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Background: Early detection of elevated acute stress is necessary if we aim to

reduce consequences associated with prolonged or recurrent stress exposure.

Stress monitoring may be supported by valid and reliable machine-learning

algorithms. However, investigation of algorithms detecting stress severity on a

continuous scale is missing due to high demands on data quality for such

analyses. Use of multimodal data, meaning data coming from multiple sources,

might contribute to machine-learning stress severity detection. We aimed to

detect laboratory-induced stress using multimodal data and identify challenges

researchers may encounter when conducting a similar study.

Methods: We conducted a preliminary exploration of performance of a

machine-learning algorithm trained on multimodal data, namely visual,

acoustic, verbal, and physiological features, in its ability to detect stress severity

following a partially automated online version of the Trier Social Stress Test.

College students (n = 42;M age = 20.79, 69% female) completed a self-reported

stress visual analogue scale at five time-points: After the initial resting period (P1),

during the three stress-inducing tasks (i.e., preparation for a presentation, a

presentation task, and an arithmetic task, P2-4) and after a recovery period (P5).
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For the whole duration of the experiment, we recorded the participants’ voice

and facial expressions by a video camera and measured cardiovascular and

electrodermal physiology by an ambulatory monitoring system. Then, we

evaluated the performance of the algorithm in detection of stress severity

using 3 combinations of visual, acoustic, verbal, and physiological data

collected at each of the periods of the experiment (P1-5).

Results: Participants reported minimal (P1, M = 21.79, SD = 17.45) to moderate

stress severity (P2, M = 47.95, SD = 15.92), depending on the period at hand. We

found a very weak association between the detected and observed scores (r2 =

.154; p = .021). In our post-hoc analysis, we classified participants into categories

of stressed and non-stressed individuals. When applying all available features (i.e.,

visual, acoustic, verbal, and physiological), or a combination of visual, acoustic

and verbal features, performance ranged from acceptable to good, but only for

the presentation task (accuracy up to.71, F1-score up to.73).

Conclusions: The complexity of input features needed for machine-learning

detection of stress severity based on multimodal data requires large sample sizes

with wide variability of stress reactions and inputs among participants. These are

difficult to recruit for laboratory setting, due to high time and effort demands on

the side of both researcher and participant. Resources neededmay be decreased

using automatization of experimental procedures, which may, however, lead to

additional technological challenges, potentially causing other recruitment

setbacks. Further investigation is necessary, with the emphasis on quality

ground truth, i.e., gold standard (self-report) instruments, but also outside of

laboratory experiments, mainly in general populations and mental health

care patients.
KEYWORDS
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1 Introduction

Acute stress is considered an adaptive process preparing an

individual for changes (1–3). However, in situations where the

initial stress reaction is exaggerated (4) or where recovery from the

initial stress response is delayed (5), stress may pose a strain on the

organism (6). Repeated or prolonged exposure to situations causing

acute stress over longer periods may lead to chronic stress,

characterized by long-term alterations in the autonomic nervous

system (ANS) and mental health (7). Such disruptions are a risk

factor for many mental disorders and physical conditions, such as

depression (8), anxiety (9), substance dependence (10), or

cardiovascular diseases (11). Therefore, early detection of elevated

acute stress is important for the prevention of its consequences (12).

Recently, theoretical breakthroughs in machine learning and

increased computational capacity provided innovative

opportunities for the detection and monitoring of stress and

mental states (13, 14). Moreover, capturing biological and

behavioral reactions to daily stress in the individual’s natural
02
habitat and without extra effort, so-called passive sensing (15–17),

has become easier thanks to digital devices, such as smartphones or

sensory devices (18, 19). Stress detection using machine learning

based on quant ifiable pass ive-sens ing data , such as

electrocardiogram (ECG), facial expressions, or voice, suggests

good detection potential (20–22), and has the advantage of

providing real-time, objective information (23).

Most studies using passive sensing to date have detected stress

dichotomously, meaning its presence or absence (24, 25), or

categorically, meaning in three or more categories, such as no,

low, and high stress (26, 27). Detection of stress severity on a

continuous scale, rather than two or more categories, is still in its

infancy. Yet, it is highly relevant for clinical practice, as it represents

the nature of mental states better than categories, shows the

variability among individuals and thus reflects their needs for

prevention of psychopathology. Furthermore, such detection may

contribute to tracking trends over time, as it captures not only

simple presence or absence of the state, but also approaching or

crossing over to the opposite state (28).
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Thus far, very few studies have attempted to detect stress

severity using machine-learning approaches based on passive-

sensing data, such as heart rate or facial expressions. This may be

related to barriers that need to be overcome if the detected variable,

e.g., stress, is defined on a scale, rather than categorically. First, we

need more detailed information about the individuals’ stress

experience (29). Moreover, to acquire such detailed information,

reliable and valid sensors able to distinguish subtle differences

between individuals and changes over time are necessary (30).

The acquired data may also be influenced by additional factors,

not solely the experience of stress itself, which may hamper the

interpretation. For example, an important source of variance for

physiological measures, such as heart rate variability, are physical

demands related to postural change, locomotion, or speech

production (31). Finally, more fine-grained machine-learning

approaches such as continuous stress severity detection require

richer data compared to coarser approaches such as dichotomous

detection (32). However, data used for machine-learning detection

of mental states is often compromised by noisiness and missing

information, especially in uncontrolled settings in daily life (33).

Available research on continuous stress severity detection has so

far been very rare and did not provide evidence related to acute

stress. (34) invited actors to mimic basic emotions, their photos

were evaluated by psychologists on a scale ranging from “non-

stressed” to “very stressed”, and a score on the same scale was

detected by an algorithm. The relationship between the score

assigned by the psychologist and the one detected by the

algorithm was strong, namely r2 = .98 (35). However, mimicked

emotions may be exaggerated and thus more easily recognizable

than experienced acute stress (36). Another study (37) investigated

a more clinical research question, namely chronic stress detection.

The authors’ algorithm detected severity of self-reported chronic

stress using ECG data in expectant mothers well, with a strong

relationship between the detected and self-reported scores (r2 = .94).

Nevertheless, as mentioned above, chronic stress manifests

differently than acute stress in physiological reactions (38).

Furthermore, encouraging results come from research into

conditions related to stress, such as anxiety. For example, (39)

predicted public speaking anxiety based on visual and acoustic data

in participants who were presenting to a virtual audience, and who

were subsequently trained on presenting skills, in order to present

again, applying these newly-acquired skills. Anxiety was predicted

with a strong relationship (r2 = .825). Hence, the abovementioned

studies may serve as a base for research into acute stress severity

detection. Yet, it is obvious that they cannot provide us with

sufficient evidence of performance of machine-learning

algorithms in stress severity detection based on passive sensing

data, and more investigation is thus necessary.

Some barriers related to detecting stress severity on a

continuous scale may be overcome by using a combination of

data sources, such as a camera, audio recorder, and physiological

sensors. Such “multimodal data” may make continuous detection

more robust. First, it is not affected as much by loss in a single

modality, such as background noise in voice recording, or occlusion

of the face in a video, as such loss may be complemented by other
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data, collected from other sources (33, 40). Second, stress is a

multifaceted phenomenon influencing the natural behavior of an

individual, such as their voice intonations (41) or facial expressions

(42), as well as their physiology (24). Therefore, multimodal data

may provide a more comprehensive and holistic input (43),

enhancing thus passive sensing detection in comparison to

individual modalities (44).

Multimodal stress detection using passive-sensing data have

applications in public health (e.g., prevention of stress-related

disorders) and clinical fields, for diagnosis and to guide treatment

(33, 45). When used in real-time symptom monitoring, it may show

how severity of stress decreases or increases, and thus provide

actionable insights to users, such as to prompt them to try to reduce

stress, for example, with relaxation or breathing exercises (46). It

may also capture exaggerated stress reactions or delayed recovery

from stress, potentially indicating unhealthy stress responses (4, 5).

Consequently, it may contribute to the indication of when to

prevent an onset of a problem, when to early intervene, help

understanding treatment progress, and tailor stress management

strategies (47). Moreover, multimodal passive sensing may reveal

(unhealthy) stress reactions before the individual is aware of them

(48). It could also help exploring everyday manifestation of stress

(49), and eventually lead to the identification of stress “markers”,

contributing to its distinction from other mental health concepts,

such as depression or anxiety (50). Multimodal passive-sensing

machine-learning detection of stress severity may, if found reliable

and valid, complement other valid and reliable, but more

retrospective and subjective manners of stress detection, such as

self-report of stressful life events and their emotional consequences

(51) and ecological momentary assessment (EMA) data (52). It

may also be integrated in a stress assessment together with

more resource-demanding physiological measures, such as

neuroendocrine (e.g., cortisol) and inflammatory markers (53,

54). Therefore, more investigation is needed.

In the current study, we aimed to explore the potential of acute

stress detection based on multimodal passive-sensing data, namely

acoustic (i.e., physical properties of sound), verbal (i.e., content of

speech), visual (i.e., facial expressions) and physiological (i.e., ECG,

electrodermal activity, and motility). We aimed to test, in a

laboratory setting, whether it could detect acute stress severity

indexed as a continuous score on a self-report acute stress

measure. We hypothesized that we would find a significant

relationship between the self-reported scores and score detected

by the algorithm. Furthermore, we aimed to inform on challenges

associated with this novel field of research.
2 Materials and methods

The current study was conducted as part of the IT4Anxiety

project (55). This project aimed to connect research institutions to

small and medium enterprises (i.e., start-ups) developing digital

products, aiming at the prevention and treatment of anxiety and

post-traumatic stress disorder (PTSD). The goal of the project was to

provide a framework for collaboration in these sectors and thus help
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both to access the expertise the other sector possesses. The current

project originated from the collaboration between Vrije Universiteit

(VU) Amsterdam, its spin-off VU-Ambulatory Monitoring Solutions

(VU-AMS), which developed an ambulatory monitoring system for

the measurement of autonomic nervous system (ANS) activity, and

the start-up Sentimentics, focused on development of machine-

learning algorithms for detection of mental states. Given the

multidisciplinary nature of the current study, we provide a glossary

of terms used in the current text in Appendix A.

The protocol for the current study was preregistered at the

Open Science Framework (https://osf.io/w3kh6; see Appendix B for

differences between the protocol and the final manuscript). The

experimental procedure was approved by the Scientific and Ethical

Review Board of the Vrije Universiteit Amsterdam (VCWE,

protocol number: VCWE-2022-110).
2.1 Sample size calculation

Currently, no definitive guidelines exist for power calculation in

mental state detection studies. Previous studies recommended to

recruit at least 100 participants to achieve satisfactory sensitivity

when training and testing a prediction algorithm (56, 57). Thus, we

also aimed to recruit 100 participants.
2.2 Participants

Participants were students of the VU Amsterdam, the

Netherlands. They were informed about the study and recruited

using SONA, a system for students who want to participate in

experiments to gain study credits. Any Dutch-speaking student

older than 18 years who provided informed consent was eligible for

participation. No other exclusion criteria were applied.
2.3 Design and procedure

The participants took part in a laboratory experiment. They

were informed that the experiment investigated the relationship

between emotions and physical reactions. Upon their arrival to the

laboratory, the experimenter welcomed the participants, who then

signed the informed consent. They learned that their participation

was voluntary, they could withdraw at any time, and how the data

would be handled. The information letter and the informed consent

were provided already when the participant signed up for the study,

allowing thus sufficient time to the participant to reflect on their

participation. After signing the informed consent, the participant

was invited to sit in a cubicle, equipped with a computer, on which

the whole experiment was completed. A graphic overview of the

experimental protocol can be found in Figure 1, while a table with a

point-by-point description of all experimental periods and pictures

of the solutions used is in Appendix C.

The experiment covered the following periods (P0 – P5) of the

Trier Social Stress Test (TSST) (58, 59): Welcoming of the
Frontiers in Psychiatry 04
participant to the laboratory and baseline questionnaire

assessment (P0), resting period (P1), preparation for presentation

(P2), presentation (P3), arithmetic task (P4), and recovery period

(P5). Self-report assessments (T0 - T5) took place after each period

(i.e., for example, assessment T1 took place after period P1). The

experimenter was not present in periods P1, P2, and P5, but he or

she was present in periods P3 and P4, when joining an online

videocall from another part of the laboratory (see explanation for

periods P2 – P4). Audio, video, and physiology of the participant

were recorded during the whole duration of the experiment.

P1 (5 minutes) served to allow the participants’ physiological

and emotional responses to stabilize (60). Five minutes were chosen

as they are needed for the heart rate to return to a normal level after

stress (61), and longer periods were considered frustrating by

participants of our pilot study. The TSST instructions do not

specify a validated activity for the resting period of TSST, only

suggest emotionally neutral activities or reading. To ensure

participants’ focus on the screen and to uniformly deliver the

resting period activity, we decided to show a video of islands,

which was found to be relaxing in a previous stress-inducing

laboratory experiment (62).

In P2-P4, the stress-inducing periods of TSST was

administered. This was done in its validated, online version, over

a Zoom™ (version 5.16.2) call (63), together with the experimenter.

TSST requires a committee of at least 2 interviewers, other than the

experimenter, to be present (60). Therefore, also 2 interviewers

seemingly joined the call. However, to decrease resource demands,

the 2 interviewers were pre-recorded, an approach which increased

stress in participants of previous similar studies (64–68).

Participants were not informed that the interviewers were pre-

recorded. The interviewers were one male and one female

professional actor (60, 63) who provided scripted instructions to

the participant throughout the TSST. The role of the experimenter

was to answer questions of the participant, if there were any, create

additional stress in case the participants discovered the real nature

of the interviewers, and to interact with the pre-recorded

interviewers in a way that suggested that they were attending live

(69). The script of the TSST followed its validated protocol as well as

its online version (58, 59, 63), in the Dutch translation used in

previous research (68, 70).

In P2 (preparation for presentation; 5 minutes), the participant

received instructions to prepare for P3, in which they had to deliver

a presentation about their strengths and weaknesses as part of an

interview for their ideal job. They were informed that their

performance would be recorded and analyzed. They could use a

notepad, which opened for the duration of P2, but which closed as

soon as P2 finished. For this period, the interviewers and the

experimenter switched their cameras off, and the participant was

informed that they were not being watched. In P3 (presentation; 5

minutes), the participant had to deliver their presentation. The

interviewers and the experimenter appeared on the screen, now

dressed in lab coats. If the participant stopped speaking for more

than 20 seconds, the experimenter prompted them to continue

speaking. In P4 (arithmetic task; 5 minutes), the participant was

instructed to subtract 13 from 1022. If they made a mistake, the
frontiersin.org
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experimenter asked the participant to start over from 1022. If the

participant stopped speaking for more than 20 seconds, the

experimenter again prompted them to continue. Finally, before

P5 (10 minutes; recovery period), the video call ended, and the

participant watched another relaxing video of islands.

After P5, participants were debriefed. They were informed that

no analysis of their speech or math performance was conducted,

that the tasks were difficult and did not reflect on the participants’

aptitude or abilities.
2.4 Materials

2.4.1 Baseline characteristics
Participants were asked about their socio-demographic

characteristics (for example, age, gender, and level of education)

as well as features potentially influencing stress reactions (e.g., use

of medication and relaxation techniques, or mental and

physical disorders).

2.4.2 Stress
A visual analogue scale (VAS) called Subjective Units of Distress

Scale (SUDS) (71) was used to assess stress at T0 – T5 (i.e., before

and after P1-P5). VAS has been chosen as the main outcome of the

current study, as it is the recommended and validated stress

measure in TSST (58, 59). It is also more feasible for repeated

administration than other, more comprehensive stress measures, as

it consists of only one question (“How do you feel according to the

following scale?”), which can be answered on an 11-point scale,

ranging from “0” (“Totally relaxed”) to “100” (“Highest distress/

fear/anxiety/discomfort that you have ever felt”). The score may be

further categorized into “noticeable, but not bothersome anxiety”

(SUDS > 25), “bothersome anxiety” (SUDS > 50), and “very

bothersome anxiety” (SUDS > 75) (72, 73). It has good

psychometric properties, for example concurrent validity with

stress measures (Spearman rho = .50, p <.001) (74) and clinician’s
Frontiers in Psychiatry 05
rating of general functioning (r = -.44, p <.001) (75). The SUDS has

been translated into Dutch using a back-translation method

recommended by the World Health Organization (76).

2.4.3 State and trait anxiety
State and Trait Anxiety Inventory-Alternate Form (STAI-A)

(77) was administered in its Dutch version (78). STAI-A is a shorter

version of the State and Trait Anxiety Inventory (STAI) (79) and

introduces 10 questions focused on state and 10 on trait anxiety.

The total scores can then be categorized according to respective

norms into low (below the 25. percentile), high (above the 75.

percentile), and normal levels of anxiety (80). STAI-A has been

found to be a reliable instrument (a = .80), with results equivalent

to the full version of the STAI (77). The Trait subscale was

administered at T0, the first State subscale at T1, and the second

State subscale at T4.

2.4.4 Audio and video
A video camera (Canon, Legria HF R86, 10 ADP, 1920x1080, 50

frames per second, 35 mbps, Dolby Digital 2ch) was used to record

audio and video data. It was located below the computer screen on

which the participant followed the experiment, and it was focused

on the participant from their shoulders up.

2.4.4.1 Visual features

Fifty-seven visual features were extracted: 17 action units

(meaning the fundamental actions of individual muscles of the

face (81)), 32 parameters of the Point Distribution Model (PDM)

capturing facial landmark shape variations and changes (82), and 8

parameters of the eye gaze direction. For a detailed explanation of

these parameters, please see the original study on OpenFace 2.0, the

software used in the current analysis (83). Visual features were

extracted for all periods of the experiment, i.e., P1 – P5. As the

features had to be aggregated across each of these periods, the

following parameters were created for each feature: mean (M),

median (Med), standard deviation (SD), minimum (MIN),
FIGURE 1

Overview of the experimental protocol.
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maximum (MAX), skewness, kurtosis, slope, offset, and curvature of

fitting a second-degree polynomial to capture temporal patterns. As

a result, 570 parameters were extracted for visual features.

2.4.4.2 Acoustic features

There were 79 acoustic features related to pitch intensity and

frequency, formant frequency and bandwidth, harmonic to noise

ratio, zero crossing rate, Mel Frequency Cepstral Coefficients

(MFCC), Linear Frequency Cepstral Coefficients (LFCC), and

other parameters which capture spectral properties of audio (see

Appendix D for explanations). These features were estimated for P3

and 4, i.e., the two periods in which the participants spoke. We used

the same 10 aggregation methods applied to the visual features (see

above), resulting in a total of 790 audio features.

2.4.4.3 Verbal features

The experiment took place in the Dutch language. The content

of participants’ speech was automatically transcribed using Speech-

to-Text API with a guaranteed 85% accuracy (84) and manually

corrected for mistakes by a researcher, a methodology previously

recommended (85, 86). The transcripts were then processed:

punctuations and stop words were removed, and words were

lemmatized (i.e., returned to their dictionary form). Verbal

features were extracted using Bag of Words method, where the

most common words are counted and used as verbal features. To

encourage generalization, a word was considered if it appeared in at

least three transcripts. Verbal features were extracted for P3 (64

words) and P4 (22 words), in which participants had to speak.

2.4.5 Physiological measures
Physiological data were recorded using the VU-AMS (version

5-wire 5fs) (87), a lightweight, portable ambulatory monitoring

system for the non-invasive measurement of ANS activity. It

records a continuous electro- and impedance cardiogram (ECG/

ICG), electrodermal activity (EDA), and accelerometry signal. The

ECG and ICG signal was acquired at 1000 Hz using 5 ECG

electrodes (Kendall H98SG, Medtronic, Eindhoven, Netherlands)

located on the chest and back of the participant (87, 88). The EDA

signal was measured at 10 Hz using an EDA electrode (Type 10-W

55 GS, Movisens GmbH, Karlsruhe, Germany) placed on the thenar

eminence of the non-dominant hand, and an ECG electrode on the

lower arm. Participant movement was detected through a triaxial

accelerometer placed on the table, so that postural changes would

shift the sensor through pull on the cables but prevent loss of signal

due to fall or disconnection of the device.

2.4.5.1 Physiological features

First, data were preprocessed and the signals visually inspected

for noise, ectopic beats, and misplacement of R-peaks in the ECG

and B- and X-points in the ICG. Then each feature was calculated

using Vrije Universiteit Data Acquisition and Management

Software (Version 5.4.20) for every period of interest, i.e., P1 –

P5. Similarly to the visual features, the features had to be aggregated

across each of these periods. Thus, where applicable,M,MIN,MAX
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and/or SD were used. In total, 31 parameters were extracted for each

period. A more detailed overview and explanation of physiological

features used in the current study can be found in Appendix E.
2.5 Analyses

Descriptive analyses were conducted in IBM SPSS Statistics

(version 27). The model fitting and prediction were performed

using Python 3.6 for programming, using the following libraries:

OpenFace 2.0 facial behavior analysis toolkit (83), and librosa (89)

for the extraction of the visual, and acoustic features, respectively.

Verbal features were extracted, and regression, classification and

cross-validation were conducted in SKlearn (90).

All visual, acoustic, verbal, and physiological features for each

participant were concatenated and fed into the model to detect

stress severity at each of the measurement time points (T1 – T5).

Data from each period were used to detect stress severity at the

following time point, for example, data collected during period P1

(i.e., between the time points T0 and T1) were used to detect stress

severity as assessed by the SUDS at T1. Separate analyses for each

period are recommended because the TSST structure is divided into

five distinct phases. Each phase is designed to elicit unique stress

responses that capture the temporal dynamics of stress (61).

To assess the additive predictive power of each set of features,

three different combinations of groups of features were used (1):

visual + physiological features (2), visual + acoustic + verbal

features, and (5) visual + acoustic + verbal + physiological

features. A leave-one-out cross-validation was applied to the

model, where in each iteration, data of one participant were

placed aside, the rest of the data was used for the training of the

model, and the resulting model was used for prediction of the stress

level in the left-out participant (91). A feature selection was used,

where for each iteration, 30 features with the most significant

correlation with the self-reported stress severity were used in the

model (meaning that not all extracted features were used for final

stress detection). To avoid data leakage and ensure reliability of the

results, this was also done in the training set of each iteration of

cross-fold validation, meaning that different features could be

selected in different iterations (92). The aim of feature selection

was to prevent overfitting due to the large number of features and

the small number of participants (93). Subsequently, stress levels

were predicted as a continuous variable, meaning predicting a

specific score on the SUDS scale, using Bayesian Ridge regression,

as this linear model with a minimum number of hyper-parameters

suits small datasets (94, 95). Details of the used algorithm are

described in (96). This algorithm has been shown to outperform

other state-of-the-art methods, and to enable feature extraction

process and a novel temporal aggregation method with no initial

data annotations. Additionally, it has been proposed as suitable for

small sample sizes (96).

The coefficient of determination (R2) was calculated, where

values can be interpreted as strong (>.75), moderate (.5 -.75), weak

(.25 -.5), or no (<.25) relationship between the predicted and the

observed scores (35). We also calculated correlations (Pearson’s r)
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between all features and stress at T1 through T5 to provide per-

parameter descriptive information to the reader. Pearson’s rmay be

interpreted as small, medium, or large effect for r = .10,.30, and.50,

respectively (97).
3 Results

3.1 Participant characteristics

According to our preregistered protocol, we aimed at recruiting

100 participants. However, we failed due to restrictions caused the

COVID-19 pandemic, which postponed the recruitment and thus

caused time constraints. Eventually, recruitment was conducted

between March and June 2023.

Forty-six participants joined the study, but due to technical

problems in the experiment, data for only 42 participants were

available. Data for some participants were only partially available,

due to software issues causing some of the parts of the experiment

not to start or close prematurely. Subsequently, data for 28–31

participants were available for each period (Table 1). All

participants were bachelor students, most were female (69%),

born in the Netherlands (95%), and did a major in psychology

(88%) (Table 2).

The average scores on STAI-A-Trait and -State before and after

the TSST fell into the category of normal anxiety (Table 2). The

SUDS ratings, on average, ranged from minimal distress at P1 (i.e.,

during the resting period) to moderate distress at P2 (i.e., during the

preparation for presentation). There was a visible increase in stress

in P2, when the participants entered the video call, which was then

slightly decreasing over the stress periods (P3-4) and eventually

decreased again in the recovery period (P5).
3.2 Predicting stress as a continuous
variable (regression)

When stress was measured on a continuous scale, the

algorithm did not predict stress severity well in most

combinations of features and time periods (Table 1). However,

it predicted stress severity at P3 when all features, i.e., visual,

acoustic, verbal, and physiological, were used (r2 = .154; p = .021).

Still, it points to a very weak association between the predicted and

observed scores.
3.3 Post-hoc analysis: predicting stress as a
dichotomous variable (classification)

Since the prediction model could not fully detect patterns in the

features, we also conducted a post-hoc analysis to simplify the

modeling process (98). In this analysis, we treated stress as a

dichotomous variable, meaning a stressed (i.e., “bothersome

anxiety”, SUDS > 50) and a non-stressed group (SUDS < 50) (72,

73). We did so for P2 and P3, where higher variability of stress
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among participants was present. Logistic regression was conducted,

and F1-measure and accuracy were computed. F1-measure ranges

between 0 and 1, and its values may be evaluated as very good (>.9),

good (.8 -.9), acceptable (.5 -.8), or poor (<.5) (99), where values

approaching to 1 express the best trade-off between precision and

sensitivity (100). Levels of accuracy also range between 0 and 1, and

have been categorized as very good (>.9), good (.7 -.9), acceptable

(.6 -.7), or poor (<.6) (101).

Classification results are shown in Table 3, the confusion matrix

(i.e., table reporting numbers of true positives, false negatives, false

positives and true negatives) is in Table 4. The algorithm reached

acceptable to good performance in two cases at P3: when all but

physiological (accuracy = .710, F1-score = .727) or all features

(accuracy = .677, F1-score = .688) were combined.
3.4 Correlations between visual, audio, and
physiological features, and stress

Appendix F shows correlations between tested features and

stress. Correlations for visual features with stress at P1-P5 can be

found in Supplementary Table S1, correlations between acoustic

features with stress at P3 and 4 are in Supplementary Table S2,

verbal features for P3 and 4 are shown in Supplementary Tables S3
TABLE 1 Stress severity as a continuous variable: Detection of stress
based on different combinations of features (Regression).

Period r2 r p

Visual + Physiological

Period 1 -1.452 -.325 .080

Period 2 -0.447 -.084 .652

Period 3 -0.374 .075 .689

Period 4 -0.667 -.360 .047

Period 5 -1.889 -.212 .280

Visual + Acoustic + Verbal

Period 1 -1.395 -.296 .112

Period 2 -1.544 -.196 .292

Period 3 0.051 .324 .075

Period 4 -1.601 -.597 .000

Period 5 -1.891 -.204 .297

Visual + Acoustic + Verbal + Physiological

Period 1 -1.452 -.325 .080

Period 2 -0.447 -.084 .652

Period 3 0.154 .414 .021

Period 4 -1.297 -.436 .014

Period 5 -1.889 -.212 .280
p, p-value; r, Pearson’s r; r2, Coefficient of determination.
Numbers of participants with available data: Period 1: n = 30, Period 2-4: n = 31, Period 5:
n = 28.
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and Supplementary Tables S4, respectively. Supplementary Table S5

demonstrates correlations between physiological features and stress

in P1 through 5.

4 Discussion

This study explored the potential of using multimodal data

collected in a laboratory setting through passive sensing for
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machine-learning detection of self-reported acute stress severity

expressed on a continuous scale. The best algorithm performance

was a weak relationship between the detected and observed score (r2

= .154), when features of all modalities, meaning visual, acoustic,

verbal, and physiological, were included, in the period when

participants were giving a presentation. We also conducted a

post-hoc analysis, in which we classified participants as stressed

and non-stressed. The performance of the algorithm was then

acceptable to good (accuracy up to.71) during the presentation

period when using all or almost all modalities. All significant

detection of stress thus took place during the presentation period,

when data from all modalities could be collected. Moreover, during

this period, the verbal modality provided a high variability of

possible input, depending on the words the participant used, as

opposed to the arithmetic task, where the participants’ speech was

restricted. Moreover, we could see that combination of data from

multiple modalities showed better performance than combinations

of fewer data sources. In the continuous prediction, physiological

features, when added to the detection, helped improve algorithm

performance. However, this difference was not apparent in the post-

hoc analysis (i.e., dichotomous classification) anymore.

The current study cannot be compared to previous research, as

it is the first exploring the potential of continuous detection of stress

by machine-learning models based on multimodal data. Evidence

from the two studies attempting to detect mimicked or chronic

stress (34, 37), as well as severity of conditions related to stress, such

as anxiety or post-traumatic stress disorder (PTSD), suggests that

moderate to strong relationship between detected and observed

scores is possible even if stress is expressed on a continuous scale

(39, 43, 102, 103). In the current study, we did not find such a strong

relationship, which may be caused by a different outcome variable

of interest than in these previous studies. Moreover, most of these

studies focused on anxiety or PTSD in the community (102, 103) or

clinical settings (43), thus further hampering the comparison.

Comparison between our results and previous research may

thus be only based on the post-hoc dichotomous prediction, which

we conducted when it became clear that our sample size prevented

the algorithm from recognizing patterns in the data. Some studies

used multimodal data for dichotomous detection of acute stress

induced in laboratory experiments (62) used a combination of video

(capturing movements, e.g., symmetry, and behavior, e.g., gestures),

ECG, EDA, and foot trembling, for detection with very good

performance (i.e., accuracy of up to 1) (101, 104). reported good

performance (accuracy = .85) (101) when applying features related

to voice, facial expressions, and ECG data. That is slightly better

than detection in our post-hoc analysis, where we reached

acceptable to good prediction (i.e., accuracy up to.71). The

reasons for this discrepancy may be that statistical power in both

studies was higher than ours due to bigger sample sizes. Even

though neither of these studies recruited more participants than our

study did (n = 21, and n = 20, respectively), in both studies, data

from all conditions were merged in the analysis, meaning that one

participant contributed to more data points, resulting thus in larger

datasets (n = 108, and n = 1271, respectively). Their approach,

however, does not express the temporal dynamics of stress which
TABLE 3 Stress presence and absence as a dichotomous variable:
Detection of stress based on different combinations of features,
n = 31 (Classification).

Period Accuracy F1-score

Visual + Physiological

Period 2 0.452 0.564

Period 3 0.516 0.571

Period 4 0.419 0.100

Visual + Acoustic + Verbal

Period 2 0.355 0.474

Period 3 0.710 0.727

Period 4 0.355 0.000

Visual + Acoustic + Verbal + Physiological

Period 2 0.452 0.564

Period 3 0.677 0.688

Period 4 0.419 0.100
Results considered acceptable are in bold.
TABLE 2 Socio-demographic characteristics and scores on self-reported
scales, n = 42.

Characteristics and Scores n (%)

Female 29 (69%)

Born in the Netherlands 40 (95%)

M (SD)

Age (years) 20.79 (2.12)

STAI-A-Trait (P0) 19.69 (5.73)

STAI-A-State (P1) 16.93 (4.18)

STAI-A-State (P4) 21.08 (4.53)

SUDS (P0) 28.10 (17.14)

SUDS (P1) 21.79 (17.45)

SUDS (P2) 47.95 (15.92)

SUDS (P3) 43.95 (17.64)

SUDS (P4) 36.05 (18.09)

SUDS (P5) 22.00 (17.62)
Abbreviations (alphabetical). M, mean; n, number of participants; SD, standard deviation;
STAI-A, State and Trait Anxiety Inventory-Alternate Form; SUDS, Subjective Units of
Distress Scale; T0-T5, Time points 0 – 5.
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we aimed to reflect in our analysis by analyzing each period of the

experiment separately (61).

From a methodological perspective, our study is innovative and

explores potential improvements to laboratory experiment

methods. To the best of our knowledge, it is the first study

incorporating pre-recorded interviewers into a validated Zoom™

version of the TSST protocol (63). Although the interviewers were

pre-recorded, reported stress among participants increased when

they entered the video call. Thus, this method might be a viable

solution to diminish resource demands of the online TSST in future

studies (65, 67). In addition, the resting and recovery periods are

not specified nor standardized in the TSST protocol (58, 59). We

aimed at standardization by applying a method previously

successfully inducing relaxation in another study applying a

laboratory stress experiment (62). Finally, the results were based

on long periods of time (i.e., 5–10 minutes), allowing thus more

reliable estimates of stress severity, as longer recordings were

suggested for precise stress detection (105).

Limitations need to be acknowledged as well. First and foremost,

the combination of a small sample with the complexity of input

features limited our predictive power. Larger samples are thus

required to build more robust algorithms. Nevertheless, to handle

this problem, we applied simpler machine-learning models, and we

used feature selection to choose 30 features with the most significant

correlation with the self-reported stress severity to balance it with the

number of participants in our dataset. Additionally, to validate the

performance, we performed a leave-one-out cross-validation.

Furthermore, we added a post-hoc analysis, formulating the research

question as a dichotomous problem. In this analysis, the algorithm’s

performance was good, meaning that predictive power was present.

Second, the generalizability of the results to natural behavior,

ecologically valid or clinical contexts may be hampered, as the

current study took place in a controlled, laboratory setting. Similarly,

the results are limited to our sample, which mostly consisted of
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Netherlands-born female psychology students, thus potentially

introducing selection bias. Third, the observed and detected stress in

the current study was only artificially induced. Hence, caution must be

taken when drawing conclusions about naturally occurring stress.

Fourth, one of the included modalities were physiological data,

which were observed not to have a strong relationship with self-

reported stress (106). However, we deemed it still of importance to

include it. While physiological data are objective markers of stress,

capturing the body’s ANS activity, self-reported stress is of a subjective

nature, showing stress awareness. These two pieces of information, also

together with data from other modalities, such as video and audio, thus

provide a more holistic picture of the individual’s stress experience. We

also conducted an analysis excluding physiological measures, which did

not affect the detection of stress in both main (continuous) and post-

hoc (dichotomous) analysis. In the continuous analysis, it also seemed

that physiological features contributed to the algorithm’s performance,

as only combination of all modalities provided significant detection.

However, this improvement disappeared in the post-hoc analysis,

rendering thus physiological features to be the best candidates for

exclusion. Finally, we used a unified relaxation method during resting

and recovery periods, we thus did not let the participants simply sit in

the waiting room as the protocol suggests. We also applied pre-

recorded instead of in-person interviewers to provide instructions.

Furthermore, we asked the participants to be seated during the whole

duration of the experiment, as we needed to avoid noisiness or loss of

data due to unnecessary movement, which is not uncommon in virtual

versions of the TSST. However, these facts should be taken into account

when interpreting our results (107).

Future research should focus on acquiring sufficient training data

for multimodal algorithms, with a good “ground truth”, meaning a

gold standard measure, such as a diagnostic interview or a validated

self-report instrument (36), and a lot of variability (108). Currently,

there has been a sharp increase in machine-learning algorithm

development, and these methods keep evolving fast (109). Acquiring
TABLE 4 Confusion matrix for the dichotomous (i.e., classification) detection based on different combinations of features.

Reported/
predicted

Period 2 Period 3 Period 4

Not
stressed
(predicted)

Stressed
(predicted)

Not
stressed
(predicted)

Stressed
(predicted)

Not
stressed
(predicted)

Stressed
(predicted)

Visual + Physiological

Not
stressed (reported)

3 8 6 8 12 8

Stressed (reported) 9 11 7 10 10 1

Visual + Acoustic + Verbal

Not
stressed (reported)

2 9 10 4 11 9

Stressed (reported) 11 9 5 12 11 0

Visual + Acoustic + Verbal + Physiological

Not
stressed (reported)

3 8 10 4 12 8

Stressed (reported) 9 11 6 11 10 1
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sufficient, rich training data may thus also help applying newer

algorithms with better performance, something that was not feasible

in the current study. Further laboratory experiments should include

participants coming from both general and clinical populations. Then,

it will be beneficial to relocate the research community’s attention

towards real-life situations, such as daily stress monitoring in general

populations, workplace settings or mental health care patients.

Moreover, attitudes of professionals and patients towards usage of

machine-learning algorithms for mental health will have to be explored

through both qualitative and quantitative (user) research, as adoption

of new technologies may be accompanied with reluctance, e.g., due to

privacy issues (110). Finally, it is crucial to consider ethical aspects of

research on machine-learning monitoring of mental states based on

natural behavior, as such results may be, in extreme cases, used for

privacy and human right violations (111).

Even if some results seem promising, we are currently very far from

public health or clinical implementation. Only after thorough

investigation, it may be explored whether validated stress detection

measures may be complemented by real-time machine-learning

algorithms based on multimodal data acquired through passive

sensing. Low threshold and self-monitoring of daily stress in general

populations may then contribute to prevention or early intervention

efforts, even in situations where the individual is not yet ready to

verbalize their experience. Successful measurement of severity may

contribute to measurement of stress dynamics over time as well. As

stress is a transdiagnostic concept, measuring of its severity, and

especially delayed recovery from stress reactions, may help us detect

the right moment for early intervention for potential consequences of

chronic stress, such as burnout or depression. Later on, such detection

may become an integrated component of digital interventions where

real-time assessment is necessary or highly desirable, such as in just-in-

time adaptive interventions for mental disorders (112, 113).
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