. The FC score based on the whole time course

was considered as the static (rstatic) FC. Dynamic FC was also

measured using a sliding window. The time courses were segmented

into windows to efficiently capture cognitive status. Previous

research has indicated that the minimum window length should

be no less than 1/fmin. Thus, the time courses were segmented into

100-s windows, sliding by 2 s of data. Within each window,

Pearson’s correlations were computed among 264 ROIs. Across n

windows, the dynamic FC was defined as the coefficient of variation

score in each connectivity.
TABLE 1 Participants’ fundamental information.

HAD LAD HC p

Gender
(male/female)

34/39 27/28 25/25 0.923a

Age (years) 34.49 ± 9.96 32.25 ± 11.81 34.06 ± 11.22 0.497b

Education (years) 11.31 ± 3.14 10.94 ± 3.82 11.44 ± 3.69 0.749b

HAMD 20.47 ± 3.04 20.16 ± 4.92 – 0.655c

HAMA 25.52 ± 5.39 10.78 ± 2.93 – < 0.001c
Indicated values are shown as mean ± standard deviation.
HAD, high-anxiety depression disorder; LAD, low-anxiety depression disorder; HC, healthy
controls; HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale.
a Indicates the p values from the comparison analysis (chi-square test).
b Indicates the p values from the comparison analysis (one * there ANOVA).
c Indicates the p values from the comparison analysis (two sample t test).
FIGURE 1

An overview of the analytic steps.
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2.4 Statistical analysis

Based on prior studies, ComBat has been recognized as one of the

most effective harmonization techniques, as it successfully eliminates

site-related unwanted variation while retaining inter-subject biological

differences (30, 31). Thus, for the static and dynamic FC, the ComBat

method was used to remove site effects. In the ComBat model, the age,

sex, education years, and FD were included as covariates. ComBat

harmonization analyses were performed using a publicly available

Matlab package hosted at https://github.com/Jfortin1/ComBat

Harmonization. Then, the ANOVA was performed to assess the

difference between static and dynamic FC among the HAD group,

the LAD group, and the HC group. The significance threshold of

group differences for the ANOVA was set to false discovery rate

(FDR)-corrected p < 0.05. The different matrix was obtained. Then,

the altered FC was extracted for the post-hoc analysis through a two-

sample t-test between the two groups (uncorrected p < 0.05).
2.5 Correlations with HAMD and HAMA
scores

The relationship was assessed between changed FC and

coupling symptoms of depression and anxiety. First, the HAMD
Frontiers in Psychiatry 04
value was divided by the HAMA value. This score was defined as the

coupling of symptoms of each patient. Then, the partial correlation

analysis was calculated between the changed FCs and coupling

symptoms in the LAD and HAD groups, with age, sex, education

years, and FD as covariates (uncorrected p < 0.05).
3 Results

3.1 Altered static functional connectivity

The altered static FC was observed between the key node of the

dorsal visual network and the subcortical region through ANOVA.

Post-hoc analysis revealed that the reduced static FC between the left

paracentral lobule and putamen within the basal ganglia network

(BGN) was observed in the HAD group compared to the HC and

LAD groups, but did not show a difference between the LAD and

HC groups (Figure 2A). Moreover, through ANOVA, altered static

FCs were observed between the region of the VN and the region of

the DMN. Post-hoc analysis found that reduced static FC was

observed between the posterior cingulate cortex (PCC) and the

lingual gyrus in the LAD group compared to the HAD and HC

groups, but did not show a difference between the HC and HAD

groups (Figure 2B).
FIGURE 2

The bar maps represent the post-hoc results. The data are expressed as the mean value + standard error. *** p < 0.001 and **p < 0.01. (A) The
difference in static FC between left paracentral lobule and left putamen. (B) The difference in static FC between PCC and LING. (C) The differences in
dynamic FC between ROL and MFG. PCC, posterior cingulate cortex; LING, lingual gyrus; MFG, middle frontal gyrus; ROL, Rolandic operculum; FC,
functional connectivity; HAD, high-anxiety depression group; LAD, low-anxiety depression group; HC, healthy control.
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3.2 Altered dynamic functional connectivity

The abnormal dynamic FC was found between the region of the

auditory network (AN) and the region of the salience network (SN).

Post-hoc analysis found high static FC between the left Rolandic

operculum and right middle frontal gyrus in the HC group

compared to the HAD and LAD groups, but did not show a

difference between the LAD and HAD groups (Figure 2C).
3.3 Relationship among altered functional
connectivities

Using a post-hoc analysis to determine the relationship among

altered FCs (Figure 3), in the HC group, we observed a positive

relationship (r = 0.434, p = 0.0016) between static FC (left

paracentral lobule and left putamen) and static FC (PCC and

lingual gyrus), whereas this correlation was not apparent in the

LAD (r = 0.037, p = 0.7835) and HAD (r = 0.201, p = 0.0879)
Frontiers in Psychiatry 05
groups. This is the common deficient functional coupling within the

VN–DMN–BGN circuit in the LAD and HAD groups.
3.4 Relationship between altered FC and
coupling score of HAMD and HAMA

A negative relationship (r = −0.328, p = 0.018) was observed

between HAMD/HAMA score and dynamic Rolandic operculum–

middle frontal gyrus (ROL–MFG) FC in the LAD group (Figure 4).
4 Discussion

In this study, we applied static and dynamic large-scale

functional connectivity analyses to multi-site MDD datasets.

While both MDD patients with high anxiety and those with low

anxiety symptoms exhibited overlapping alterations in dynamic FC

between the auditory region and nodes of the salience network,
FIGURE 3

Different relationships between PCL–PUT static FC and PCC–LING static FC in HAD, LAD, and HC groups. Positive relationship was observed in HC
group (r = 0.434, p = 0.0016), whereas this correlation was not apparent in the LAD (r = 0.037, p = 0.7835) and HAD (r = 0.201, p = 0.0879) groups.
PCL, paracentral lobule; PUT, putamen; PCC, posterior cingulate cortex; LING, lingual gyrus; HAD, high-anxiety depression group; LAD, low-anxiety
depression group; HC, healthy control.
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their distinct characteristics may be attributed to differences in FC

between regions of the DMN and the VN, as well as between the

putamen and the paracentral lobule. Elucidating the relationships

between specific patterns of aberrant FC and MDD may enhance

our understanding of the neuropathophysiological mechanisms

underlying the symptom heterogeneity of this complex disorder.

The first main finding is the reduced FC between the putamen

and the paracentral lobule, a key region within the dorsal visual

pathway, in MDD patients with high anxiety symptoms. The dorsal

visual pathway is involved in spatial awareness and motion

processing (32). MDD has been associated with reduced FC in

visual processing regions, which has been linked to difficulties in

visual attention and the interpretation of emotional cues (33). These

abnormalities may contribute to the cognitive and emotional

symptoms of depression, influencing how individuals perceive

and interact with their environment. Conversely, research has

shown that individuals with anxiety disorders often exhibit

heightened sensitivity to visual stimuli, which may be reflected in

altered FC patterns between the visual network and the basal

ganglia network (34, 35). In this study, altered static FC was

observed in MDD patients with high anxiety symptoms between

regions of the dorsal visual network and nodes within the BGN.

This difference was not observed in MDD patients with low anxiety

symptoms. Together, our findings highlight that abnormal FC

between the VN and BGN may be a key feature associated with

the neuropathological mechanisms of MDD in individuals with

high anxiety symptoms.

Our next key finding consists of the decreased FC between PCC

and the lingual gyrus in MDD subjects with low anxiety symptoms.

Previous research has indicated that the symptoms of MDD may be

related to a psychomotor source with neural changes outside motor

regions, for example, regions within the DMN (36) and regions
Frontiers in Psychiatry 06
within the visual network (37–39). The DMN is commonly active

during rest, and self-referential thought (40) shows increased activity

patterns in depressed patients (41, 42). Studies using fMRI have

demonstrated that the lingual gyrus, which is associated with

processing social and emotional information, exhibits increased

connectivity with the occipital lobe (43, 44). This enhanced

connectivity may reflect a maladaptive neural response in

depression with low anxiety symptoms, where the integration of

emotional and visual information becomes dysregulated. In contrast,

individuals with anxiety disorders often show reduced DMN–

frontoparietal network (FPN) connectivity, which may reflect a

reduced state of vigilance and a tendency to focus on external

threats rather than internal thoughts (45). Finally, our findings are

well in line with the previous finding of decreased local and global

synchronization of the visual cortex in MDD (39). In this study,

reduced static FC was observed between the PCC and lingual gyrus in

the LAD group compared to the HAD and HC groups, but did not

show a difference between the HC and HAD groups. Therefore,

reduced PCC–lingual gyrus connectivity may represent a specific

feature of MDD patients with low anxiety symptoms.

Despite delineating several critical observations, there are

several limitations that should be considered. First, the causality

between altered functional networks and patient symptoms was not

examined in this study. Second, participants did not complete any

emotion-related task-based fMRI assessments. Finally, we

acknowledge that validation using independent datasets,

particularly from our own clinical center, is crucial to confirm the

robustness of our results and will be a key focus of our future work.
5 Conclusion

Using a data-driven approach with multi-site datasets, the

present study provides robust evidence for different DMN–VN

and VN–BGN FCs between MDD with low anxiety symptoms and

MDD with high anxiety symptoms, supporting a sub-categorization

of depression. These networks create an interplay of VN–DMN–

BGN functional circuit, which may contribute to our understanding

of the neuropathophysiological mechanisms underlying the

heterogeneity of symptoms in this complex disorder.
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