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Qifuyin alleviates anxiety and
depression in 3×Tg-AD
mice by modulating
neuroendocrine function
Tianhao Yu †, Ying Yu †, Junqi Zhao, He Li, Hui Lu, Yangyi Li ,
Yuqi Peng, Shixue Wang, Wendi Wei and Xiaorui Cheng*

Institute of Innovation in Traditional Chinese Medicine, Shandong University of Traditional Chinese
Medicine, Jinan, China
Background: Alzheimer’s disease (AD) is frequently accompanied by behavioral

and psychological symptoms of dementia (BPSD). Studies have shown that

3×Tg-AD mice, a classical animal model of AD, exhibit anxiety and depression-

like behaviors characteristic of BPSD.

Objective: This study investigated the effects of Qifuyin on anxiety and

depression-like behaviors in 3×Tg-AD mice.

Methods: The 20male and female C57BL/6mice at 10.3 months of age were used

as the control group, while the 82male and female 3×Tg-ADmice of the same age

were divided into five groups. The control and model groups were gavaged with

solvent, the positive medicine group received a combination of donepezil and

memantine, and the Qifuyin (QFY) groups were divided into three doses: low,

medium, and high. The effects of QFY on anxiety-like behaviors in mice were

assessed using the open field test (OFT) and elevated plus maze (EPM) test, while

depression-like behaviors were evaluated through the forced swim test (FST) and

sucrose splash test (ST). Plasma levels of corticosterone (CORT), testosterone (T),

and estradiol (E2) weremeasured using ELISA, while adrenocorticotropic hormone

(ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH),

corticotropin-releasing hormone (CRH), and gonadotropin-releasing hormone

(GnRH) were quantified via radioimmunoassay. Differences in plasma hormone

levels among groups were analyzed using principal component analysis (PCA).

Pearson correlation analysis was conducted to explore the relationships between

plasma hormones and behavioral phenotypes, and multiple linear regression was

employed to identify the hormones most strongly correlated with anxiety and

depression-like behaviors in mice following QFY treatment.

Results: In 3×Tg-ADmice, anxiety-like behaviors were characterized by reduced

the duration, number of visits, and total distances in central area during the OFT.

The EPM revealed reduced the duration and frequency in the open arms for both

sexes. Depression-like behaviors were evident in the FST, with increased

immobility, and in the ST, with prolonged grooming latency in both sexes and

reduced grooming frequency in females. The treatment of QFY alleviated these

behaviors. In males, In the model group, plasma ACTH, GnRH, and FSH levels

were significantly decreased. In the QFY-treated group, plasma CRH levels were

significantly reduced, while GnRH levels were significantly increased. In the
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model group of females, plasma ACTH levels were significantly elevated, while

FSH and LH levels were markedly reduced. In the QFY-treated group, plasma

CORT levels were significantly decreased, whereas FSH and LH levels were

significantly increased. Multiple linear regression indicated QFY mainly

mitigates anxiety and depression-like symptoms through modulating GnRH in

males and T and ACTH in females.

Conclusions: The administration of QFY alleviates anxiety and depression in

3×Tg-AD mice by regulating the HPA, HPT and HPO axes.
KEYWORDS

Alzheimer’s disease, anxiety, depression, neuroendocrine, traditional Chinese medicine
prescription, Qifuyin
1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder and the most prevalent cause of dementia (1). It is

primarily characterized by a decline in memory and the ability to

perform daily activities (2). Studies suggest that between 56% and

98% of individuals with AD develop behavioral and psychological

symptoms of dementia (BPSD) (3–5), which encompass a range of

issues including depression, apathy, agitation, repetitive

questioning, psychosis, aggression, and sleep disturbances (5, 6).

Early signs of AD often manifest as apathy and anxiety (7), with

approximately 40% of patients exhibiting anxiety symptoms (8) and

30% to 50% suffering from comorbid depression (9, 10). The

presence of these symptoms not only increases the stress on

caregivers but also contributes significantly to the societal burden

(4, 11–15). The pathophysiology of AD is complex and is associated

with an increased risk of anxiety and depression, which can precede

memory impairment in the early stages of the disease. Anxiety and

depression have been observed during the mild cognitive

impairment (MCI) phase, which often precedes AD (16–19), and

anxiety has been shown to heighten the risk of MCI patients

progressing to dementia (20).

The etiology of BPSD is multifaceted, with research indicating

associations with elevated levels of the G9a epigenetic enzyme,

deficits in autophagy, and synaptic loss (21, 22). A meta-analysis has

highlighted the role of serotonin (5-HT) and its receptors,

particularly the 5-HT2A receptor, are linked to depressive,

delusional, and agitated moods in BPSD (23, 24). Additionally,

many evidence points to neuroendocrine dysregulation, particularly

involving the hypothalamic-pituitary-adrenal(HPA) axis (25, 26).

While a direct link between hypothalamic-pituitary-thyroid(HPT)

axis, hypothalamic-pituitary-ovarian(HPO) axis dysfunction and

BPSD has been suggested, there is a clear association between HPT,

HPO axis dysregulation and the development of anxiety and

depression (27–29). The HPA axis governs stress responses via
02
CRH-ACTH-CORT signaling, and chronic hyperactivity elevates

cortisol, exacerbating AD pathology through hippocampal atrophy,

neuroinflammation, and impaired serotonin/dopamine

neurotransmission (30, 31). Elevated cortisol levels correlate with

accelerated cognitive decline severity in AD patients (32). Research

shows that anxiety and stress can lead to the activation of the HPA

axis (33–35). Dysfunction of the HPO and HPT axes has been

implicated in the pathogenesis of anxiety and depression (36).

Studies have shown that GnRH antagonists can induce anxiety-

and depression-like behaviors (37, 38), whereas testosterone has

been found to exert anxiolytic and antidepressant effects (39, 40)

Furthermore, growing evidence suggests that HPG axis dysfunction

is associated with the development of AD. The regulatory hormones

of the HPG axis—estrogen in females and testosterone in males—

play neuroprotective roles by inhibiting b-amyloid (Ab) deposition
(41). Postmenopausal estrogen deficiency exacerbates amyloid−b
pathology and impairs cognitive function in women (42), while

testosterone deficiency in men reduces the expression of neprilysin,

an enzyme responsible for Ab clearance, thereby increasing AD risk

(43). These findings highlight the critical role of HPA, HPT and

HPO axis dysregulation in both AD pathology and behavioral and

psychological symptoms of dementia (BPSD), suggesting that

hormonal modulation may serve as a potential therapeutic

strategy for both neuropsychiatric symptoms and disease

progression in AD.

The clinical management of BPSD predominantly relies on

psychotropic medications (44), which can be categorized based on

their action on dopamine and serotonin receptors. Typical (first-

generation) antipsychotic drugs, such as chlorpromazine, haloperidol,

and sulpiride, primarily exert their effects by antagonizing dopamine

D2 receptors (45). In contrast, atypical (second-generation)

antipsychotic drugs, including clozapine, risperidone, olanzapine,

quetiapine, and aripiprazole, exert their effects through a variety of

mechanisms, including the modulation of serotonin (5-HT),

norepinephrine, or histamine neurotransmission (46). However, only
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two drugs are strictly approved for the treatment of BPSD:

pimavanserin, which is approved for the treatment of hallucinations

and delusions associated with Parkinson’s disease in the United States,

and risperidone, which is approved for the treatment of persistent

aggressive behavior in AD in Canada and Europe (47). Other

medications used to treat BPSD are prescribed off-label. It is crucial

to recognize that both first- and second-generation antipsychotic drugs

are associated with numerous adverse effects (48) and have the

potential to increase the risk of Parkinsonism, gait disturbances,

cerebrovascular adverse events, cognitive decline, and even death

(49–51). Natural medicines, with their multi-target properties and

generally fewer adverse effects, have emerged as potential treatment

options for BPSD (52). A meta-analysis (53) of four trials involving

1,628 patients found that treatment with the ginkgo extract EGb 761®

led to improvements in BPSD symptoms. Another prescription, Yi Gan

San, is commonly used for BPSD treatment in Japan and has shown

promising effects (54). In China, traditional Chinese medicine formulas

are frequently employed to treat BPSD (55), frequently in combination

with chemical drugs.

Qifuyin (QFY), a traditional Chinese medicine prescription,

originates from “Jingyue Quanshu”(a comprehensive medical

compendium written by Zhang Jingyue in the Ming Dynasty. It

systematically summarizes and expands upon traditional Chinese

medical theories, particularly in internal medicine and herbal

prescriptions), and is composed of a blend of medicinal herbs

including ginseng, cooked rehmannia, angelica sinensis,

atractylodes macrocephala, honey-fried licorice, jujube seed and

polygala tenuifolia. This formula is commonly used in clinical

dementia treatment (56, 57), In Jingyue Quan Shu, it is recorded

that dementia is often accompanied by symptoms of anxiety, panic,

and depression, and that these symptoms further exacerbate the

manifestations of dementia. QFY is used for treatment (58).

Modern research has found that QFY can inhibit the TLR4/NF-

kB pathway, thereby reducing neuroinflammation (59), the

activation of the TLR4/NF-kB pathway is associated with anxiety

and depression-like symptoms (60, 61), therefore, it is inferred that

QFY has therapeutic potential for depressive symptoms. Our

previous research has indicated that the treatment of QFY can

enhances cognitive function in APP/PS1 double transgenic mice by

regulating the gut microbiome (62) and ameliorate cognitive

function in 5×FAD mice by modulating immunity (63). However,

the impact of QFY on psychiatric and behavioral symptoms

associated with AD has not yet been extensively studied. The

3×Tg-AD mouse model, which carries three gene mutations—

APP (Swedish), PS1 (M146V), and tau (P301L)—exhibits

pathological features that more closely resemble those of human

Alzheimer’s disease compared to other models. Due to this higher

fidelity, it has been widely utilized to assess the therapeutic effects of

various potential AD treatments, including chemical compounds,

biologics, traditional Chinese medicine, studies have shown that

3×Tg-AD mice exhibit BPSD (64).

Our present study employed the 3×Tg-AD mice to investigate

the effects of QFY on anxiety and depression symptoms associated

with AD from a neuroendocrine perspective.
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2 Materials and methods

2.1 The preparation of QFY

The QFY dry extract powder was purchased from Lunan

Pharmaceutical Group Corporation. The specific preparation

method is as follows: weigh out 3.0 kg of ginseng (Panax ginseng

C. A. Mey.), 4.50 kg of prepared rehmannia root(Rehmanniaglutinosa

(Gaertn.) Libosch. ex Fisch. & C. A. Mey.), 4.50 kg of angelica

(Angelica sinensis (Oliv.) Diels), 2.50 kg of stir-fried Atractylodes

macrocephala(Atractylodes macrocephala Koidz.), 3.0 kg of sour

jujube seed(Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F.Chow.),

2.50 kg of processed polygala(Polygala tenuifolia Willd.), and 1.50 kg

of honey-fried licorice(Glycyrrhiza uralensis Fisch). First, perform

heat reflux on the ginseng with 60% ethanol twice, each for 1.5 hours.

Filter the mixture, set aside the residue, recover the ethanol from the

filtrate, and concentrate it to a relative density of 1.03-1.9 (at 60°C),

and set it aside. Next, extract the volatile oil from angelica and stir-

fried Atractylodes macrocephala using water distillation, collect the

distilled aqueous solution in a separate container, and set aside the

residue. The volatile oil ethanol solution is encapsulated with beta-

cyclodextrin, dried, and pulverized for later use. Perform boiling of

the residues from the above three herbs along with the remaining four

herbs (prepared rehmannia root, etc.) in water twice, each time for 2

hours. Filter the mixture and mix the filtrate with the concentrated

ginseng solution. Perform concentration of the mixture to a relative

density of 1.02-1.06 (at 60°C) to obtain a clear syrup, let it stand,

centrifuge, and then concentrate to a relative density of 1.22-1.28 (at

60°C) to obtain a dense extract. Dry and pulverize the extract, then

mix it with the beta-cyclodextrin encapsulated substance.
2.2 Animals and treatment

The 3×Tg-AD transgenic mice (65)[strain B6;129-Tg(APPSwe,

tauP301L)1Lfa Psen1 tm1Mpm/Mmjax], carrying three mutations

associated with familial Alzheimer’s disease (APP Swedish, MAPT

P301L, and PSEN1 M146V), were purchased from the Jackson

Laboratory. The C57BL/6J mice were purchased from Beijing

Huafukang Bioscience Co., Ltd. A total of 111 mice were included

in the study, comprising 53 males and 58 females. Both the C57BL/

6J and 3×Tg-AD transgenic mice were housed at the Experimental

Animal Center of Shandong University of Traditional Chinese

Medicine until they reached 10.3 months of age. All animals were

maintained at a temperature of 23 ± 1°C under a 12-hour light/dark

cycle with free access to food and water. Before the experiments, all

mice were acclimated to the experimental environment for 6 days.

All animal-related experiments have been reviewed and approved

by the ethics committee of Shandong University of Traditional

Chinese Medicine (Ethics No.SDUTCM202209291). All efforts

were taken to minimize the number of animals used and their

suffering. The 10.3-month-old C57BL/6J and 3×Tg-AD transgenic

mice were divided into six groups based on activity level and body

weight. Each group consisted of 8–9 mice, and the treatment was
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administered via oral gavage: control group(male10, female10):

C57BL/6J mice, model group(male7, female7): 3×Tg-AD

transgenic mice, positive drug group(male8, female9): 3×Tg-AD +

donepezil (1.0 mg/kg/day) and memantine (2.8 mg/kg/day), QFY

low-dose group(male8, female10): 3×Tg-AD + QFY (1.06 g/kg/

day), QFY medium-dose group(male7, female10): 3×Tg-AD + QFY

(2.12 g/kg/day), QFY high-dose group(male7, female9): 3×Tg-AD +

QFY (4.24 g/kg/day), The control and model groups were

administered distilled water by gavage for the duration of the

study. All mice underwent behavioral tests following 305 days of

treatment, and samples were collected for biochemical analysis after

328 days of treatment.
2.3 Behavioral tests

2.3.1 Open field test
The open field test was performed using an open field apparatus

measuring 41 cm in length × 41 cm in width × 30 cm in height to

assess the exploratory activity and anxiety-like behavior of the mice

(66, 67). Each mouse was gently placed at the center of the apparatus,

with the central area being demarcated as a square zone 9 cm from

the perimeter walls. A sophisticated video tracking system, Tracking

Master V3.0 (FANBI Intelligent Technology Co., Ltd., Shanghai,

China), was employed to meticulously record the time spent, the

number of entries, and the distance traveled within the central area

over a 9-minute interval for each mouse.

2.3.2 Elevated plus maze
The elevated plus maze, with dimensions of 66.5 cm in length ×

6.5 cm in width × 45.5 cm in height, was used to assess anxiety-like

behavior (68, 69). The closed arms were surrounded by 15 cm high

walls. Each mouse was placed in the central area of the maze,

oriented towards one of the open arms. The SuperFcs animal

behavior video analysis system (Model: XR-XC404, Shanghai

Xinsoft Information Technology Co., Ltd.) was utilized to record

the time spent and the number of entries into the open arms during

a 5-minute session.

2.3.3 Forced swim test
For the assessment of depression-like behavior, the forced swim

test was conducted (70, 71)., modified from the method of Borsini

(72). Mice were placed individually in a cylindrical glass container

(12 cm in diameter, 30 cm in height) filled with water to a depth of

25 cm, maintained at a temperature of 24°C.The SuperFcs animal

behavior video analysis system was again employed to monitor and

record changes in the mice’s movements over a 6-minute period.

The water depth was adjusted to prevent the animals from reaching

the bottom of the container with their tails or hind limbs. The

behavior during the last 4 minutes of the test was analyzed, with the

duration of immobility during this period recorded using the

SuperFcs animal behavior video analysis system (Model: XR-

XC404, Shanghai Xinsoft Information Technology Co., Ltd.).
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2.3.4 Sugar water splash test
The splash test was conducted to evaluate depression-like

behavior in the mice (73, 74). Each mouse was placed in an

empty cage, and a 9% sucrose solution was sprayed once onto its

back using a spray bottle, delivering a consistent volume of 0.7 mL

per spray. The latency to the initial grooming behavior was noted,

along with the grooming frequency, both observed over a 5-minute

period post-spray.
2.4 Samples collection

At 21.2 months of age, fourteen mice were randomly selected

from each of the control, model and QFY medium−dose groups

(seven males and seven females per group). After ocular

enucleation, blood was collected into anticoagulant EP tubes and

kept on ice for 30min. Samples were then centrifuged at 3,500rpm

for 15min at 4°C, and the resulting plasma supernatant was

carefully harvested for downstream analyses.
2.5 Enzyme-linked immunosorbent assay

ELISA was utilized to quantify the levels of CORT, T, and E2 in

the plasma samples of the mice. The ELISA kits were procured from

Jiubang Biotechnology Co., Ltd. (CORT: Catalog No. ED-270,

Batch No. 20240301; T: Catalog No. ED-244, Batch No.

20240301; E2: Catalog No. ED-251, Batch No. 20240325). The

necessary strips were removed from the foil pouch after being

equilibrated to room temperature for 60 minutes, and the

remaining strips were sealed in a ziplock bag and stored at 4°C.

Standard wells and sample wells were set up, with 50 mL of

standards added to each standard well and 50 mL of diluted

samples added to each sample well, no reagent was added to the

blank wells. HRP-conjugated detection antibody (90 mL) were

added to each standard and sample well (except for the blank

wells). The wells were sealed with a plate cover and incubated at

37°C in a water bath or incubator for 60 minutes. After incubation,

the liquid was discarded, and the wells were blotted dry on

absorbent paper. Each well was filled with 350 mL of wash

solution, left to stand for 1 minute, and then the wash solution

was discarded, and the wells were blotted dry on absorbent paper.

This washing process was repeated 5 times (a plate washer may also

be used). Each well was then filled with 50 mL of substrate A and 50

mL of substrate B, and incubated at 37°C in the dark for 15 minutes.

Finally, 50 mL of stop solution was added to each well, and the

optical density (OD) at 450 nm was measured within 15 minutes.

The OD values of the standards were plotted on the x-axis, and the

corresponding concentrations on the y-axis, to create a standard

curve using graph paper or appropriate software. The sample

concentrations were then calculated by substituting the OD values

of the samples into the four-parameter regression equation

obtained from the standard curve.
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2.6 Radioimmunoassay

Radioimmunoassay (RIA) was used to determine the

concentrations of ACTH, FSH, LH, CRH, and GnRH in the

plasma of the mice. The RIA kits were obtained from Beijing

Furui Biotech Co., Ltd. (ACTH: Catalog No. RP-009, Batch No.

20240501; FSH: Catalog No. RK-176, Batch No. 20240525; LH:

Catalog No. PK-117, Batch No. 20240501; CRH: Catalog No. RJ-

063, Batch No. 20240501; GnRH: Catalog No. RP-6, Batch No.

20240501). All reagents were allowed to equilibrate to room

temperature prior to utilization. Disposable 12 × 75 mm tubes

were arranged in a test tube rack for the total count (TC) tube, non-

specific binding (NSB) tube, zero standard (0) tube, standard tubes,

and sample tubes. Fifty microliters of buffer were added to the NSB

and 0 tubes, while 50 mL of the corresponding standards were added
to the standard tubes. Fifty microliters of the corresponding

samples were added to the sample tubes. One hundred microliters

of antibody were added to all tubes except the NSB and 0 tubes.

Then, 90 mL of 125I-ACTH radiolabeled tracer was added to all

tubes. Each tube was vortexed for 9 seconds and then incubated in a

37°C water bath for 1 hour. After incubation, the tubes were

removed, and 500 mL of PR separator was added to each tube.

The tubes were vortexed thoroughly and left at room temperature

for 20 minutes before being centrifuged at 3500 rpm at 4°C for 25

minutes. After centrifugation, the supernatant was discarded, and

the precipitate in each tube was counted for radioactivity (cpm).

The percentage of binding in the NSB and 0 tubes was calculated

using B/T, and the percentage of binding in the standards and

samples was calculated using B/Bo. A standard curve was plotted on

semilogarithmic graph paper, or the gamma counter software was

used to calculate the parameters, standard curve, and sample

concentrations directly. The NSB% was calculated as (cpm of

NSB tube ÷ cpm of T tube) × 90%, Bo% was calculated as (cpm

of Bo tube - cpm of NSB tube) ÷ cpm of T tube × 90%, and B/Bo%

was calculated as (cpm of standard or sample tube - cpm of NSB

tube) ÷ (cpm of Bo tube - cpm of NSB tube) × 90%.
2.7 Statistical analysis

Data are presented as “Mean ± S.D.” The criterion for excluded

data is that data outside 2 standard deviations are considered

outliers. For statistical analysis, differences between two groups

were assessed using Student’s t-test, while one-way Analysis of

Variance (ANOVA) complemented by Dunnett’s test for multiple

comparisons was applied to evaluate differences across three or

more groups. The statistical analyses were performed using

GraphPad Prism software version 10.4.1, and P-value of less than

0.05 was established as the threshold for statistical significance.
2.8 Principal component analysis

PCA is a statistical method that reduces a dataset with

numerous variables to a smaller set of summary indices,
Frontiers in Psychiatry 05
preserving much of the information from the original variable set.

These new values, referred to as principal components, are linear

combinations of the original variables and are uncorrelated with

one another. PCA facilitates the simplification of large data tables,

making it easier to identify the most significant variables and to

uncover patterns within the data. To differentiate between control,

model, and QFY mice based on hormone levels in the HPA, HPT,

and HPO axes. PCA was performed on the hormone levels and a

score plot was generated. The PCA was conducted using

GraphPad software.
2.9 Pearson correlation analysis and
multiple linear regression analysis

To assess the linear relationship between variables, we

employed Pearson correlation analysis, a widely used statistical

method for quantifying the strength and direction of the association

between two continuous variables. Pearson’s correlation coefficient

(r) ranges from -1 to +1, where values closer to +1 or -1 indicate

stronger positive or negative correlations, respectively, and a value

of 0 suggests no correlation. Correlation significance was

determined with p-values, where a threshold of p < 0.05 was

considered statistically significant.

Multiple linear regression analysis is a statistical method used to

modeling a linear relationships between a dependent variable

(commonly denoted as Y) and multiple independent variables

(usually represented as X1, X2,…, Xn). The magnitude of the

regression coefficients reflects the extent of the effect each

independent variable exerts on the dependent variable: larger

values correspond to a greater influence, while smaller value

indicate a lesser influence. Multiple linear regression analysis was

performed using SPSS, and visualization was conducted with

GraphPad software.
3 Results

3.1 The treatment of QFY ameliorated
anxiety-like behavior in 3×Tg-AD mice

The open field test results showed that 3×Tg-AD mice

demonstrated a marked decrease in several parameters compared

to wild-type mice, including the time spent in central area

(Figure 1A, P<0.0001, B, P=0.0004, F=90.33, Figure 1C,

P=0.0043), the number of visits to the central zone (Figure 1D,

P<0.0001, E, P=0.0004, F=61.58, Figure 1F, P<0.01), total distance

in central district (Figure 1G, P<0.0001, H, P=0.0003, F=80.56, I,

P=0.0020), and the percentage of time spent in central area

(Figure 1J, P<0.0001, K, P=0.0004, F=90.33).

In male mice, compared with the model group, the low-dose

QFY group exhibited a significant increase in the time spent in

central area (Figure 1B, P=0.2269), the number of visits to the

central area (Figure 1E, P=0.0022), the total distance in central

district (Figure 1H, P=0.0027) and the percentage of time spent in
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central area (Figure 1K, P=0.0123), medium-dose QFY group also

demonstrated a significant increase in the time spent in central area

(Figure 1B, P=0.0086) and the percentage of time spent in central

area (Figure 1K, P=0.0439), no significant changes were observed in

the high-dose group compared with the model group.

In female mice, compared with the model group, the low-dose

QFY group exhibited a significant increase in the total distance in

central district (Figure 1I, P=0.0402).

The combined analysis of both sexes showed that compared

with the model group, the positive medicine group showed a

significant increase in the time spent in central area. (Figure 1A,

P=0.0387), the low-dose QFY group exhibited a significant

increase in the time spent in central area (Figure 1A, P=0.0005),

the number of visits to the central area (Figure 1D, P=0.0004), the

total distance in central district (Figure 1G, P=0.0011) and

the percentage of time spent in central area (Figure 1J,

P=0.0146), the medium-dose and the high-dose QFY group also

demonstrated a significant increase in the time spent in central

area (Figure 1A, the medium-dose P=0.0213, the high-dose

P=0.0186), the number of visits to the central area (Figure 1D,

the medium-dose P=0.0339, the high-dose P=0.0209) and the total

distance in central district (Figure 1G, the medium-dose
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P=0.0465, the high-dose P=0.0448). Furthermore, both male and

female mice in the Model group exhibited a marked reduction in

central area movement trajectories, which were significantly

increased following treatment with the positive control medicine

or QFY (Figure 2).

In the elevated plus maze test, compared to wild-type mice,

3×Tg-AD mice showed a significant reduction in the time spent in

open arm (Figure 3A, P=0.0002, B, P=0.0097, C, P=0.0133), the

frequency of open arm (Figure 3D, P=0.0005, E, P=0.0067, F,

P=0.0126), the percentage of time and frequency in open arm

(Figure 3G, P<0.0001, H, P=0.0012, J, P=0.0005, K, P=0.0033,

I, P=0.0030).

In male mice, compared with the model group, the QFY low-

dose group exhibited a significant increase in both the time

(Figure 3B, P=0.0157) and the frequency of open arms

(Figure 3E, P=0.0138), the percentage of open arm time

(Figure 3H, P=0.0052) and the percentage of frequency in open

arms (Figure 3K, P=0.0021). The medium-dose and the high-dose

group exhibited a significant increase the time spent in open arms

(Figure 3B, the medium-dose P=0.0439, the high-dose P=0.0306)

and the percentage of time spent in open arms (Figure 3H, the

medium-dose P=0.0439, the high-dose P=0.0264).
FIGURE 1

The effect of QFY on anxiety-like behavior of 3×Tg-AD transgenic mice in open field test. (A-C), Time spent in central area; (D–F), Number of visits
to the central zone; (G-I), Total distance in central district; (J–L), Percentage of central area time. Mean ± S.D., n=7-20; **P<0.01 vs C57 mice,
Student`s t-test; #P<0.05, ##P<0.01 vs 3×Tg-AD mice, One-way ANOVA followed by Dunnett’ s multiple comparisons test; GraphPad 8.0.1.
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In female mice, compared with the model group, the QFY low-

dose group exhibited a significant increase the time spent in open

arms (Figure 3C, P=0.0400), the frequency of open arm (Figure 3F

P=0.0059) and the percentage of open arm time (Figure 3I,
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P=0.0307), the medium -dose group exhibited a significant

increase the time spent in open arms (Figure 3C, P=0.0030), the

percentage of time and frequency in open arm (Figure 3I, P=0.0018,

L, P=0.0165), the high-dose group exhibited a significant increase in
FIGURE 3

The effect of QFY on anxiety-like behavior of 3×Tg-AD transgenic mice in elevated plus maze test. (A-C), Time of open arm; (D-F), Frequency of
open arm entry times; (G-I), Percentage of open arm time; (J-L), Percentage of frequency in open arm time. Mean ± S.D. n=7-9. *P<0.05, **P<0.01
vs C57 mice, Student`s t-test; #P<0.05, ##P<0.01 vs 3×Tg-AD mice, One-way ANOVA followed by Dunnett’s multiple comparisons test,
GraphPad 8.0.1.
FIGURE 2

Open field test trajectory map of mice.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1554866
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yu et al. 10.3389/fpsyt.2025.1554866
both the time (Figure 3C, P=0.0266) and the frequency of open arm

(Figure 3F, P=0.0085), the percentage of open arm time (Figure 3I,

P=0.0267) and the percentage of frequency in open arm

(Figure 3L, P=0.0451).

The combined analysis of both sexes showed that compared

with the model group, the QFY low-dose and the high-dose group

exhibited a significant increase in both the time (Figure 3A, the low-

dose P=0.0005, the high-dose P=0.0008) and the frequency of open

arms (Figure 3D, the low-dose P=0.0002, the high-dose P=0.0052),

the percentage of spent in open arm time (Figure 3G, the low-dose

P=0.0002, the high-dose P=0.0005) and the percentage of frequency

in open arms (Figure 3J, the low-dose P=0.0002, the high-dose

P=0.0012), the medium-dose group exhibited a significant increase

the time spent in open arms (Figure 3A, P<0.0001), the frequency of

open arms (Figure 3D, P<0.05) with notable elevations in both the

percentage of time spent in open arm (Figure 3G, P<0.0001) and the

percentage of frequency in open arms (Figure 3J, P=0.0026).

These findings indicated that 3×Tg-AD mice exhibit anxiety-

like symptoms, and that administration of QFY effectively mitigates

these behaviors. Additionally, the combination therapy of donepezil

and memantine did not have a significant impact on anxiety-like

behavior in 3×Tg-AD mice.
3.2 The treatment of QFY alleviated
depressive-like behavior in 3×Tg-AD mice

The outcomes of the forced swim test indicated that 3×Tg-AD

mice had a notably longer immobility duration compared to their

wild-type counterparts (Figure 4A, P=0.0019, B, P=0.0183, C,

P<0.0001). In male mice, the low-dose QFY group exhibited a

significant decrease in immobility duration compared to the model

group (Figure 4A, P=0.0241). Similarly, in female mice, the low-

dose QFY group showed a significant reduction in immobility

duration compared to the model group (Figure 4B, P=0.0050,

F=3.438). When analyzing both sexes combined, the QFY group

demonstrated a significantly reduced immobility duration
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compared to the model group (Figure 4C, low-dose P=0.0001,

medium-dose P=0.0232, high-dose P=0.0210).

The results of sucrose splash test demonstrated that 3×Tg-AD

mice exhibited a significantly longer grooming latency (Figure 5A,

P=0.0006; B, P=0.0281, F=4.129, C, P=0.0152, F=1.313) and a

notable decrease in grooming frequency (Figure 5D, P=0.0018, F,

P=0.0225, F=3.617) compared to wild-type mice.

In male mice, compared to the model group, the positive

medicine group showed a significant reduction in grooming

latency (Figure 5B, P=0.0274). The QFY medium-dose group also

exhibited a significant decrease in grooming latency (Figure 5B,

P=0.0080) and a significant increase in grooming frequency

(Figure 5E, P=0.0072, F=3.403). However, the QFY low-dose

group showed a significant reduction in grooming frequency

(Figure 5E, P=0.0317, F=3.403).

In female mice, compared to the model group, the positive

medicine group demonstrated a significant shortening of grooming

latency (Figure 5C, P=0.0012, F=4.275). The QFY groups also exhibited

a significant reduction in grooming latency (Figure 5C, low-dose,

P=0.0192, medium-dose, P=0.0089, F=4.275) and a significant increase

in grooming frequency (Figure 5F; low-dose P=0.0068, medium-dose,

P=0.0075; high-dose group, P=0.0357, F=3.484).

The combined analysis of both sexes showed that compared

with the model group, the grooming latency was significantly

shortened in the positive medicine group (Figure 5A, P=0.0005,

F=1.822) and the QFY groups (Figure 5A, low-dose P=0.0150,

medium-dose P=0.0011, high-dose, P=0.0231), The grooming

frequency was significantly increased in the QFY groups

(Figure 5D, low-dose P=0.0037, medium-dose P=0.0007, high-

dose, P=0.0074).
3.3 The treatment of QFY regulated
neuroendocrine function in 3×Tg-AD mice

We selected the control group, model group, and QFY clinical

dose (medium dose group) for plasma hormone analysis to study
FIGURE 4

The effect of QFY on depressive-like behavior in 3×Tg-AD transgenic mice in the forced swimming experiment. (A) The immobility time of Male
mice. (B) The immobility time of Female mice. (C) The immobility time of male + female mice. Mean ± S.D.n=7-9.*P<0.05, **P<0.01 vs C57 mice,
Student`s t-test; #P<0.05, ##P<0.01 vs 3×Tg-AD mice, One-way ANOVA followed by Dunnett’s multiple comparisons test, GraphPad 8.0.1.
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the regulatory effects of QFY on the plasma levels of the HPA and

HPG axes in 3×Tg-AD mice.

The results showed that, compared to wild-type mice, 3×Tg-AD

mice had increased levels of ACTH in female (Figure 6C, P<0.0001,

F=2.066) but decreased levels in males (Figure 6B, P<0.0001,

F=2.198), CRH and CORT in the plasma. QFY group, a

particularly notable reduction in CRH levels in both male and

female mice (Figure 6E, P=0.0079, F=10.22, Figure 6F, P=0.0303)

and CORT levels in female mice (Figure 6I, P=0.0111). These results

indicate that 3×Tg-AD mice present hyperactive HPA axis, and the

treatment of QFY balanced the HPA axis of 3×Tg-AD mice. The

combined analysis of both sexes showed that plasma CRH and

CORT levels in the QFY group were significantly lower than those

in the model group (Figure 6D, P=0.0034, Figure 6G, P=0.0255).
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We measured the levels of GnRH, FSH, LH, T, and E2 in the

plasma of mice. The results indicated that GnRH hormone levels

decreased in male 3×Tg-AD mice (Figure 7B, P<0.0001, F=1.576)

and the FSH, LH hormone levels decreased in female 3×Tg-AD

mice (Figure 7F, P<0.0001, F=24.03, I, P=0.0188, F=730.3). The

treatment with QFY reversed the low level of GnRH in male 3×Tg-

AD mice (Figure 7B, P=0.0390, F=1.324) and the FSH (Figure 7F,

P<0.0001, F=19.85), LH (Figure 7I, P=0.0012) in female 3×Tg-AD

mice. These results suggest that the HPG axis was dysregulated in

3×Tg-AD mice, and the administration of QFY restored their

balance. The combined analysis of both sexes showed that,

compared with the control group, plasma FSH, LH, and E2 levels

were significantly decreased in the model group (Figure 7D,

P<0.0001 Figure 7M, P=0.0076, F=6.378, Figure 7G, P=0.0444),
FIGURE 5

The effect of QFY on depressive-like behavior in 3×Tg-AD transgenic mice in the sugar water splash test. (A-C), Grooming latency; (D-F), Grooming
frequency. Mean ± S.D., n=7-20; *P<0.05, **P<0.01 vs C57 mice, Student`s t-test; #P<0.05, ##P<0.01 vs 3×Tg-AD mice, One-way ANOVA followed
by Dunnett’s multiple comparisons test; GraphPad 8.0.1.
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while plasma FSH and E2 levels were significantly increased in the

QFY group (Figure 7D, P<0.0001, M, P=0.0476, F=6.137).
3.4 The specific neuroendocrine phenotype
responding to the treatment of QFY

The principal component analysis (PCA) of HPA, HPT, and

HPO among the control, model, and QFY groups in male mice was

used to demonstrate a distinct differentiation between the control

group and the combined model and QFY groups. To intuitively

illustrate the spatial relationships among the three groups, we

conducted a statistical analysis on the scores of the first two

principal components, PC1 and PC2, derived from the PCA. The
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results showed that the male QFY group was positioned more

proximate to the control group compared to the model group for

the HPA PC scores (Figure 8A), and also the same that the female

QFY group for the HPO PC scores (Figure 8F). The model group’s

PC2 scores were significantly higher compared to those of the

control group, and the QFY group’s scores were significantly

reduced compared to those of model group for the HPA in male

mice (Figure 8A) and HPO in female mice (Figure 8F). We observed

that, for PC1, the scores of the model group were significantly lower

compared to the control group (Figure 8B, C, D, F). However, for

the HPT axis in female mice, the PC1 scores of the model group

were significantly higher than those of the control group

(Figure 8E). This indicated that HPA axis of male mice and HPO

axis of female mice sensitively responded to the treatment of QFY.
FIGURE 6

The effect of QFY on hypothalamic–pituitary–adrenal axis of 3×Tg-AD transgenic mice. (A-C) The concentration of ACTH in plasma. (D-F) The
concentration of CRH in plasma. (G-I), The concentration of CORT in plasma. Mean ± S.D., n=7-14. **P<0.01 vs C57 mice, Student`s t-test; #P<0.05,
##P<0.01 vs 3×Tg-AD mice, Student`s t-test; Graphpad 8.0.1.
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FIGURE 7

The effect of QFY on hypothalamic-pituitary-gonadal axis of 3×Tg-AD transgenic mice. (A-C) The concentration of GnRH in plasma. (D-F) The
concentration of FSH in plasma. (G-I), The concentration of LH in plasma. (J-L) The concentration of T in plasma. (M-O) The concentration of E2 in
plasma. Mean ± S.D. n=7-14.*P<0.05,**P<0.01 vs C57 mice, Student`s t-test; #P<0.05, ##P<0.01 vs 3×Tg-AD mice, Student`s t-test; Graphpad 8.0.1.
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3.5 The effects of QFY ameliorating anxiety
and depression-like behaviors in 3×Tg-AD
mice correlated with modulating the level
of neuroendocrine hormones

We performed Pearson correlation analyses between hormones

related to the HPA, HPT and HPO axes and the outcomes of the

OFT, EPM, FST, and ST, and generating heatmaps to illustrate the

relationship between BPSD and neuroendocrine function.

3.5.1 The HPA axis
In male mice, plasma ACTH levels positively correlated with the

indices of OFT (time in central zone, number of central zone entries,
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central distance, and percentage of central time). The levels of CRH

and CORT negatively correlated with the percentage of frequency of

open arm in the EPM but positively correlated with immobility time

in the FST and grooming latency in the ST, while negatively

correlated with grooming frequency (Figure 9).

In female mice, ACTH levels negatively correlated with central

zone time and the percentage of central area time in the OFT but

positively with immobility time in the FST. CRH levels positively

correlated with immobility time in the FST and grooming latency in

the ST. CORT levels negatively correlated with the open arm time in

EPM, as well as the percentage of time and frequency in open arm

time in EPM. but positively with the grooming latency in the

ST (Figure 10).
FIGURE 8

Principal component analysis based on the HPA, HPT, and HPO axes and the box plots of PCA score statistics. Each point represents a sample in
PCA analysis plot: blue represents the Con group, red represents the Mod group, and green represents the QFY group, below each plot are box
plots of PC1 and PC2 scores: Blue represents the Con group, red represents the Mod group, and green represents the QFY group. (A-C) the PCA
analysis and box plots of PC1 and PC2 scores of the HPA, HPT, and HPO axes in male mice. (D-F) the PCA analysis and box plots of PC1 and PC2
scores of the HPA, HPT, and HPO axes in female mice. *P<0.05, **P<0.01 vs C57 mice, Student`s t-test; #P<0.05, vs 3×Tg-AD mice , Student`s
t-test; Graphpad 8.0.1.
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3.5.2 The HPT and HPO axes
In male mice, GnRH, FSH and T levels positively correlated

with the indices of OFT (time in central zone, number of central

zone entries, central distance, and percentage of central time). LH

levels positively correlated with number of central zone entries,
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central distance, and percentage of central time in OFT. E2 levels

positively correlated with number of central zone entries and

central distance in OFT. As for EPM, GnRH, FSH, LH, T and E2

levels was positively with open arm entry times. GnRH was

positively with the percentage of frequency in open arm. GnRH,
FIGURE 9

Heatmap generated from the correlation analysis between the open field test, elevated plus maze test, forced swimming, splash test and ACTH,
CRH, CORT, GnRH, FSH, LH, T, E2 in male 3×Tg-AD mice. Colors closer to red indicate higher r-values, while colors closer to blue indicate lower r-
values. *P<0.05, **P<0.01, The heatmap was created using GraphPad.
FIGURE 10

Heatmap generated from the correlation analysis between open field test, elevated plus maze test, forced swimming, splash test and ACTH, CRH,
CORT, GnRH, FSH, LH, T, E2 in female 3×Tg-AD mice. Colors closer to red indicate higher r-values, while colors closer to blue indicate lower r-
values. *P<0.05, **P<0.01, The heatmap was created using GraphPad.
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FSH, LH, T and E2 was negatively correlated with the floating time

in the FST. GnRH, FSH, T and E2 was negatively correlated with the

grooming latency while GnRH, FSH, T positively with the

grooming frequency in ST (Figure 9).

In female mice, GnRH was positively correlated with the indices

of OFT (time in central zone, number of central zone entries,

central distance, and percentage of central time), as well as the

grooming frequency in ST, while negatively correlated with the

grooming latency in ST. FSH was positively correlated with number

of central zone entries, central distance in OFT and grooming

frequency in ST, while negatively correlated with immobility time in

the FST and grooming latency in the ST. LH and T levels was

negatively correlated with immobility time in the FST (Figure 10).
3.6 Effects of endocrine hormones on
anxiety and depression in mice

The elevated plus maze and forced swim test are established

methods for assessing anxiety-like and depression-like behaviors in

animals respectively. We conducted multiple linear regression

analyses to evaluate the contribution of HPA, HPT and HPO axes

to the percentage of time spent in the open arms of the elevated plus

maze, as well as immobility time in the forced swim test (Figure 11).
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For the anxiety-like behaviors indicated by the percentage of

time spent in the open arms of the elevated plus maze test, ACTH of

HPA axis (Figure 11A), LH of HPT axis (Figure 11B) and GnRH of

HPO axis (Figure 11C) (GnRH>LH>ACTH) dedicated to anxiety

and respond to the treatment of QFY in male mice. While for

female mice, it was CORT of HPA axis (Figure 11D), T of HPT axis

(Figure 11E) (T>CORT).

For the depression -like behaviors indicated by immobility time

in the forced swim test, the results showed that CRH of HPA axis

(Figure 11G), GnRH of HPT and HPO axis (Figure 11H, I)

(GnRH>CRH) dedicated to depression and respond to the

treatment of QFY in male mice. While for female mice, it was

ATCH of HPA axis (Figure 11J), FSH of HPT and HPO axes

(Figure 11K, L) (ACTH>FSH).

These results indicated that GnRH was the most significant

contributor to anxiety and depression in male 3×Tg-ADmice, while

T and ACTH were major contributors to anxiety and depression in

female 3×Tg-AD mice.
4 Discussion

The anxiety and depression-like symptoms are also present in

certain animal models of AD. For instance, senescence-accelerated
FIGURE 11

Multiple linear regression analyses of the HPA, HPT, and HPO axes were conducted to assess their relationships with the percentage of time spent in
the open arms of the elevated plus maze and the duration of immobility in the forced swim test. (A-C): Multiple linear regression analyses were
conducted to the percentage of open-arm time in the EPM for male mice with the HPA, HPT and HPO axes. (D-F): Multiple linear regression
analyses were conducted to the percentage of open-arm time in the EPM for female mice with the HPA, HPT and HPO axes. (G, H): Multiple linear
regression analyses were conducted to immobility time in the FST for male mice with the HPA, HPT and HPO axes. (J-L): Multiple linear regression
analyses were conducted to examine immobility time in the FST for female mice across the HPA, HPT and HPO axes. Perform the calculations using
IBM SPSS Statistics 27 and use Graphpad 8.0.1. for visualization.
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mice prone 8 (SAMP8) mice, which are utilized as a model for

cognitive decline, have been observed to exhibit heightened

aggression and anxiety-depression-like behaviors (22, 75).

Similarly, the NL-GF and 5×FAD mouse models of AD have been

noted to display behaviors indicative of anxiety and depression (76–

78). Experimental analyses have demonstrated that 3×Tg-AD mice

manifest BPSD (64), such as spending less time in the central area of

the open field test (79) and exhibiting increased fecal boli (80), both

of which are indicative of anxiety-like behaviors (81–83). In our

study, we observed pronounced anxiety-like and depression-like

symptoms in 3×Tg-ADmice. These mice not only spent less time in

the central zone but also showed significant decreases in the number

of visits to the central zone and the total distance traveled within it.

Male mice, in particular, exhibited a notable reduction in the

percentage of time spent in the central zone. Treatment with QFY

significantly increased both the number of visits to the central zone

and the total distance traveled, although it did not lead to a

significant improvement in the time spent or percentage of time

in that zone. These findings suggest that QFY alleviates anxiety

symptoms primarily by enhancing exploratory behavior and

activity levels. In the EPM, 3×Tg-AD mice exhibited significant

reductions in open-arm time, the number of open-arm entries, the

percentage of time spent in open-arm time, and the percentage of

open-arm entries. Treatment with QFY significantly reversed these

behaviors, indicating its potential to mitigate anxiety-like behaviors

in 3×Tg-AD mice. We observed that 3×Tg-AD mice exhibited

prolonged immobility time in the forced swim test, which is

consistent with previous research findings (84), the immobility

time in the QFY treatment group was significantly reduced. Our

study reported that 3×Tg-ADmice exhibited an extended grooming

latency in the sucrose splash test, and in female mice, the grooming

frequency was significantly reduced. In the QFY treatment group,

grooming latency was significantly shortened, and grooming

frequency was significantly increased. These findings suggest that

QFY can improve depression-like behaviors in mice.

Some research has indicated that the HPA axis is hyperactivated

in 3×Tg-AD mice (85, 86), which may contribute to the observed

neuropsychiatric symptoms. This hyperactivation is primarily

indicated by elevated CORT levels. At the genetic level, increased

expression of CRH mRNA has been observed in specific brain

regions (87).Generally, CRH stimulates downstream ACTH

secretion, which in turn promotes adrenal secretion of CORT

(88). In this study, we observed a trend towards increased CRH

and CORT levels in 3×Tg-AD mice compared to wild-type.

However, these differences were not statistically significant. One

possible explanation for this lack of statistical significance is the

high biological variability among samples in the 3×Tg-AD model,

which may obscure subtle changes in CRH and CORT levels.

Regarding ACTH levels, prior studies have shown that female

rodents release more ACTH than males following stress exposure

(89). We observed a similar phenomenon in 3×Tg-AD mice, where

female mice exhibited higher ACTH levels than their male

counterparts. To date, no studies have systematically investigated

the HPT and HPO axes in 3×Tg-AD mice. In our present study, we

found that T and E2 levels were partially suppressed in 3×Tg-AD
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mice. Interestingly, we found that testosterone levels in female

3×Tg-AD mice were higher than those in males. This finding is

counterintuitive but may be explained by age-related hormonal

alterations specific to this AD mouse model. Previous studies have

reported that testosterone levels in male 3×Tg-AD mice decline

dramatically with age (90, 91), there are also relevant reports in

humans (92). In contrast, no consistent reports have described a

similar decline in testosterone levels in female 3×Tg-AD mice.

Therefore, we speculate that the higher T levels observed in

females may not be due to an actual increase in androgen

production but rather reflect a sharp age-related drop in

circulating testosterone in male 3×Tg-AD mice. GnRH, a

reproductive hormone secreted by the hypothalamus (93), plays a

crucial role in the mammalian HPT and HPO axes by stimulating

pituitary secretion of LH (94) and FSH (95, 96). Our findings

revealed significant suppression of upstream components of the

HPG axis in 3×Tg-AD mice. Specifically, male mice exhibited

significantly reduced GnRH and FSH levels, while female mice

showed significant reductions in FSH and LH levels. These results

indicate that the upstream HPG axis is inhibited in 3×Tg-AD mice.

Importantly, treatment with the QFY effectively reversed these

alterations, demonstrating its regulatory potential on the HPG axis.

Previous researches have demonstrated that QFY improves

cognitive function in AD models through mechanisms such as

activating the Keap1/Nrf2/ARE signaling pathway (97), inhibiting

the RAGE/NF-kB pathway (98), modulating gut microbiota (62),

and regulating immune responses (63). However, no studies have

specifically investigated the effects of QFY on BPSD associated with

AD. In our study, we found that QFY alleviated symptoms of

anxiety and depression in 3×Tg-AD mice by regulating the HPA,

HPT and HPO axes.

There are also limitations in our study. The primary objective of

this study was to evaluate the overall therapeutic effects of QFY on

anxiety- and depression-like symptoms through modulation of the

HPA and HPG axes. The current experimental design includes pre-

and post-treatment assessments of plasma hormone levels and

behavioral outcomes, which are sufficient to verify the efficacy of

QFY. However, this design does not establish whether hormonal

changes precede behavioral improvements. Given that endocrine

fluctuations may serve as early indicators of behavioral changes in

neuropsychiatric disorders, longitudinal monitoring of hormone

levels at multiple time points (prior to, during, and after treatment)

would provide critical insights into the temporal dynamics of QFY’s

effects. Future studies should incorporate a time-course analysis to

elucidate whether QFY-induced hormonal modulation occurs as a

precursor to, or in parallel with, behavioral amelioration. Such an

approach would further refine our understanding of the

mechanistic pathways underlying QFY’s therapeutic efficacy and

enhance its translational potential.
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