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Introduction: Major depressive disorder (MDD) is a common comorbidity in

diabetes mellitus (DM), while diabetic kidney disease (DKD) represents a severe

complication of DM. However, the clinical and genetic associations between

MDD and DKD remain unclear. This study aimed to investigate their shared

biomarkers, molecular pathways, and immune features.

Methods: We analyzed data from the National Health and Nutrition Examination

Survey (NHANES, 2005–2018) to assess the association between MDD and DKD.

Genetic correlation was evaluated using linkage disequilibrium score regression

(LDSC), and causality was tested with Mendelian randomization (MR). Gene

expression datasets were integrated to identify crosstalk genes, followed by

protein–protein interaction (PPI) analysis to detect hub genes. Diagnostic

performance was validated using least absolute shrinkage and selection

operator (LASSO) regression and receiver operating characteristic (ROC)

curves. Immune infiltration was assessed, and potential therapeutic

compounds were predicted through connectivity map (cMAP) analysis and

molecular docking.

Results: Clinical analysis revealed a significant association between MDD and

DKD (OR = 1.45, 95% CI: 1.28–1.64). LDSC indicated a significant genetic

correlation (r = 0.2153, P = 0.008), although MR analysis did not support a

causal relationship. A total of 83 crosstalk genes were identified, primarily

enriched in inflammation and immune regulation pathways. PPI analysis

highlighted eight hub genes, with CD163 and KLRB1 emerging as promising

shared diagnostic biomarkers. Validation using LASSO and ROC confirmed their

diagnostic potential. Immune infiltration analysis revealed shared immune cell

alterations. Furthermore, cMAP analysis and molecular docking suggested

rucaparib and levocetirizine as candidate therapeutic agents.
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Discussion:Our findings demonstrate a genetic and immunological link between

MDD and DKD. CD163 and KLRB1 may serve as potential biomarkers and

therapeutic targets, offering new insights into the shared mechanisms and

treatment strategies for comorbid MDD and DKD.
KEYWORDS

major depressive disorder, diabetic kidney disease, NHANES, genetic correlation,
transcriptomic analysis
1 Introduction

Diabetic kidney disease (DKD) is a clinical manifestation of the

kidneys in diabetic patients characterized by proteinuria,

hypertension, and a progressive decline in renal function. DKD is

a frequent microvascular complication arising from diabetes

mellitus (DM), affecting approximately 30% to 40% of DM

patients (1, 2). Along with the increasing prevalence of DM

globally, the incidence of DKD is also on the rise. DKD is a

primary contributor to chronic kidney disease and renal failure,

significantly impacting patients’ quality of life and prognosis, and it

may even lead to death (2). Major depressive disorder (MDD) ranks

among the prevalent mental disorders characterized by enduring

feelings of sadness, reduced appetite, decreased interest in activities,

hopelessness, sleep disorder, and even suicidal behavior in severe

cases (3). The prevalence of MDD has rapidly increased worldwide

in recent years, with more than 700,000 individuals committing

suicide due to MDD each year, thereby imposing a heavy burden on

individuals and society (4).

Compared to the general population, individuals with DM have

twice the likelihood of experiencing depression and anxiety

disorders. Diabetes-related complications, including DKD, are

closely correlated with depression (5, 6). Cohort studies have

shown that DKD patients with depression progress to end-stage

renal disease at a rapid rate (7). Similarly, patients with DKD

typically have more symptoms of depression and anxiety, often
iabetes Mellitus; DKD,

Nutrition Examination

sion; MR, Mendelian

SSO, Least Absolute

erating Characteristic;

lerance Test; HbA1c,

reatinine Ratio; Egfr,

ome Ratio; BMI, Body

e Expression Omnibus;

O, Gene Ontology; BP,

cular Function; KEGG,

a Under the Curve; CI,

kin-1b; TNF-a, Tumor

-ribose) Polymerase.

02
resulting in unfavorable clinical outcomes, such as accelerated renal

function decline, increased hospitalizations, elevated mortality

rates, and poor quality of life (8, 9). The pathophysiological

mechanisms related to MDD include dysregulation of the

hypothalamic–pituitary–adrenal-immune axis and activation of

proinflammatory cytokines, which may lead to insulin resistance

and heighten the risk of developing DM and its associated

complications (10). A meta-analysis has indicated a bidirectional

relationship between MDD and DKD, with DKD potentially

predicting MDD and MDD serving as an indicator of DKD (11).

However, despite accumulating epidemiological evidence on the

association between MDD and DKD, the underlying molecular and

genetic mechanisms linking the two diseases remain largely

unexplored. In particular, there is a lack of studies identifying key

shared genes or pathways involved in this comorbidity. Further

research is warranted to explore the relationship between MDD and

DKD, particularly concerning cellular and molecular mechanisms.

The present study employed bioinformatics techniques to identify

genes involved in the crosstalk between MDD and DKD, revealing

the potential mechanisms underlying the interactions between these

two diseases and predicting small molecule compounds with

therapeutic potential.
2 Materials and methods

This study utilized repeated cross-sectional data from the

National Health and Nutrition Examination Survey (NHANES)

cycles between 2005 and 2018, combined with genome-wide

association study (GWAS) data, to investigate the genetic

correlation and causal relationship between MDD and DKD using

linkage disequilibrium score regression (LDSC) and bidirectional

Mendelian randomization (MR). Differentially expressed genes

were identified and subjected to functional enrichment, protein-

protein interaction (PPI) network construction, and least absolute

shrinkage and selection operator (LASSO) regression to select key

biomarkers. Potential therapeutic drugs were screened via the

Connectivity Map (cMAP) database and validated through

molecular docking to explore drug-target interactions, aiming to

elucidate shared mechanisms and therapeutic targets for both

diseases (Figure 1).
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2.1 Data collection and processing

The study utilized repeated cross-sectional data from NHANES

cycles conducted between 2005 and 2018. NHANES is a nationwide

survey that provides comprehensive health and nutrition data from a

representative sample of the non-institutionalized U.S. population

through complex, multistage sampling methods. The diagnostic

criteria for diabetes were as follows: a) a previous diagnosis reported

by a healthcare professional; b) fasting plasma glucose ≥7.0 mmol/L; c)

glycated hemoglobin (HbA1c) ≥6.5%; d) 2-hour plasma glucose level

≥11.1 mmol/L during an Oral Glucose Tolerance Test (OGTT); or e)

the use of diabetes medications or insulin (12, 13). According to the

KDIGO 2021 Guidelines, CKD was defined as having a urinary

albumin-to-creatinine ratio (UACR) > 30 mg/g and/or an estimated

glomerular filtration rate (eGFR) < 60 mL/min/1.73 m² (14). DKD was

defined as CKD combined with diabetes mellitus. Participants with a

total PHQ-9 score of ≥ 10 were considered to have MDD. In addition,

age, gender, race/ethnicity, education level, poverty income ratio (PIR),

marital status, smoking status, body mass index (BMI), blood pressure,

hypertension, high cholesterol, and coronary heart disease (CHD) were

included as covariates. The final sample size for this study was 15,574

after systematic exclusion (Supplementary Figure 1).
Frontiers in Psychiatry 03
The GWAS data required for LDSC and MR analyses were

sourced from public databases (Supplementary Table 1). From

these data, 157 genetic instruments were identified for assessing

MDD and 10 for evaluating DKD.

Gene expression profiling datasets associated with MDD and

DKD were obtained from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). The MDD dataset,

GSE98793, which utilizes the GPL570 platform (Affymetrix Human

Genome U133_Plus2.0), consists of 192 samples, including 128

samples from MDD patients and 64 samples from healthy control

individuals. The DKD dataset, GSE30122, encompasses three

datasets that are all based on the GPL570 platform (Affymetrix

Human Genome U133A 2.0), and it comprises 69 samples,

including 50 DKD patients and 19 healthy control individuals.
2.2 Statistical analysis

Due to the skewed distribution of the data, categorical variables

are presented as frequencies (percentages), and continuous

variables are presented as medians (interquartile ranges). The

Chi-square test or Mann-Whitney U test was used to assess
FIGURE 1

The working flow chart of this study. MDD, Major depressive disorder; DKD, diabetic kidney disease; NHANES, National Health and Nutrition
Examination Survey; LDSC, Linkage Disequilibrium Score Regression; MR, Mendelian randomization; DEGs, differentially expressed genes; PPI,
Protein-protein interaction; LASSO, least absolute shrinkage and selection operator.
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differences in DKD and MDD between exposed and unexposed

groups. Logistic regression models were employed to calculate the

odds ratios (ORs) for DKD and MDD. Subsequently, multivariable

regression analysis was conducted to adjust for the effects of

covariates, yielding adjusted odds ratios.

Data were weighted to produce accurate estimates that reflect the

non-institutionalized civilian population of the United States. Statistical

analyses were conducted using the Survey package in R software (version

4.2.3). A two-sided p <0.05 was considered statistically significant.
2.3 Genetic correlation analysis

LDSC analysis was performed to assess the genetic correlation

between MDD and DKD using the software available at https://

github.com/bulik/ldsc (15). Subsequently, bidirectional two-sample

MR analysis was conducted with DKD and MDD as exposure and

outcome variables. Sensitivity and heterogeneity tests were also

conducted to validate the MR findings.
2.4 Analysis of differentially expressed
genes

All operations were conducted in R (version 4.2.3). After

preprocessing and normalizing the data, the limma package in R was

used to identify DEGs. DEGs with a corrected p <0.05 and |log FC| ≥0.5

in the GSE30122 dataset and with a corrected p <0.05 and |log FC| ≥0.1

in the GSE98793 dataset were screened (16, 17). The more lenient

threshold in the GSE98793 dataset was adopted to avoid overlooking

potentially important DEGs with modest expression changes. Clustered

heatmaps and volcano plots of the DEGs were generated using the

pheatmap and ggplot2 packages in R, respectively. The ggVenn package

in R was used to create Venn diagrams to identify genes involved in

crosstalk between MDD and DKD for further analysis.
2.5 GO and KEGG enrichment analyses

Gene Ontology (GO) enrichment analysis is a structured,

computerized approach aimed at elucidating the functions of genes

and gene products, encompassing biological processes (BP), cellular

components (CC), and molecular functions (MF). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

serves as a widely utilized enrichment tool to unveil biochemical

mechanisms and functions (18). The identified crosstalk genes were

subjected to GO and KEGG functional enrichment analyses,

employing the clusterProfiler package in R. The ggplot2 and

ggrepel packages in R were used to visualize the results.
2.6 Construction of the PPI network and
identification of hub genes

The STRING database (https://string-db.org) is commonly

utilized for constructing PPI networks (19). The screened
Frontiers in Psychiatry 04
crosstalk genes were imported into the STRING database to

construct a PPI network, which had combined scores exceeding

0.4. The network was visualized using Cytoscape version 3.9.1,

Cytoscape Consortium. Hub genes were identified by the

Cytohubba plugin and MCODE algorithm.
2.7 Identification of biomarkers using
LASSO analysis

LASSO analysis is a regression technique designed to enhance

prediction accuracy by identifying variables with strong predictive

power and low correlation from high-dimensional data (20). The

glmnet package in R was used to perform LASSO regression, which

identified the influential predictive factors among the hub genes

that may serve as diagnostic biomarkers for MDD and DKD.
2.8 Expression levels and diagnostic value
of candidate biomarkers

The ggplot2 package in R was used to create boxplots to assess

biomarker expression levels (p <0.05). The pROC package in R was

used to compute the area under the curve (AUC) of receiver

operating characteristic (ROC) curves to assess the validity of

potential shared diagnostic biomarkers in the GSE98793 and

GSE30122 datasets.
2.9 Immune infiltration analysis

CIBERSORTx (https://cibersortx.stanford.edu/) is an online

platform for immune infiltration analysis, and it was used to

explore the differences in the distribution of immune cells between

patients with both MDD and DKD and healthy individuals. Finally,

Spearman rank correlation analysis was employed to assess the

correlation between the expression levels of potential shared

diagnostic biomarkers and the abundance of infiltrating immune

cells, with a significance threshold set at p <0.05.
2.10 cMAP analysis and molecular docking

cMAP (https://clue.io/) is a gene expression profiling database

that employs gene expression signature interventions to unveil

connections among drugs, genes, and diseases, aiding in the

screening of potential drug candidates (21). In the present study,

co-upregulated DEGs related to MDD and DKD were uploaded to

the cMAP database to identify potential therapeutic drugs. The top

10 drug candidates with the most significant negative scores were

selected as potential therapeutics for MDD and DKD.

To evaluate the binding affinity between the aforementioned

small-molecule drugs and biomarkers, molecular docking analysis

was conducted. The three-dimensional structures of the target

proteins were retrieved from the RCSB Protein Data Bank
frontiersin.org
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TABLE 1 Baseline characteristics and OR of participants by DKD levels in NHANES (2005–2018).

Variables Total (n = 15574) Non-DKD (n = 11928) DKD (n = 3646) P value OR (95%CI) Adjusted OR (95%CI)

Reference Reference

1.45 (1.28, 1.64) 1.24 (1.07, 1.42)

1.06 (1.06, 1.07) 1.05(1.04,1.05)

0.87 (0.85, 0.89) 0.89 (0.87, 0.92)

1.03 (1.02, 1.03) 1.02 (1.02, 1.03)

1.03 (1.03, 1.04) 1.01 (1.01, 1.01)

0.99 (0.98, 0.99) 0.99 (0.99, 0.99)

Reference Reference

1.01 (0.93, 1.08) 0.98 (0.89, 1.07)

Reference Reference

1.17 (1.05, 1.32) 0.93 (0.81, 1.07)

1.59 (1.40, 1.80) 1.36 (1.18, 1.58)

0.76 (0.65, 0.89) 0.68 (0.57, 0.82)

0.79 (0.67, 0.94) 1.04 (0.87, 1.24)

Reference Reference

0.62 (0.57, 0.67) 0.96 (0.86, 1.06)

Reference Reference

0.69(0.64, 0.75) 0.83 (0.76, 0.91)

Reference Reference

1.29 (1.20, 1.39) 0.98 (0.90, 1.07)
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MDD < 0.0001

No 14203 (92.33%) 10968 (92.87%) 3235 (89.83%)

Yes 1371 (7.67%) 960 (7.13%) 411 (10.17%)

Age(years) 50.00 (37.00, 63.00) 48.00 (35.00, 59.00) 65.00 (53.00, 75.00) < 0.0001

PIR 3.11 (1.57, 5.00) 3.30 (1.65, 5.00) 2.40 (1.30, 4.29) < 0.0001

BMI(kg/m2) 28.70 (24.80, 33.50) 28.40 (24.59, 33.10) 30.20 (26.00, 35.50) < 0.0001

ASBP(mmHg) 120.67 (111.33, 132.00) 119.33 (110.00, 129.33) 130.67 (116.67, 146.67) < 0.0001

ADBP(mmHg) 70.67 (64.00, 77.33) 70.67 (64.00, 77.33) 68.67 (59.33, 77.33) < 0.0001

Gender 0.0003

Male 7711 (49.06%) 5910 (49.97%) 1801 (44.83%)

Female 7863 (50.94%) 6018 (50.03%) 1845 (55.17%)

Race < 0.0001

Mexican American 2208 (7.76%) 1739 (7.89%) 469 (7.15%)

Non-Hispanic White 6681 (68.82%) 5074 (69.08%) 1607 (67.62%)

Non-Hispanic Black 3259 (10.17%) 2281 (9.28%) 978 (14.32%)

Other Hispanic 1472 (5.35%) 1213 (5.63%) 259 (4.02%)

Other Race 1954 (7.90%) 1621 (13.59%) 333 (6.90%)

Education level < 0.0001

Below high school 3565 (14.32%) 2478 (12.92%) 1087 (20.84%)

High School or above 12009 (85.68%) 9450 (87.08%) 2559 (79.16%)

Marital status < 0.0001

No 5967 (33.99%) 4323 (32.58%) 1644 (40.57%)

Yes 9607 (66.01%) 7605 (67.42%) 2002 (59.43%)

Smoke 0.0002

No 8548 (54.82%) 6724 (55.73%) 1824 (50.58%)

Yes 7026 (45.18%) 5204 (44.27%) 1822 (49.42%)

Hyptersion < 0.0001
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(https://www.rcsb.org/) , and PyMOL software (version 2.5.0) was

used to remove water molecules, ligands, and other modifications

(22, 23). The 3D structures of the small molecules were obtained

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) ,

followed by hydrogen addition and charge assignment. Finally,

molecular docking was performed using AutoDock Vina (version

1.1.2), and binding sites with binding energies lower than –5.0 kcal/

mol were considered to indicate stable interactions.
3 Results

3.1 Relationship between MDD and DKD

Tables 1, 2 present the baseline characteristics of the patients

and the results of the logistic regression analysis for DKD and

MDD. The results showed that MDD was significantly associated

with an increased risk of DKD. In the univariate logistic regression

analysis, the prevalence of MDD was higher in the DKD group than

in the non-DKD group [OR = 1.45, 95% confidence interval (CI),

1.28-1.64]. The association remained significant after adjustment

for covariates (adjusted OR = 1.24, 95% CI, 1.07-1.42).
3.2 Genetic correlation

LDSC analysis revealed a significant genetic correlation between

MDD and DKD, with a correlation coefficient of 0.2153 (p = 0.008)

(Supplementary Table 2). Although the MR analysis indicated no

causal relationship between the two diseases (Supplementary

Figure 2), this result was supported by sensitivity tests

(Supplementary Table 3).
3.3 Identification of crosstalk genes for
MDD and DKD

After data preprocessing, a total of 1128 DEGs were identified

from the GSE98793 dataset, including 518 upregulated genes and

611 downregulated genes (Figures 2A, C). From the GSE30122

dataset, a total of 828 DEGs were identified, encompassing 266

upregulated genes and 645 downregulated genes (Figures 2B, D).

Altogether, 83 genes related to MDD and DKD crosstalk were

identified by Venn diagrams (Figure 2E), of which 12 DEGs were

commonly upregulated (ZNF91, TGFBR3, PCDH9, FGF9, CD83,

COL4A3, P3H2, KANK3, ZBTB10, MID2, RABL3, and WNT10B).
3.4 GO and KEGG enrichment analyses of
crosstalk genes

The 83 crosstalk genes were subjected to GO enrichment analysis,

and a total of 374 GO terms were obtained, comprising 301 BP terms,

26 CC terms, and 47 MF terms (Figure 2F). Regarding the BP terms,

the genes related to crosstalk were primarily enriched in epithelial cell
T
A
B
LE

1
C
o
n
ti
n
u
e
d

V
ar
ia
b
le
s

T
o
ta
l
(n

=
15

5
74

)
N
o
n
-D

K
D

(n
=
11
9
2
8
)

D
K
D

(n
=
3
6
4
6
)

P
va

lu
e

O
R
(9
5
%
C
I)

A
d
ju
st
e
d
O
R
(9
5
%
C
I)

N
o

78
83

(5
6.
67
%
)

70
37

(6
3.
22
%
)

84
6
(2
6.
13
%
)

R
ef
er
en
ce

R
ef
er
en
ce

Y
es

76
91

(4
3.
33
%
)

48
91

(3
6.
78
%
)

28
00

(7
3.
87
%
)

4.
76

(4
.3
7,
5.
18
)

1.
81

(1
.6
3,
2.
01
)

H
ig
h
ch
ol
es
te
ro
ll
ev
el

<
0.
00
01

N
o

91
49

(6
0.
63
%
)

74
92

(6
3.
63
%
)

16
57

(4
6.
62
%
)

R
ef
er
en
ce

R
ef
er
en
ce

Y
es

64
25

(3
9.
37
%
)

44
36

(3
6.
37
%
)

19
89

(5
3.
38
%
)

2.
03

(1
.8
8,
2.
19
)

1.
03

(0
.9
5,
1.
13
)

C
H
D

<
0.
00
01

N
o

14
72
7
(9
5.
30
%
)

11
52
3
(9
6.
81
%
)

32
04

(8
8.
25
%
)

R
ef
er
en
ce

R
ef
er
en
ce

Y
es

84
7
(4
.7
0%

)
40
5
(3
.1
9%

)
44
2
(1
1.
75
%
)

3.
93

(3
.4
1,
4.
52
)

1.
78

(1
.5
2,
2.
07
)

M
D
D
,M

aj
or

de
pr
es
si
ve

di
so
rd
er
;D

K
D
,d

ia
be
ti
c
ki
dn

ey
di
se
as
e;
P
IR
,p

ov
er
ty

in
co
m
e
ra
ti
o;

B
M
I,
bo

dy
m
as
s
in
de
x;
SB

P
,S
ys
to
lic

B
lo
od

P
re
ss
ur
e;
D
B
P
,D

ia
st
ol
ic
B
lo
od

P
re
ss
ur
e;
C
H
D
,c
or
on

ar
y
he
ar
t
di
se
as
e.
frontiersin.org

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fpsyt.2025.1546733
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


TABLE 2 Baseline characteristics and OR of participants by MDD levels in NHANES (2005–2018).

Variables Total (n = 15574) Non-MDD (n = 14203) MDD (n = 1371) P value OR(95%CI) Adjusted OR(95%CI)

Reference Reference

1.45 (1.28, 1.64) 1.19 (1.03, 1.36)

1.00 (1.00, 1.01) 0.99 (0.99, 1.00)

0.67 (0.64, 0.70) 0.73 (0.70, 0.77)

1.04 (1.03, 1.05) 1.03 (1.02, 1.04)

1.00 (1.00, 1.00) 0.99 (0.99, 0.99)

1.00 (1.00, 1.01) 1.01 (1.01, 1.02)

Reference Reference

1.61 (1.45, 1.82) 1.67 (1.47, 1.89)

Reference Reference

1.14 (0.96, 1.35) 1.38 (1.14, 1.67)

1.12 (0.92, 1.36) 1.06 (0.86, 1.31)

1.39 (1.11, 1.74) 1.48 (1.17, 1.86)

0.75 (0.59, 0.95) 1.18 (0.92, 1.52)

Reference Reference

0.53 (0.47, 0.60) 0.71 (0.62, 0.81)

Reference Reference

0.50 (0.45, 0.56) 0.65 (0.57, 0.73)

Reference Reference

2.01 (1.79, 2.25) 1.89 (1.67, 2.13)

(Continued)
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DKD < 0.0001

No 11928 (82.35%) 10968 (82.83%) 960 (76.59%)

Yes 3646 (17.65%) 3235 (17.17%) 411 (23.41%)

Age(years) 50.00 (37.00, 63.00) 50.00 (37.00, 63.00) 51.00 (39.00, 62.00) 0.25

PIR 3.11 (1.57, 5.00) 3.25 (1.68, 5.00) 1.64 (0.91, 3.20) < 0.0001

BMI(kg/m2) 28.70 (24.80, 33.50) 28.50 (24.80, 33.23) 30.90 (25.60, 36.00) < 0.0001

ASBP(mmHg) 120.67 (111.33, 132.00) 120.67 (111.33, 132.00) 120.67 (111.33, 132.67) 0.41

ADBP(mmHg) 70.67 (64.00, 77.33) 70.67 (63.33, 77.33) 70.00 (64.00, 78.00) 0.15

Gender < 0.0001

Male 7711 (49.06%) 7180 (49.98%) 531 (37.96%)

Female 7863 (50.94%) 7023 (50.02%) 840 (62.04%)

Race 0.008

Mexican American 2208 (7.76%) 2028 (7.86%) 180 (6.50%)

Non-Hispanic White 6681 (68.82%) 6069 (69.02%) 612 (66.39%)

Non-Hispanic Black 3259 (10.17%) 2964 (9.96%) 295 (12.68%)

Other Hispanic 1472 (5.35%) 1310 (5.24%) 162 (6.65%)

Other Race 1954 (7.90%) 1832 (7.92%) 122 (7.78%)

Education level < 0.0001

Below high school 3565 (14.32%) 3094 (13.49%) 471 (24.30%)

High School or above 12009 (85.68%) 11109 (86.51%) 900 (75.70%)

Marital status < 0.0001

No 5967 (33.99%) 5229 (32.69%) 738 (49.68%)

Yes 9607 (66.01%) 8974 (67.31%) 633 (50.32%)

Smoke < 0.0001

No 8548 (54.82%) 8011 (56.30%) 537 (37.06%)

Yes 7026 (45.18%) 6192 (43.70%) 834 (62.94%)

Hyptersion < 0.0001
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proliferation (GO:0050673), positive regulation of cell adhesion

(GO:0045785), regulation of epithelial cell proliferation

(GO:0050678), cell chemotaxis (GO:0060326), and the immune

response-regulating signaling pathway (GO:0002764). For the CC

terms, enrichment was observed in secretory granule lumen

(GO:0034774), cytoplasmic vesicle lumen (GO:0060205), vesicle

lumen (GO:0031983), collagen-containing extracellular matrix

(GO:0062023), and the external side of the plasma membrane

(GO:0009897). Finally, for the MF terms, enrichment was observed

for glycosaminoglycan binding (GO:0005539), endopeptidase activity

(GO:0004175), serine-type endopeptidase activity (GO:0004252),

serine-type peptidase activity (GO:0008236), and serine hydrolase

activity (GO:0017171).

KEGG analysis revealed enrichment of crosstalk genes in

565 pathways, predominantly involving the PI3K/Akt signaling

pathway, Hippo signaling pathway, and pathways related to

proteoglycans in cancer, gastric cancer, and human papillomavirus

infection (Figure 2G).
3.5 Construction of the PPI network and
identification of hub genes

Based on the 83 crosstalk genes, the PPI network created using

the STRING database comprised 88 nodes and 316 edges. A

network diagram was constructed with Cytoscape software.

Cytohubba was utilized to further screen the hub genes, and the

top 10 genes were selected based on node degree ranking. In

addition, a key module was extracted via the MCODE plugin, and

the intersection of the two results (Figure 3A) identified the

following eight hub genes: CXCR6, GZMA, CD163, KLRB1,

GZMK, CCR5, CD3D, and CD8A.
3.6 Selection of biomarkers and validation
of diagnostic value

LASSO regression analysis was subsequently conducted to

identify potential shared diagnostic genes. Three out of eight hub

genes were identified in both the GSE98793 dataset and the

GSE30122 dataset (Figure 3B). Ultimately, two overlapping hub

genes, namely, CD163 and KLRB1, emerged as the most promising

shared diagnostic biomarkers for both MDD and DKD (Figure 3C).

Figure 3D illustrates the expression levels of the two diagnostic

biomarkers in MDD and DKD. CD163 is upregulated in both

diseases, while KLRB1 is upregulated in MDD but downregulated

in DKD. Additionally, the sensitivity and specificity of the diagnostic

biomarkers were evaluated. In the GSE30122 dataset, both diagnostic

biomarkers CD163 (AUC = 0.909) and KLRB1 (AUC = 0.827),

demonstrated good diagnostic value. In the GSE98793 dataset, the

two biomarkers showed higher diagnostic value (CD163, AUC =

0.611; and KLRB1, AUC = 0.652) (Figure 3E). The results showed

that both diagnostic biomarkers had significant diagnostic value in

disease classification, but the predictive performance in the DKD

dataset was better than that in the MDD dataset.
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3.7 Immune cell infiltration in MDD and
DKD

To further explore the immune status in MDD and DKD, the

percentage of 22 immune cells in each sample was calculated by the

CIBERSORT algorithm. Figures 4A, D show the infiltration of 22

immune cell types in the GSE98793 and GSE30122 datasets,
Frontiers in Psychiatry 09
respectively. In the GSE98793 dataset, only resting CD4+ memory

T cells, activated memory CD4+ T cells, and monocytes exhibited

significant infiltration in MDD samples (Figure 4B). In the

GSE30122 dataset, memory B cells, plasma cells, gd T cells,

resting natural killer cells, M1 macrophages, M2 macrophages,

and resting mast cells exhibited significant infiltration in DKD

(Figure 4E). These results suggested that both MDD and DKD
FIGURE 2

DEG expression in the two datasets and functional enrichment analyses of the crosstalk genes. (A) Heatmap of the top 25 DEGs in the GSE98793
dataset. (B) Heatmap of the top 25 DEGs in the GSE30122 dataset. (C) Volcano plot of DEGs in the GSE98793 dataset. (D) Volcano plot of DEGs in
the GSE30122 dataset. (E) Identification of 83 genes related to crosstalk between the DEGs of MDD and DKD. (F) GO analysis of the crosstalk genes.
(G) KEGG pathway enrichment analysis of the crosstalk gene.
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patients exhibit immune activation. Although both diseases involve

immune activation, the proportions of significantly infiltrating

immune cells differed. Additionally, significant correlations were

identified for CD163 and KLRB1 expression levels with the

infiltration levels of multiple immune cells in both the MDD and

DKD samples (Figures 4C, F).
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3.8 Identification of small molecule
compounds and molecular docking for
MDD and DKD

The common upregulated crosstalk genes identified in the

GSE98793 and GSE30122 datasets were imported into the cMAP
FIGURE 3

Identification of hub genes. (A) PPI network diagram of crosstalk genes. Interaction network of the hub genes identified by Cytohubba.Hub genes
extracted by Cytohubba and MCODE. The weight of a hub gene across the network increases with the hue of the gene. (B) Distribution of
coefficients and coefficient profiles of variables in LASSO regression models in MDD and DKD. (C) Venn diagram showing the potential shared
diagnostic biomarkers for MDD and DKD. (D) Detection of the expression levels of the two potential shared diagnostic biomarkers in MDD and DKD.
(E) ROC curves of the two potential shared diagnostic biomarkers for MDD (left) and DKD (right). The symbols represent significance levels as
follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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database to search for small molecule compounds capable of

reversing the expression of pathogenic genes associated with

MDD and DKD. The top 10 compounds with the highest

negative scores included rucaparib, estrone, AC-55649,

treprostinil, griseofulvin, levocetirizine, avrainvillamide-analog-3,

GW-6471, doxycycline, and salubrinal, which are considered

potential therapeutic agents (Figure 5A). The targeting pathways

and chemical structures of these 10 compounds are shown in

Figures 5B, C.

Molecular docking results showed that the binding energies of

CD163 with rucaparib and levocetirizine were –6.26 and –6.60 kcal/

mol, respectively. KLRB1 exhibited binding energies lower than –

5.00 kcal/mol with rucaparib, estrone, AC-55649, griseofulvin,

levocetirizine, and salubrinal, with the lowest binding energy
Frontiers in Psychiatry 11
observed for levocetirizine at –6.09 kcal/mol (Figure 6). Detailed

information on the binding energies, key binding sites, and number

of hydrogen bonds between each small molecule and target protein

is provided in Supplementary Table 4.
4 Discussion

Previous studies have demonstrated a bidirectional association

between MDD and DM, with Type 2 DM being linked to a 24%

higher prevalence of MDD, and MDD showing a 60% higher

incidence in individuals with Type 2 DM (24, 25). Research on

the comorbidity of DM and MDD has also been increasing

annually. Fang et al. confirmed a mutually influential relationship
FIGURE 4

Identification of immune cells in MDD and DKD. (A) Immune cell infiltration map in the GSE9879 dataset. (B) Box plot showing the comparison of 22
types of immune cells between MDD patients and healthy control individuals. (C) Heatmap showing the correlations between common immune
cells and potential shared diagnostic biomarkers in the GSE98793 dataset. (D) Immune cell infiltration map in the GSE30122 dataset. (E) Box plot
showing the comparison of 22 types of immune cells between DKD patients and healthy controls. (F) Heatmap showing the correlations between
common immune cells and potential shared diagnostic biomarkers in the GSE30122 dataset. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns,
not significant.
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between MDD and DKD (11). The pathogenesis of MDD is

associated with immune system dysregulation, and enhanced

expression of inflammatory markers (IL-6, C-reactive protein,

and TNF-a) increases the risk of DKD (26, 27). In addition,

MDD increases the activity of the hypothalamic-pituitary-adrenal

axis, sympathetic nervous system, stress hormones, and cortisol.

These factors stimulate glucose production, lipolysis, and free fatty

acid cycling but decrease insulin secretion and sensitivity,

potentially resulting in an elevated risk of developing DKD (28).

Although the bidirectional relationship between DKD and MDD

has been acknowledged, the underlying mechanisms remain poorly

understood. Our cross-sectional analysis revealed a significant

association between DKD and MDD, and genetic analyses

indicated a degree of genetic correlation between the two

conditions. However, there was no clear evidence supporting a

causal relationship, which may be influenced by unmeasured

confounders such as lifestyle or medication factors. These

findings suggest a potential shared genetic background rather

than a direct causal pathway, underscoring the complexity of the

relationship. Therefore, we hypothesized that DKD and MDD share

common differential genes and biological pathways, which we

proceeded to investigate.

The present study identified 83 genes associated with MDD and

DKD through differential expression analysis of the GSE98793 and
Frontiers in Psychiatry 12
GSE30122 datasets. Enrichment analysis discovered a significant

presence of the PI3K/Akt signaling pathway and Hippo signaling

pathway in MDD and DKD. Eight hub genes, namely, CXCR6,

GZMA, CD163, KLRB1, GZMK, CCR5, CD3D, and CD8A, were

identified from the PPI network, all of which are closely related to

MDD and DKD. In addition, LASSO analysis was used to identify

two hub genes, namely, CD163 and KLRB1, as potential shared

diagnostic biomarkers, and their diagnostic value was validated,

confirming their diagnostic significance in both diseases. Immune

infiltration analysis using the DEGs of MDD and DKD was

performed. T cells and monocytes exhibited significant infiltration

in MDD, while various immune cells, including B cells,

macrophages, and mast cells, exhibited significant infiltration in

DKD. Finally, drug prediction was performed on the genes involved

in the crosstalk between MDD and DKD, identifying multiple small

molecule compounds as potential therapeutic drugs for MDD

and DKD.

Enrichment analysis revealed that the comorbidity of MDD

with DKD was primarily associated with the PI3K/Akt and Hippo

signaling pathways. Additionally, the comorbidity of MDD with

DKD was closely related to various cancers, such as bladder cancer,

gastric cancer, and breast cancer, as well as autoimmune diseases,

such as rheumatoid arthritis. Thus, the comorbidity of MDD and

DKD may share common biological mechanisms with certain
FIGURE 5

Identification of potential small molecule compounds for the treatment of MDD and DKD via cMAP analysis. (A) Heatmap showing the top 10 small
molecule compounds with the most significantly negative enrichment scores. (B) The chemical structures of the 10 small molecule compounds are
shown. (C) Descriptions of the top 10 compounds.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1546733
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al. 10.3389/fpsyt.2025.1546733
cancers. The abnormal activation of these two signaling pathways in

MDD and DKD may be linked to an elevated risk of cancer,

indicating a potential interplay or cross-impact between them.

The PI3K/Akt signaling pathway is a critical cellular signaling

cascade that is pivotal for numerous biological processes,

including cell survival, proliferation, differentiation, and

metabolism (29). It has been suggested that the activity of the

PI3K/AKT pathway may be inhibited in diabetic states, which can

lead to a series of pathophysiological alterations, including

increased cell apoptosis, enhanced oxidative stress, cell

proliferation, and inflammatory responses (30). Further study of

the mechanism of the PI3K/AKT pathway in DKD will enhance the

understanding of the disease pathogenesis and lay a theoretical

groundwork for the development of novel therapeutic strategies.
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mTOR is a key downstream effector of the PI3K/AKT signaling

pathway and plays a central role in regulating cell growth,

metabolism, and autophagy. Abnormal activation or inhibition of

mTOR is closely associated with the development of various

diseases. In Alzheimer’s disease, excessive activation of mTOR

may inhibit autophagy, leading to the accumulation of abnormal

proteins, which is thought to contribute to the disease’s

pathogenesis (31). In contrast, studies suggest that in patients

with major depressive disorder, mTOR signaling activity may be

suppressed, and activation of this pathway has been associated with

antidepressant effects (32). Lima et al. reported that valproic acid

(VPA) has antidepressant effects, which may be associated with the

modulation of the PI3K/Akt/mTOR signaling pathway (33). The

present findings provide important insight for exploring new targets
FIGURE 6

Molecular docking of KLRB1 and CD36 with small molecules (Binding Energy > –5 kcal/mol). Blue represents the macromolecular protein structure,
green indicates the key amino acid residues involved in binding, pink denotes the small-molecule ligands, and yellow lines highlight the hydrogen
bonds formed between the ligands and the protein residues.
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for the treatment of MDD. Additionally, the present study provides

a theoretical basis for the clinical application of PI3K/Akt/mTOR

pathway modulators as antidepressant medications.

The Hippo pathway regulates cell proliferation, apoptosis, and

organ size, thereby maintaining tissue and organ homeostasis, and

the main components of the Hippo pathway include MST1/2,

LATS1/2, and their substrates. The Hippo pathway was initially

discovered in Drosophila and has since been extensively studied in

mammals (34). The Hippo pathway is an important cellular

signaling pathway that may contribute to the development and

progression of DKD, and related studies are ongoing. As a

downstream effector of the Hippo signaling pathway, YAP

promotes renal interstitial fibrosis in DKD, and high expression

of YAP is correlated with increased systolic blood pressure, blood

urea nitrogen, and creatinine, as well as with the progression of

DKD staging and DKD pathological classification. Inhibiting YAP

activity may slow the progression of DKD (34, 35). Therefore,

targeting the Hippo signaling pathway may be a therapeutic strategy

for DKD. There is no conclusive evidence linking the Hippo

pathway to MDD occurrence and progression. However, previous

studies on immunological characteristics have revealed the

involvement of MST1/2 in regulating lymphocyte adhesion,

migration, and CD4+ antigen recognition (36), which aligns with

the present immune infiltration analysis, demonstrating that CD4+

T cells were significantly infiltrated in MDD, suggesting that the

Hippo pathway may have a potential biological link to MDD.

Currently, direct clinical and experimental data confirming the

association between MDD and the Hippo signaling pathway are

lacking. Thus, additional research is warranted to elucidate the

mechanisms of the Hippo signaling pathway in MDD and its

potential value as a therapeutic target for MDD.

Through the PPI network, eight hub genes that are closely

associated with the immune system and inflammation regulation

were identified. Among them, CD163, CCR5, CD3D, KLRB1, and

CD8A serve as surface markers of immune cells and play a role in

regulating immune responses. GZMA and GZMK encode proteases

found in natural killer cells that are involved in cytotoxicity and the

modulation of inflammatory responses (37). CXCR6, also known as

CD186, is a chemokine receptor that is mainly expressed in immune

cells, especially in activated T cells, natural killer cells, macrophages,

and dendritic cells. CXCR6 participates in the immune response

within the body, the inflammatory response, tissue cell migration,

and tumor immunity (38). These eight hub genes share

commonalit ies in regulating the immune system and

inflammation, suggesting their pivotal roles in the pathogenesis of

both MDD and DKD. These shared characteristics may explain

their identification as relevant genes in both MDD and DKD.

Among the hub genes, CD163 and KLRB1 were identified as

potential shared diagnostic biomarkers for MDD and DKD

according to LASSO analysis. On the surface of macrophages,

CD163 is a widely expressed receptor protein that serves as a

marker for monocytes and tissue macrophages. CD163

participates in immune regulation by binding and clearing

hemoglobin, regulating cytokine production and release, and

modulating inflammatory responses. Furthermore, changes in
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serum CD163 levels are closely associated with disease status and

inflammation severity, suggesting that CD163 is a potential

biomarker of inflammation for disease diagnosis and monitoring

(39). Research has shown that in patients with DM, the CD163

expression level in monocytes is negatively correlated with the type

and severity of diabetic complications (40). However, another study

has indicated that glomerular CD163+ macrophages are positively

associated with DKD grade, interstitial fibrosis, tubular atrophy,

and glomerulosclerosis (41). In 2017, Samuelsson et al. confirmed

that CD163 is a promising early diagnostic biomarker for DKD

(42). Similarly, Wang et al. corroborated this finding, aligning with

the results of the present study (43).

KLRB1, also known as CD161, is a cell surface molecule

belonging to the C-type lectin receptor family. KLRB1 is a

transmembrane protein widely expressed in humans and other

mammals. KLRB1 plays a pivotal regulatory role in the immune

system and is particularly associated with natural killer (NK) cells

and certain subsets of T cells (44). Currently, there are few studies

on the association of KLRB1 with MDD and DKD, but its possible

involvement in the immune system to regulate biological processes,

such as the inflammatory response, autoimmune diseases, and

antitumor immunity, may be relevant to the development of

MDD and DKD. Therefore, further investigation of KLRB1 may

aid in enhancing the understanding of the regulatory mechanisms

of the immune system and provide new targets and strategies for the

treatment of both diseases.

In addition, CD163 and KLRB1 are closely associated with

tumor development. CD163 macrophages are abundant in the

tumor microenvironment, and CD163 has been utilized for

identifying tumor-associated macrophages in malignant diseases.

For example, increased numbers of CD163+ macrophages and

CD163+ gastric cancer cells are correlated with gastric tumor

invasion and poor prognosis (45). Cheng et al. explored the

relationship between KLRB1 and pancancer, and they reported

that KLRB1 may impact tumor immunity by modulating the levels

of infiltrating immune cells, particularly macrophages and

lymphocytes, and that KLRB1 acts as a protective gene in the

majority of cancers (46). The enrichment analysis in the present

study revealed that MDD and DKD were closely related to various

tumors, which may be associated with the molecular mechanisms of

CD163 and KLRB1. Future studies will explore the mechanism of

CD163 and KLRB1 in patients with DKD combined with MDD to

offer novel insights into the clinical diagnosis and treatment of

this disease.

As mentioned above, the immune mechanisms of MDD and

DKD are pivotal in the onset and progression of these diseases. An

increased inflammatory response, activation of immune cells, and

neuroimmune interactions may be common immune mechanisms

in both diseases. In MDD patients, immune cells, such as T cells,

macrophages, and monocytes, may be in an activated state, and

their number and activity may increase (47). In contrast, in DKD

patients, immune cells, such as macrophages, dendritic cells,

lymphocytes, mast cells, and neutrophils, are involved in the

genesis and development of DKD (48). Immune cells produce

various inflammatory factors, such as interleukin-1b (IL-1b),
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tumor necrosis factor-a (TNF-a), and interleukin-6 (IL-6).

Moreover, abnormal production of these inflammatory factors

may affect neuronal activity, neurotransmitter levels, and

neuroplasticity, leading to depressive symptoms (49). Moreover,

the aforementioned inflammatory factors have been shown to exert

a pivotal influence on DKD (48). The immune cell infiltration

analysis findings in the present study align with previous research

findings. CD4+ T cells and monocytes significantly infiltrated MDD

patients, while various immune cells, such as B cells, macrophages,

and mast cells, significantly infiltrated DKD patients. The two

potential diagnostic biomarkers identified in the present study,

namely, CD163 and KLRB1, are widely expressed in various

immune cells, such as monocytes, macrophages, and lymphocytes,

and they contribute to the pathogenesis and progression of diseases

by modulating inflammation and immune responses.

In the present study, 12 commonly upregulated crosstalk genes

in MDD and DKD were imported into the cMAP database, which

identified 10 small molecule compounds (rucaparib, estrone, AC-

55649, treprostinil, griseofulvin, levocetirizine, avrainvillamide-

analog-3, GW-6471, doxycycline, and salubrinal) as potential

therapeutic agents. cMAP analysis revealed that rucaparib had the

most significant negative enrichment score, indicating that it

effectively influences the expression of pathogenic genes

associated with the comorbidity of MDD and DKD. Rucaparib is

a poly (ADP-ribose) polymerase (PARP) inhibitor primarily used

for the treatment of metastatic breast cancer patients with BRCA1

or BRCA2 mutations. Studies have also shown the inhibitory effect

of rucaparib on diseases, such as ovarian cancer and prostate cancer

(50). There are no definitive studies demonstrating a role for

rucaparib in DKD or MDD. However, evidence suggests that

PARP is involved in inflammation and metabolic regulation.

Overactivation of PARP may lead to pathophysiological

processes, such as excessive increases in the inflammatory

response, apoptosis, and metabolic abnormalities (51). PARP

inhibitors have the potential to alleviate inflammation and

metabolic disorders by inhibiting PARP activity. PARP inhibitors

have been demonstrated to significantly reduce the development of

nephropathy caused by DM, as well as reduce oxidative stress levels,

inhibit inflammatory responses, and alleviate renal fibrosis (52). In

addition, the expression level of PARP1 is significantly elevated in

MDD patients, and it decreases after electroconvulsive therapy (53).

Therefore, PARP inhibitors have a theoretical basis for the

treatment of DKD combined with MDD, and they may become a

potential strategy for disease treatment. Additionally, other small

molecules, such as histamine receptor inhibitors, interleukin

expression inhibitors, NPM1 protein inhibitors, and PPAR

receptor antagonists, are closely related to inflammation

regulation. These compounds may hold promise for the treatment

of MDD, DKD, and other inflammation-related diseases.

The present study had several limitations. Although CD163 and

KLRB1 were identified as diagnostic biomarkers using

bioinformatics methods, the lack of comprehensive validation and

analysis of clinical samples may affect their reliability in clinical

applications, thus requiring further experimental support.
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Additionally, enrichment analysis and drug prediction were based

solely on gene expression data analysis, and further experimental

validation and functional studies are required to confirm the

biological significance and mechanism of these findings.

Furthermore, due to the lack of lifetime diagnostic information

and diabetes subtyping in the NHANES database, our definitions of

MDD and diabetes have certain limitations, which should be

addressed in future studies by incorporating clinical classifications

and expert consultation. Finally, the NHANES dataset does not

provide explicit information on type 1 and type 2 diabetes, which

limits our ability to conduct subtype-specific analyses; future studies

are encouraged to incorporate clinical classification for

greater precision.
5 Conclusion

The present study indicated that CD163 and KLRB1 are

potential shared diagnostic biomarkers for MDD and DKD, and

it revealed the underlying biological processes common to both

diseases. These findings provide important clues for future studies

and are expected to provide new targets and strategies for the

diagnosis and treatment of MDD and DKD.
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