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Objective: Given the lack of consensus regarding the optimal EEG paradigm for

identifying bipolar depression (BD), this study sought to systematically evaluate

the efficacy of three classic EEG paradigms—eyes open, eyes closed, and free

viewing—in diagnosing BD.

Methods: EEGs were collected from 28 individuals diagnosed with BD and 42

healthy controls(HCs) across three experimental conditions: eyes closed, eyes

open, and free viewing. Sociodemographic data and neuropsychological testing

were also collected. This research investigated notable variations in brain functional

connectivity between the two groups across paradigms, the correlation of features

with neuropsychological assessments, and classification outcomes.

Results: The results demonstrated that under the eyes-closed paradigm,

significant differences in the Phase Lag Index (PLI) were consistently observed

across the d, q, b, and g frequency bands. This paradigm also featured the highest

number of electrodes significantly correlated with cognitive scales. Furthermore,

the eyes-closed condition achieved the highest accuracy in bipolar depression

recognition, with the Random Forest classifier yielding the highest accuracy of

79.43% and an F1 score of 76.82%. These findings underscore the eyes closed

paradigm as a superior, straightforward EEG experimental approach for the

diagnosis of bipolar depression.

Conclusions: This study indicates that the eyes closed experimental paradigm

more effectively demonstrates the electrophysiological disparities between

patients with BD and HCs, in comparison to the eyes open paradigm and the

action observation-based free viewing paradigms, as determined through the

analysis of various outcome metrics.
KEYWORDS

bipolar depression (BD), electroencephalogram (EEG), experimental paradigms, phase
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1 Introduction

Bipolar disorder is a severe mood disorder, primarily

characterized by extreme fluctuations in mood states, alternating

episodes of depression and (hypo)mania (1). The initial onset of

bipolar disorder is typically depressive, with depressive episodes

lasting significantly longer throughout the course of the illness than

manic or hypomanic episodes. The severity of depressive symptoms

surpassing mania typically manifests during the developmental

stages of children and adolescents, imparting adverse effects on

education and vocational prospects (2). Early onset is associated

with a diminished prognosis. Furthermore, acute episodes

precipitate profound cognitive and psychosocial functional

impairments, significantly disrupting attention, cognitive

flexibility, executive function, and working memory (3, 4). The

prevalence of bipolar disorder has been rising with the evolution of

modern society, along with its high disability rate and increased risk

of suicide (5), thereby exerting a significant social burden (6).

Individuals with bipolar disorder frequently receive incorrect

diagnoses, are overdiagnosed, or are only diagnosed several years

after disease onset, leading to a worse disease prognosis (3, 7).

Therefore, early identification of bipolar disorders is crucial.

Recent investigations have increasingly concentrated on the

neural biomarkers of bipolar disorder, which have the potential for

precise and timely diagnosis (8). Among the various non-invasive

monitoring methods, electroencephalographic (EEG) captures

macroscopic temporal dynamics of brain activity by measuring

scalp electrical potentials, thereby being considered a suitable tool

(9). EEG-derived datasets are increasingly utilized in bipolar disorder

research (7). Studies on biomarkers of bipolar disorder have primarily

focused on aspects such as the P300 wave, functional connectivity,

and oscillation frequency bands, with a growing interest in the

application of machine-learning techniques (10–13). Despite

adopting various experimental paradigms over the past decade,

including resting-state and task-related measurements during

emotional or cognitive tasks (14). There is no consensus on the

optimal experimental paradigm for exploring EEG biomarkers in

bipolar disorder and healthy controls (HCs) (9, 15). Current

mainstream experimental paradigms include eyes closed, eyes open,

and free viewing protocols, with the latter encompassing the free

viewing of images and videos, as well as cognitive tasks (16–18). This

study employed a video-based free viewing paradigm.

Research using the eyes closed paradigm revealed decreased

alpha (a) power and increased delta (d) and theta (q) activity in the

EEG profiles of initial bipolar disorder episodes relative to HCs (19).

Some studies have found that bipolar disorder exhibits higher

power across all frequencies, including the beta (b) and gamma

(g) bands than HCs. Patients with bipolar disorder show greater

coherence in the a band within the parietal-temporal and central

parietal regions, while interhemispheric coherence in the d band of

the frontal regions is lower (20). Similarly, another study found

higher coherence in the frontal and occipital cortex, particularly in

the frontal regions, compared to HCs (21). Studies employing an
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eyes open experimental paradigm have observed disruptions in

frontal lobe slow-wave oscillations, with increased activity in the d,
q, and a bands (22). Research has also found increased a-wave
power in the central-frontal and right parietal regions in bipolar

disorder (23). However, another study found slowed a-wave
activity during depressive episodes in adolescents with bipolar

disorder, which has been associated with decreased cognitive

function (24). Within free viewing paradigms, the saccadic eye

movement approach suggests g coherence as a potential marker for

cognitive dysfunction in manic phases (25). Furthermore, EEG

responses to emotional facial expressions have been instrumental

in distinguishing unipolar from bipolar depression (BD),

highlighting the diagnostic utility of EEG activity (15).

This study explored the contributions of three mainstream

experimental paradigms to electroencephalographic biomarkers of

bipolar disorders. We employed video-based observations to

investigate the free viewing paradigm. This approach is predicated

on the premise that central brain regions exhibit a sensorimotor a-
rhythm during eyes open states or the observation and execution of

actions. This rhythm has a frequency range of 8–13 Hz and is a

variant of the a-rhythm (26, 27). Numerous studies suggest that this

sensorimotor a-rhythm may serve as an indicator that may aid in

the discovery of the pathophysiological mechanisms of bipolar

disorder (28; S. C. 29). A study on patients with bipolar disorder

found that the bipolar disorder group exhibited lower levels of

sensorimotor a-rhythm suppression compared to HCs, possibly

indicating social cognitive difficulties. Kim et al. (28) examined the

neural activity of euthymic bipolar disorder patients in a new virtual

reality social cognitive task. They found that bipolar disorder

participants exhibited slower reaction times to the emotional

component of the task (despite comparable accuracy), particularly

in the inferior frontal cortex, pre-motor cortex, and insula. Based on

this, we chose a free viewing paradigm for video observation, with

participants watching videos of goal-directed actions. Research

suggests that observing videos of hand movements can enhance

brain activity patterns (30). We selected videos from a dynamic

action stimuli database (31) and clipped actions familiar to Chinese

participants to create the free viewing videos used in our study.

Numerous studies have identified considerable variations in the

results of biomarkers for bipolar disorder, which may be attributed to

applying different experimental paradigms (4, 9, 32, 33). The extant

data are insufficient for deducing trends or computing consistency

scores and are often poorly validated (34). Consequently, this study

has selected three distinct paradigms, conducting a comprehensive

analysis of various electroencephalographic signals to investigate the

differential diagnostic capabilities of each paradigm.
2 Methods and materials

Before starting the study, ethical approval was obtained from

the Ethics Committee of the Fifth Affiliated Hospital of Sun Yat-

sen University.
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2.1 Participants

Participants with bipolar disorder were recruited from the

psychiatric inpatient service and diagnosed using DSM-5 criteria

by two independent and experienced psychiatrists, one of whom

was the patient’s treating psychiatrist. All participants in the patient

group were assessed to be in a depressive state at the time of

evaluation, with none meeting the criteria for a current manic,

hypomanic, or mixed episode. All patients with bipolar disorder

were diagnosed with a bipolar depressive episode. The HC group

was recruited using oral advocacy and promotional posters. Both

groups underwent semi-structured interviews to assess their

medical history. All participants completed a demographic

questionnaire, trail making test (TMT), digit span test (DST), and

symbol digit modalities test (SDMT). Additionally, symptoms of

depression and mania were assessed using the Hamilton depression

scale-24 items (HAMD-24; 35)and the young mania rating scale

(YMRS) (36).

Exclusion criteria included reported comorbid intellectual

disability and other psychiatric disorders, recent electroconvulsive

therapy in the past six months, recent substance abuse or

dependence in the past six months, and severe physical or

organic diseases, such as cardiovascular or major orthopedic

diseases, severe developmental disorders, and neurological

diseases. This study included 70 participants; 28 were diagnosed

with BD, and 42 were HCs. The demographic and clinical data of

the participants are summarized in Table 1.
2.2 Experimental design and procedure

2.2.1 Neuropsychological testing
On the same morning of EEG acquisition, neurocognitive

testing was conducted. These tests were completed by 28 BD

patients and 42 HCs. A battery of neuropsychological tests was

used to assess the following cognitive domains: (a) The Trail

Making Test (TMT) is a neuropsychological test used to assess

executive functions (EFs) (37). The test consists of two parts (A and

B). TMT-A is typically considered a measure of visual search and

processing speed, where participants must sequentially connect the

numbers 1 to 25 as quickly as possible. The score is the time taken to

complete the task (in seconds), with shorter times indicating better

performance (38) (39). TMT-B is considered to more broadly assess

psychological flexibility and executive functions (40–42). (b) The

digit span test (DST) evaluates working memory and cognitive

flexibility. It includes forward and backward tasks. The forward

digit span test comprises a series of digits ranging from 2 to 12,

which the examiner recites at a rate of one digit per second, and

participants must repeat in the same order. The backward digit span

test comprises digits ranging from 2 to 10, recited forward by the

examiner, and participants must recite them backward. The score is

the total sum of the last level of digits passed (43). (c) The symbol

digit modalities test (SDMT) is an advanced form of the digit-

symbol test that assesses attention, visual scanning, and motor

speed. Individuals must identify nine symbols corresponding to the
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digits 1 to 9 and practice writing the correct number beneath each

symbol. Then, they manually fill the blanks with the corresponding

number under each symbol. Participants are given 90 s to complete

the written test. The score was calculated by totaling the correct

answers for each section (44).
2.2.2 EEG acquisition and electrophysiological
recording

During EEG acquisition, participants sat quietly in a

comfortable armchair and sequentially completed the following

three conditions: 1) eyes closed, 2) eyes open, and 3) free viewing.

eyes closed Participants sat in the chair for 3 min in the eyes closed

condition. The instruction was, ‘Please close your eyes, relax, and do

not think about anything.’ In the eyes open condition, participants

sat in the chair for 3 min with the instruction, ‘Please open your

eyes, relax, try to minimize blinking, and do not think about

anything’. Under the free viewing condition, participants sat in

the chair for 3 min and 20s with the instruction ‘Please view every

action in the video, but do not make any behavioral movements’.

The duration of the free viewing videos was 3 min and 20 s.

The EEG signals were recorded using a 32-channel system

(Nicolet Monitor, USA) with an electrode cap, and recording was

performed according to the 10–20 international system. The

reference electrodes were placed midway between CPz and AFz.

The recorded signals were digitized at a sampling frequency of 250

Hz, with impedance for all electrodes less than 10 kohm. EEG data

were preprocessed and analyzed using MATLAB (R2022a;

Mathworks, Natick, MA, USA) and EEGLAB v14.0. Initially, the

EEG signals were re-referenced using average reference montage.

Subsequently, bandpass filtering from 1 to 49 Hz and notch filtering

at 50 Hz were applied to remove high-frequency and power-line
TABLE 1 Demographic and clinical characteristics.

Parameters BD,n=28 HCs,
n=42

T(X 2) p

Age (years) 21.11 ± 4.42 22.86 ± 2.09 -1.95 .06a

Gender (female, male) 20,8 25,17 X 2 = 1.03 .31b

Years of education 12.82 ± 1.89 13.24 ± 1.53 .64 .31a

Duration of illness
in years

4.19 ± 3.66 – – –

YMRS score 1.25 ± 1.04 .50 ± .67 3.37 .00a

HAMD-24 score 34.29 ± 9.29 2.29 ± 1.66 18.03 .00a

TMT-A(s) 27.45 ± 7.09 26.27 ± 8.52 .51 .54a

TMT-B(s) 43.25 ± 8.56 32.64 ± 7.90 .45 .00a

DST score 11.75 ± 1.29 15.09 ± 2.38 .00 .00a

SDMT score 63.75 ± 11.45 73.17 ± 12.51 .57 .00 a
frontier
Values in the tables are presented by default as counts, mean ± standard deviation, unless
otherwise indicated.
YRMS, Young Mania Rating Scale; HAMD-24, Hamilton Depression Scale-24 (HAMD-24);
TMT, Trail Making Test; DST, Digit Span Test; SDMT, Symbol Digit Modalities Test.
BD, individuals with bipolar depression; HCs, healthy controls.
a T-tests; b Chi-square test.
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noise contamination. Independent component analysis (ICA) was

used to remove eye movement and blink artifacts. Next, EEG signals

from each channel were segmented into non-overlapping epochs of

6 s. Power spectral density (PSD) and differential entropy (DE)

features were computed for all segments across different frequency

bands. Additionally, a Butterworth IIR bandpass filter was applied

separately to data from all channels to obtain d (1–4 Hz) and b (12–

30 Hz) waves (zero-phase shift). Subsequently, the Hilbert

transformation was used to obtain phase and amplitude

information for each channel, from which debiased phase-

amplitude cross-frequency coupling (dPAC) and amplitude-

amplitude coupling (AAC) were calculated.

2.2.3 Phase Lag Index Functional Connectivity
The phase lag index (PLI), a measure of phase synchronization,

was used to quantify the functional connectivity between each pair

of EEG channels (45, 46):

PLI(f ,t) =
1
M o

M

m=1
sgn(△jm

a,b(f , t))

�
�
�
�

�
�
�
�

where  △jm
a,b(f , t) stands for the phase difference between

channel a and b at frequency f and time t of trial m, M stands for the

number of trials, and sgn indicates the sign (–1 for negative values,

+1 for positive values, and 0 for zero values).

In this study, PLI values were calculated for three experimental

paradigms using the aforementioned equation. PLI values were

averaged across d (1–4 Hz), q (4–8 Hz), a (8–12 Hz), b (12–30 Hz),

and g (> 30 Hz) frequency bands (47) and within a time window of

0.1 to 11 s to derive a weighted 19×19 functional connectivity

matrix, serving as a candidate feature for each participant. PLI was

calculated for 19 electrodes representing brain regions (FP1, FP2,

F3, F4, F7, F8, FZ, T7, T8, P7, P8, C3, C4, CZ, P3, P4, PZ, O1, and

O2). The PLI represents the connection strength between electrode

pairs, ranging between 0 and 1, with higher values indicating

stronger nonzero phase locking (48).
2.2.4 Features and correlations
In this study, EEG signals were decomposed into functionally

distinct frequency bands (d, q, a, b, and g). PSD for each band, DE

for each band, as well as d dPAC and AAC of d and b bands, were

computed. Twelve features were extracted in this study. To

ascertain the relationship between EEG signal and cognitive

function, Spearman correlation analysis was conducted to

examine the correlations between TMT-A, TMT-B, DST, and

SDMT scores and 12 significant features under the three

experimental paradigm conditions. Correlations were deemed

significant at p< 0.05.

2.2.5 Classification
Based on these features, we employed six classifiers, including

ensemble, K-nearest neighbours (KNN), Naive Bayes, Random

Forest, support vector machine (SVM), and decision tree (DT), to

evaluate the BD identification performance under the eyes closed,
Frontiers in Psychiatry 04
eyes open, and free viewing experimental paradigms. The

effectiveness of BD identification was measured using accuracy

and F1 score. In this study, the selected classifiers are classical

machine learning classifiers, extensively applied in depression

recognition research (49).
• Ensemble, an ensemble learning algorithm, uses AdaBoost

M1 to train weak classifiers (usually decision tree stumps or

single-layer decision trees). This method combines their

results by weighting them to construct a more robust

classifier. The basic learner parameters were set to

decision trees, with the number of basic learners fixed at

100 (50, 51).

• K-nearest neighbours(KNN) computed the distance

between a test sample and all training samples, typically

using the Euclidean distance metric. The prediction of the

test sample’s category was determined by a majority vote

among the K closest training samples (52). The parameter K

of KNN was fixed constant 5 (53).

• Naive Baye is a simple yet effective classifier based on Bayes’

theorem. It calculated the class conditional and prior

probabilities, deriving the posterior probabilities. The

class with the highest posterior probability was selected as

the prediction (54).

• Random Forest mitigates the risk of overfitting by

integrating multiple decision trees. It performs well with

high-dimensional and large datasets, requiring minimal

parameter tuning (55).

• The SVM was introduced by (56). Its basic idea is to classify

samples by finding the hyperplane with the largest distance

between samples. The regularization parameter C of the

Linear-SVM was empirically set to 0.25 (57).

• DT is a supervised learning classifier based on a tree

structure. They construct recursive decision rules from

training samples and predict the categories of test samples

according to these trained rules (58).
2.3 Statistical analysis

Statistical analysis was performed using SPSS (v25.0) and

MATLAB. Continuous variables were presented as mean ±

standard deviation, and categorical variables were denoted as

numbers. T-tests and Pearson’s chi-square tests were utilized to

compare the baseline characteristics between the two groups. The

connectivity strength between the two groups was compared using

nonparametric Wilcoxon signed-rank tests with False Discovery

Rate (FDR) correction to control for multiple comparison issues.

Uncorrected p-values as ‘p,’ and FDR corrected p-values were

presented as ‘pFDR.’ The independent samples t-test was

employed to assess the significance of differences in features

between BD and HC groups (utilizing the MATLAB function

ttest2). The MATLAB ttest2 function facilitated this comparison,
frontiersin.org
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allowing for a robust assessment of the significance level.

Additionally, correlation analysis was conducted to investigate the

relationship between EEG features and cognitive assessment scores,

with Spearman’s correlation analysis (implemented using the

MATLAB function corr), providing a reliable measure of the

strength and direction of the relationship between the variables of

interest. p< 0.05 was considered a statistically significant difference.
3 Results

3.1 Demographic characteristics

Table 1 depicts the demographic and clinical characteristics of

the study sample. There were no statistically significant differences

between the BD group and the HCs regarding age, gender, or years

of education. The YMRS scores of BD and HC groups were< 5

points. The TMT-A scores did not differ significantly between the

BD group and the HCs. However, TMT-B, DST, and SDMT scores

differed statistically significantly.
3.2 Brain functional connectivity

PLI was computed for all electrode pairs in the d, q, a, b, and g
bands under the three experimental paradigms. Figures 1a, b

illustrate the group averaged PLI functional connectivity patterns

in the d, q, a, b, and g frequency bands for BD patients and HCs

under the eyes closed experimental paradigm condition. We

observed significant differences in the functional connectivity
Frontiers in Psychiatry 05
between the two groups across all electrode pairs in the d, q, b,
and g frequency bands (PFDR< 0.05), the BD group demonstrating

increased functional connectivity compared to HCs. A qualitative

observation in the d frequency band revealed that BD patients

exhibited stronger long-range connections between the frontal and

occipital cortical regions compared to HCs (PFDR< 0.05). In the q
frequency band, BD patients showed more short-range connections

between the parietal and occipital cortical regions and fewer long-

range connections between the frontal and the parietal/occipital

cortical regions compared to HCs (PFDR< 0.05). In the b frequency

band, there were fewer long-range connections between the frontal

and parietal/occipital cortical regions in BD patients relative to HCs

(PFDR< 0.05). In the g frequency band, BD patients displayed

stronger long-range connections between the frontal cortical

regions and the visual cortex, and short-range connections across

hemispheres than HCs (PFDR< 0.05). No significant effects of

functional connectivity between the two groups were observed in

the a frequency band (PFDR > 0.05).

Figure 2 illustrates the group average PLI functional

connectivity patterns for BD patients (A) and HCs (B) under the

eyes open paradigm condition. However, under the eyes open

paradigm condition, when comparing the group average PLI

across the d, q, a, b, and g frequency bands, no significant

differences were found between any pairs of electrode connections

(PFDR > 0.05).

Figure 3 illustrates the group average PLI functional

connectivity patterns for BD patients (a) and HCs (b) under the

free viewing paradigm condition. In d frequency band, BD patients

exhibited fewer and weaker long-range connections between the

frontal cortical regions and parietal/occipital cortical regions than
FIGURE 1

The visualization of the group average PLI functional connectivity for BD (a) and HCs (b) under the eyes closed experimental paradigm across five
frequency bands (d, q, a, b, and g), with a sparsity of 0.3.
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HCs (PFDR< 0.05). In the q frequency band, BD patients showed

fewer and weaker long-range and short-range connections than

HCs (PFDR< 0.05). Functional connectivity between the two groups

had no significant effects on the a, b, and g frequency bands (PFDR >
0.05). Within the three classical EEG experimental paradigms, the

eyes closed paradigm exhibited significantly distinct PLI functional

connectivity patterns across a broader range of frequency bands

when comparing BD patients with HCs.
Frontiers in Psychiatry 06
3.3 Significance analysis of features

Significant differences in the d and b frequency bands were

observed across all three classical experimental paradigms. Under

the eyes closed paradigm, significant distinctions were primarily

concentrated in the d band (frontal, parietal, and occipital lobes), b
band (parietal lobe), DE-d (frontal, parietal, occipital, and temporal

lobes), and DE-b (parietal lobe). In the eyes open paradigm, the
FIGURE 3

The visualization of the group average PLI functional connectivity for BD (a) and HCs (b) under the free viewing experimental paradigm across five
frequency bands (d, q, a, b, and g), with a sparsity of 0.3.
FIGURE 2

The visualization of the group average PLI functional connectivity for BD (a) and HCs (b) under the eyes open experimental paradigm across five
frequency bands (d, q, a, b, and g), with a sparsity of 0.3.
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features showing significant differences between BD patients and

HCs were more dispersed across the d, q, a, b, and g frequency

bands. Within the free viewing paradigm, the significant

distinctions were relatively scattered in the d (frontal, parietal,

and occipital lobes), q (occipital lobe), a (occipital lobe), and b
(parietal lobe) frequency bands. All three paradigms revealed

notable differences in the d band (frontal, parietal, and occipital

lobes) between BD patients and HCs. However, the choice of

paradigm influenced the observed outcomes in q, a, b, g, DE-q,
DE-a, DE-b, DE-g, AAC, and dPAC features (Table 2).
3.4 Correlation with cognitive function

TMT-A scores exhibited more positive correlations with q and

a PSD, DE-q, and DE-a features across three experimental

paradigms. TMT-B scores showed more positive correlations with

d and q PSD and DE- d, and DE-q features across three

experimental paradigms. SDMT scores displayed negative

correlations with d and q PSD, DE-d, and DE-q features across

three experimental paradigms. DST scores exhibited negative

correlations with d PSD and DE-d features across three

experimental paradigms (Figure 4).

We also observed differences in the number of significant

features correlated with cognitive scores across the three

experimental paradigms, with the highest number observed in the

eyes closed paradigm and slightly fewer in the eyes open paradigm

than in the free viewing paradigm. More brain regions showed
Frontiers in Psychiatry 07
significant correlations between EEG features and cognitive scores

in the eyes closed paradigm compared to the eyes open or free

viewing paradigms.
3.5 Classification

Table 3 presents the results of BD recognition using six classifiers

under three different experimental paradigms. Compared to the eyes

open and free viewing paradigms, the eyes closed paradigm achieved

the highest accuracy and F1 score in identifying BD. Under the eyes

closed paradigm, the random forest classifier yielded the highest

recognition accuracy of 79.43%, with F1 score of 76.82%. For the eyes

open paradigm, the ensemble learning classifier demonstrated the

best BD identification performance, achieving a recognition accuracy

of 75.85% and F1 score of 71.28%. Similarly, the ensemble learning

classifier achieved the best BD identification performance under the

free viewing paradigm, with a recognition accuracy of 76.03% and F1

score of 72.6%.
4 Discussion

To our knowledge, this study represents the first attempt to

recognize bipolar disorder by analyzing EEG signals using different

experimental paradigms. We investigated the brain electrical

activity of two groups of patients, BD and HCs subjects, under

the conditions of eyes closed, eyes open, and free viewing
TABLE 2 The electrodes significantly differ across the 12 features under the three experimental paradigms.

Paradigm Brain
Region

d q a b g DE-d DE-q DE-a DE-b DE-g AAC dPAC

Eyes
Closed

F Fp1,Fp2,
F3,F4,F7,
F8,Fz

Fp1,Fp2,
F3,F4,Fz,
F7,F8

P C3,C4,Cz,
P3,P4,P7,
P8,Pz

P3,P4,
P8,Pz

C3,C4,Cz,
P3,P4,P7,
P8,Pz

P3,P4,Pz Cz,Pz P3

O O1,O2 O1,O2 O1,O2

T T7,T8

Eyes
Open

F F3,F7,Fz F7 F7,F8 F3,F7,
F8,Fz

F7 F7,F8 F3,F7 F7 Fz

P C3,C4,Cz,
P3,P4,Pz

C3 C3,Cz C3,Cz C3,C4,Cz,
P3,Pz

Cz Cz P4,Pz C4

O O1,O2 O1 O1,O2 O2 O1,O2 O1,O2 O2 O1

T T7,T8

Free
Viewing

F F3,Fz F3,F7,Fz F3 Fp1,F8 Fz

P C3,P3,
Cz,Pz

P7 C3,C4,
Cz,Pz

P8

O O1,O2 O1,O2 O1,O2 O1,O2 O2 O1,O2 O2

T

front
F, Frontal lobe; P, Parietal lobe; O, Occipital lobe; T, Temporal lobe; DE, Differential entropy; ACC, Amplitude-Amplitude Coupling; dPAC, Debiased Phase-Ampltiude Cross-
Frequency Coupling.
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experimental paradigms. Our research findings suggest that the eyes

closed experimental paradigm may offer the highest discriminative

power regarding brain functional connectivity analysis, cognitive

function correlation analysis, and classification performance. There

was no clear distinction between the free viewing and eyes open

experimental paradigms regarding their superiority, which could be

attributed to the specific free viewing paradigm adopted in

our study.
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First, in the eyes closed paradigm, the BD group exhibited more

significant PLI frequency bands than the HCs group, indicating

more pronounced differences in EEG signals under this condition.

The BD group exhibited a higher group average PLI in the d, q, b,
and g frequency bands than the HCs under the eyes closed

condition. A study has found increased coherence in the frontal

and occipital cortices, particularly in the frontal regions, presenting

more diffuse long-range brain connections than HCs (21), aligning

with our findings. Another study revealed that patients with

depression have enhanced PLI during sleep (59). This increased

neural synchrony pattern may reflect network activity in a resting

state. Excessive resting-state EEG activity has been described in

bipolar affective disorder and may be related to higher depression

levels (60). In the eyes open experimental paradigm, no significant

differences were observed in the PLI across all frequency bands

between the two groups. A study investigating the recovery of brain

function impairments in young bipolar disorder patients during a

stable emotional period revealed that under an eyes open

experimental paradigm, these patients exhibited heightened

activity across all frequencies (d, q, a, and b), suggesting deficits

in visual-spatial processing (61). Similarly, another study aimed at

distinguishing between female attention deficit hyperactivity

disorder and female bipolar disorder patients found that the

absolute q power was higher in the bipolar disorder group than

in the HCs group under an eyes open paradigm. However, no

increase in absolute q power was noted in the bipolar disorder

group during a connect-the-dots task (62). These results differ from

ours, potentially due to differences in study subjects and control

groups, necessitating further research. There were fewer and weaker

d and q connections than HCs under a free viewing paradigm.

Previous studies using a stimulus-task paradigm have shown that at

the onset of the stimulus, HCs had a higher PLI than bipolar
TABLE 3 Accuracy and F1-score of different classifiers under different
experimental paradigms.

Classifier Metric Experimental Paradigm

Eyes
closed

Eyes
Open

Free
viewing

Ensemble Acc(%) 77.26 75.85 76.03

F1-score 74.46 71.28 72.56

KNN Acc(%) 75.57 71.41 69.55

F1-score 72.52 66.10 64.38

NaiveBayes Acc(%) 70.63 67.79 65.58

F1-score 69.82 63.34 58.80

Random
Forest

Acc(%) 79.43 75.17 71.48

F1-score 76.82 70.79 67.06

SVM Acc(%) 77.78 75.58 75.60

F1-score 74.87 70.39 71.16

DecisionTree Acc(%) 68.89 65.35 61.62

F1-score 66.18 61.10 58.31
KNN, K-nearest neighbours; SVM, Support vector machine; Acc, Accuracy.
FIGURE 4

Topographical maps visualize the significant correlations between TMT-A, TMT-B, SDMT, and DST scores and features across different EEG
frequency bands under various experimental paradigms. The white dots represent the electrode positions with significant differences.
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disorder patients in the q and a bands, with the PLI of bipolar

disorder patients increasing later. However, connectivity in the b
and g bands only showed insignificant changes, indicating faster

brain responses in HCs than in bipolar disorder patients (63).

Another study using a self-referential memory (SRM) paradigm

found that during self and other referential processing, HCs

activated more brain connectivity regions than bipolar disorder

patients and HCs had a higher PLI than bipolar disorder patients at

the onset of the stimulus, suggesting that bipolar disorder patients ‘s

self-cognition is impeded in the transmission and integration of

interhemispheric information (48). Different free viewing paradigm

contents might result in variations in functional connectivity across

different frequencies. However, regardless of the paradigm, these

consistently indicate bipolar disorder patients’ difficulties in

attention, memory, and the integration of other brain resources.

Our study revealed that the eyes closed paradigm could discern

more functional connectivity differences between the two groups,

whereas the free viewing experimental paradigm demonstrated

fewer differences than those observed in the eyes closed paradigm

between the groups across frequency bands.

Second, we conducted a significance analysis of the 12 extracted

features and found that significant differences in the d and b
frequency bands were consistently observed across all three

classical experimental paradigms. In the eyes-closed paradigm,

notable differences were primarily observed in the d band

(frontal, parietal, and occipital lobes), b band (parietal lobe), DE-

d (frontal, parietal, occipital, and temporal lobes), and DE-b
(parietal lobe). A study discovered that d-b cross-frequency

coupling may reflect the neural projection of the physiopathology

of bipolar disorder; significant increases in dPAC and AAC were

found in FP 2, with a linear correlation between dPAC in F3 and

Mood Disorder Questionnaire scores were observed. Initially, P3’s

dPAC was only related to Hamilton Depression Rating Scale scores

(64). Our eyes closed experimental paradigm revealed significant

differences in P3’s dPAC, consistent with these findings. Other

studies also identified changes in the power of d, b, and q waves (65)
Our analysis of 12 extensively used EEG features revealed that the

selection of experimental paradigm affects the results of the

significance analysis for observed features. The majority of EEG

features (q, a, b, g, DE-q, DE-a, DE-b, DE-g, AAC, and dPAC)

demonstrated variability in differences across the paradigms. And

the brain regions exhibiting significant feature differences across

different paradigms. Thus, the selection of a consistent and efficient

experimental paradigm is crucial for researchers in exploring

biomarkers for bipolar depression.

Third, this study found thatq and a frequency bands positively

correlated with scores on the TMT-A test.d and q frequency bands

show positive correlations with TMT-B test scores and negative

correlations with DST test scores.d frequency band also negatively

correlated with SDMT test scores. A study on the spontaneous a
activity and visually evoked a responses in patients with bipolar

disorder revealed a reduced spontaneous EEG a activity and a

marked decrease in evoked a responses. These findings may be
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associated with the cognitive deficits characteristic of bipolar

disorder (66). Prior research supports increased d synchronization,

such as heightened EEG d activity in bipolar disorder than HCs,

confirming the potential for poorer cognitive flexibility and executive

function in patients with BD (67, 68). d oscillations are crucial for

cognitive functions related to focused attention, signal detection,

recognition, and decision-making, and diminished d responses may

be a common feature of cognitive dysfunction in neuropsychiatric

disorders (69) (70). Similarly, this study found that diminished d
responses were negatively correlated with the DST and SDMT

scores. Another study indicated that reducing activity in the

central q band might help diminish cognitive control and

maladaptive behavioral responses in patients with BD. The

changes in the q band observed in this study are consistent with

these findings (C. M. 71).

Finally, we employed multiple widely used classical machine

learning classifiers to assess the performance of three experimental

paradigms in BD identification tasks. A review indicates that most

studies on bipolar disorder have utilized classical machine learning

models, such as SVM, Random Forest, and KNN, with 24 studies

reporting accuracies ranging from 64% to 98% for machine learning

models in BD identification tasks (72). The classifiers encompassed

these mainstream machine learning models to ensure the reliability

and comparability of our research findings. We found that all six

classifiers achieved optimal classification performance under the

eyes closed experimental paradigm, indicating the superiority of the

eyes closed paradigm over the eyes open and free viewing

paradigms (based on action observations) in BD recognition

tasks. Moreover, the random forest classifier under the eyes

closed paradigm exhibited the best classification performance,

with a recognition accuracy of 79.43% and an F1 score of 76.82%.
5 Limitation

This study’s primary limitations were the small sample size and

the fact that not all patients were medication-free. Another

significant limitation is that our free viewing paradigm did not

employ an emotional paradigm involving fear, anger, sadness, or

other paradigms, which may have led to different results. Future

research may explore the content of the free viewing paradigm in

more detail.
6 Conclusion

Our study systematically analyzed the performance differences

between the eyes closed, eyes open, and free viewing experimental

paradigms in the BD identification task. We found that the eyes

closed paradigm exhibited significant advantages over the eyes open

and free viewing paradigms regarding feature significance, cognitive

relevance, and classifier recognition accuracy. However, there was

no significant differences between the eyes open and free viewing
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paradigms, possibly due to the use of the action observation-based

free viewing paradigm. Other paradigms based on emotion

induction and cognitive function deserve further exploration. Our

findings suggest that the eyes closed paradigm, a simple and feasible

experimental paradigm, holds greater clinical significance in EEG

analysis for BD identification than the eyes open and action

observation-based free viewing paradigms. Future research should

investigate additional experimental paradigms designed based on

emotional bias and cognitive function decline characteristics,

providing a more diverse range of experimental paradigm

references for BD identification studies.
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