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Hidden social and emotional
competencies in autism
spectrum disorders captured
through the digital lens
Elizabeth B. Torres1,2,3*, Joe Vero1, Neel Drain1, Richa Rai1

and Theodoros Bermperidis1

1Psychology Department, Sensory Motor Integration Laboratory, Rutgers University, Piscataway,
NJ, United States, 2Computer Science Department, Center for Biomedicine Imaging and Modeling
(CBIM), Rutgers University, Piscataway, NJ, United States, 3Rutgers University Center for Cognitive
Science (RUCCS), Piscataway, NJ, United States
Background/objectives: The current deficit model of autism leaves us ill-

equipped to connect with persons on the spectrum, thus creating disparities

and inequalities in all aspects of social exchange in which autistic individuals try to

participate. Traditional research models also tend to follow the clinical definition

of impairments in social communication and emotions without offering

personalized therapeutic help to autistic individuals. There is a critical need to

redefine autism with the aim of co-adapting and connecting with this

exponentially growing sector of society. Here, we hypothesize that there are

social and emotional competencies hidden in the movements’ nuances that

escape the naked eye. Further, we posit that we can extract such information

using highly scalable means such as videos from smartphones.

Methods: Using a phone/tablet app, we recorded brief face videos from 126

individuals (56 on the spectrum of autism) to assess their facial micro-motions

during several emotional probes in relation to their resting state. We extracted

the micro-movement spikes (MMSs) from the motion speed along 68 points of

the OpenFace grid and empirically determined the continuous family of

probability distribution functions best characterizing the MMSs in a maximum

likelihood sense. Further, we analyzed the action units across the face to

determine their presence and intensity across the cohort.

Results: We find that the continuous Gamma family of probability distribution

functions describes best the empirical face speed variability and offers several

parameter spaces to automatically classify participants. Unambiguous separation

at rest denotes marked differences in stochastic patterns between neurotypicals

and autistic individuals amenable to further separate autistic individuals

according to the required level of support. Both groups have comparable

action units present during emotional probes. They, however, operate within

parameter ranges that fall outside our perceptual umwelt and, as such, do not

meet our expectations from prior experiences. We cannot detect them.
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Conclusions: This work offers new methods to detect hidden facial features and

begin the path of augmenting our perception to include those signatures of the

autism spectrum that can enhance our capacity for social interactions,

communication, and emotional support to meet theirs.
KEYWORDS

facial micro-expressions, autism spectrum disorders, emotions, stochastic analysis,
motor control, automatic screening
1 Introduction

The current societal perception of individuals with autism

spectrum disorders (ASD) inherently depends on the diagnostic

criteria and the research narrative that such criteria advance (1).

Every paper on autism starts with the description of ASD as deficits

in social interactions and communication (2, 3). There are no

metrics indicative of readiness potential to socially interact or to

communicate, despite the recognized plasticity of the developing

nervous system (4).

The screening and diagnostic process of neurodevelopmental

disorders relies exclusively on observation, so it remains a challenge

to identify any potential competencies for social and emotional

exchange. Surely, the system survived a developmental insult and

learned to function in the world over the period of 3–4 years that,

on average, takes to receive such a diagnosis (5). During this time, it

is possible that coping mechanisms developed without the type of

support that would be required to gradually learn to bridge the

mental intent of a person to the physical execution of a person’s

goal-directed thoughts into congruent actions under volitional

control (6, 7). The disconnect that autistic individuals report

between mental intent and physical action may mislead us, as we

have already built-in certain expectations and biases from

interact ions with others whose act ions match the ir

intended consequences.

Because large portions of these aspects of motor control

constitute behavioral nuances that transpire largely beneath

awareness, we tend to miss them when relying on visual

observation alone. Blurred among our expectations and biased

subjective experiences may be those competencies of the autistic

system longing to build social rapport (8). We may be missing the

opportunity to truly help and connect with autistic individuals by

relying exclusively on observation.

Observational instruments in the USA, like the Autism

Diagnostic Observation Schedule (ADOS; currently in version 2;

2) and the Diagnostic and Statistical Manual of Mental Disorders

(DSM; currently in version 5, from the American Psychiatric

Association (9)) are built upon subjective opinion. Both

instruments are consistently and broadly used in basic research to

drive research questions that would eventually be translated into

practice. They are also used in clinical practices to recommend
02
services and to drive funding and societal support for this

exponentially growing sector of the population.

These tools, which rely exclusively on observation (10), have led

to several prominent theories of autism (11, 12), which in turn, have

resulted in stigma and even denial of basic education rights to some

autistic individuals in the USA. The very notion that autistic

individuals lack empathy (13, 14), lack the social desire to

communicate (15, 16), are deviant or do not have a theory of

mind (12, 17), and, more generally, are deprived of human

emotions (18–20) has systematically contributed to a narrative

that negatively impacts these people’s lives (1, 8). The science

behind such opinions is grounded in subjective observational

techniques. It merely exposes the tip of the iceberg in a rather

misleading way (Figure 1A). The physiological underpinnings of

what we observe and interpret are starting to reveal a different

picture of autism (8). New computational techniques are emerging

to complement the observational instruments. Indeed, they promise

to help advance diagnosis and screening tools to a new generation of

a more dynamic, objective, quantitative science of autism, a science

that would help uncover the readiness potential for social,

emotional, and communication exchange (8, 21).

The new digital tools reach beyond the limits of the naked eye

and can get to a micro-level of social and emotional nuances critical

for conveying gestural communication and building rapport and

trust among humans (22, 23). Bringing awareness of such nuances

could then make them more accessible to diagnosticians and

significantly improve the current clinical methods. Examining

people through a new digital lens may shed new light on the

social and emotional competencies of autistic individuals. What if

we have been wrong all along and, in fact, autistic individuals do

have empathy, do have emotions, and do want social interactions,

but we cannot see it through the traditional lens that relies

exclusively on visual observation?

Quantitative biometrics are beginning to become more

ubiquitous in our behavioral sciences. They include methods

based on eye tracking (24, 25), facial expressions (26), reaching

movements (22, 27–29), gait (30), neural correlates from

Electroencephalography (EEG) (31–33), Magnetoencephalography

(MEG) (34), and functional Magnetic Resonance Imaging (fMRI)

resting-state motion (35–39), among others. Nevertheless, most of

this basic research heavily depends on instrumentation that is much
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too invasive for autistic individuals who suffer from hyper- and

hypo-sensitivity to touch (40), movement (41–48), temperature-

pain (49–51), and self-generated involuntary motions (39) that tend

to keep the autonomic systems highly dysregulated (52, 53).

New non-intrusive data acquisition techniques amenable to

capturing biological motions embedded as nuance in our

behaviors are now becoming available thanks to recent advances

in computer vision (54, 55). Among them are facial recognition and

facial tracking methods that can extract behavioral states from video

data (54, 55). They hold promise to identify differences between

autistic individuals and controls (24, 26, 56). The few methods that

exist are nevertheless still too taxing on autistic individuals. They

may require a long time to acquire the data, which requires focus—a

challenge for some autistic individuals. They may also heavily rely

on heuristics and manual setting of threshold values required to

reduce and analyze the large amounts of data that lengthy

assays produce.

In this work, we combine a brief assay requiring merely 5 seconds

per task to acquire video data in non-intrusive ways using commonly

available means such as a webcam, an iPhone, or a tablet. We

combine this brief data acquisition assay with new analytics that

maximize data extraction and permit a direct personalized

assessment of the micro-movements of the face as a person makes

facial gestures on command. We seek to identify commonalities

across the autistic and neurotypical facial coding ranges at a micro-

level to characterize facial nuances beneath awareness that could

nevertheless play a key role in building social rapport between autistic

individuals and neurotypicals. We posit that by bringing those

nuances to awareness, both groups could better co-adapt and

coexist while minimizing judgmental opinions and rather

presuming that competencies do exist across the human spectrum

at a level that we can now make accessible to share.
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2 Materials and methods

2.1 Participants

The data set comprised individuals on the autism spectrum and

typically developing or typically developed controls (TDs). The

broad spectrum included non-speakers with mid to high support

needs (ASD-HS) who have a diagnosis of ASD and within this

group a subgroup with a diagnosis of apraxia. The ASD group also

comprised individuals with low support needs (ASD-LS) who can

communicate through spoken language. Among the TDs are also

adults who are parents of the non-speaker ASD-HS participants and

of those with apraxia. Some of the moms reported diagnoses of

acquired autoimmune disorders, depression, bipolar disorder, and

attention deficit hyperactivity disorder (ADHD), which we have

generally grouped under TDMomM. Other moms reported healthy

aging (denoted TD Mom). TD dads did not report any

neuropsychiatric disorders. Table 1 reports on the various

participating sites. These included a school of children with

special needs, two clinics, and one social event.

2.1.1 Strategies for recruiting participants
Participants were recruited through word of mouth, using

Institutional Review Board (IRB)-approved flyers distributed

across the various Rutgers University campuses. Furthermore,

non-profit organizations were contacted, and the IRB-approved

flyers were distributed at conferences and various events, schools,

and clinics. The Principal Investigator (PI) and students traveled to

various events, schools, and clinics to record participants. Clinicians

and school principals distributed IRB-approved letters to parents to

further assist in student enrollment. Those who expressed interest

in participating in the study were recruited.
FIGURE 1

Current deficit model of autism (A) is the tip of the iceberg. New advances in computer vision amid a digital revolution begin to reveal a new picture
of autism (B) whereby the child needs personalized help and objective science-based support to thrive. Here, 5 seconds of video data captured at
rest; smiling and surprised show the dysregulated facial micro motions of the child, surely impacting visual perception of others in the social scene
and having heightened uncertainty from a brain that is receiving excessive random noise as reafferent input. Under such uncertain world, anxiety and
dysregulated states of pain and hypervigilance are not uncommon in ASD. ASD, autism spectrum disorder.
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2.2 Data acquisition and processing

We acquired the data using video cameras embedded in iPhones,

tablets, or webcams.We also used a research app that facilitates doing

so at home, clinics, or schools without having to come to our lab (see

picture in Supplementary Figure 1A). Upon IRB consent, the app

guided the person to a session of practice (5 seconds), then resting (5

seconds), and then a series of micro-expressions from instructed

emotional gestures, each also lasting 5 seconds. In some participants,

we only used smiling (as in happy) and opening of the mouth (as in

surprised) (see picture in Supplementary Figure 1B). In other

participants, we used those micro-expressions and other emotional

gestures such as anger, disgust, contempt, fear, and sadness. The latter

combined with the former formed seven facial micro-expressions

popularized by Paul Eckman (57) and other researchers. We used the

instructions by Vanessa Van Edwards (see Note 1) to provide

guidance (to the caregiver) on how to produce motions of a facial

expression to instruct the participant. In some cases, we directly

instructed the participant.

The purpose of the experiment was not to identify emotions but

rather to capture micro-movements of the facial action units (AUs)

and facial grid points that we can extract from the videos using the

OpenFace software (54). Figure 1B shows examples of the grid that

we can extract from brief videos in different populations

(neurotypical, ASD-HS, and ASD-HS with the additional

diagnosis of apraxia). Importantly, we can see the motion

trajectories of the pixels’ positions as they change during resting

vs. other states of smiling or surprise. Figure 2 explains the pipeline

of data parsing. Upon collecting the videos, we ran OpenFace (see

Note 2, https://github.com/TadasBaltrusaitis/OpenFace/wiki) and

retained the facial grid and AUs (see Supplementary Figure 2 and

Note 2). We then used the trigeminal nerve (cranial nerve V)

regions shown in Figure 2C to parse out three subregions of the face

(ophthalmic, maxillary, and mandibular), which we named V1, V2,

and V3, respectively. These were colored differently to map those

grid points of Figure 2B in correspondence with the regions in
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Figure 2D innervated by the trigeminal nerves. These are important

for sensing movement reafference throughout key facial regions that

enable social and emotional communication (e.g., the eyes, ears,

mouth, lips, tongue, and mandibular regions).

The 5 seconds of the assay during the resting state is shown in

Figure 2E for the positional X and Y pixel coordinates (normalized

to adjust for discrepancies in distance from the face to the camera).

Please see the subsection below. We smoothed out the facial grid

points’ trajectories using in-home developed software that employs

the spline interpolation toolbox MATLAB version R2023b. We then

obtained the speed quantities by proper differentiation and glued all

segment trajectories in each point of the grid corresponding to the

subregions spanned by 68 points on the grid of Figure 2B. These are

26 points of the grid in Figure 2B, V1 (17:30 33 36-47); 17 points of

the grid, V2 (31 32 34 35 48 49:53 54 68:64); and 25 points of the

grid, V3 (0:16 55:59 65:67).

Figure 2G shows the speed points corresponding to the speed

segments of the 26 grid points of V1. We focused on the peaks

(marked as red dots in Figure 2G) to obtain the frequency histogram

of their distribution across all these points of the grid during the 5-

second task. This is shown in panel Figure 2H. We were not

interested in the temporal component at this point, and for that

reason, we did not treat this sequence as a time series but rather

focused on the set of variations in the amplitude of the speed signal.

Shuffling the points in each region to glue them in a different order

did not impact the shape of the histogram. The overall result of the

work remained, and the analysis produced similar parameter ranges.

However, for consistency, to glue the speed segments, we set a fixed

order of the points in the grid and used that order for the entire data

set. This order is as explained above in V1, V2, and V3 based on the

proximity of the grid points because of inherent synergies and co-

dependencies of their motions. These co-dependencies are influenced

by allometric effects of the distance between points, with lengths that

vary across the population due to anatomical and size differences.

A sampling at 30 Hz and 5 seconds worth of data gave us 150

frames per grid point for a total of 3,900, 2,550, and 3,750 frames for
TABLE 1 Participants recruitment and demographics.

Location N Participant type Age range Task assays

School 1 29 ASD (LS) 6–10 Resting, surprised, happy, baseline, pre and post OT, and SLP therapies

Social event 9 ASD (HS) 9–21 Anger, happy, sad, surprise, resting

Social event 9 ASD (HS)—apraxia 14–21 Anger, happy, sad, surprise, resting

Social event 11 TD-Mom 50–60 Anger, happy, sad, surprise, resting

Social event 8 TD-MomM 50–60 Anger, happy, sad, surprise, resting

Social event 10 TD-Dad 50–75 Anger, happy, sad, surprise, resting

Clinic-spa 20 TD 20–50 Anger, happy, sad, surprise, resting, pre and post Feldenkrais therapy

School 2 12 TD 7–29 Anger, contempt, disgust, fear, happiness, sadness, surprise

School 3 9 ASD (LS) 7–12 Anger, contempt, disgust, fear, happiness, sadness, surprise
Demographics: Total of 126 participants, 70 TD (8 with acquired neuropsychiatric disorders, 32 healthy, and 9 with self-reported autoimmune disorders) and 56 ASD (29 speakers with low
support needs, 18 non-speakers with high support needs, and 9 non-speakers with high support needs and a diagnosis of apraxia).
ASD, autism spectrum disorder; LS, low support; HS, high support; SLP, Speeech Language Pathologist; TD, typically developed.
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V1, V2, and V3, respectively. These in turn provided over 100 peaks

of the speed amplitude, such that empirical estimation of the

stochastic signatures of speed variability provided enough

statistical power and tight 95% confidence intervals. We caution

that if the analysis were to focus on the temporal dynamics of the

time series data, one would need to double the lower bound of data

time to 10 seconds and focus on the individual time series. For other

types of temporal analysis, one can use the series of peak width (ms)

and analyze the stochastic signatures of the glued data. However,

here, we focus on the speed amplitude variations rather than on the

temporal information. These are different aspects of the problem,

but the methods provided here for analyses of the variations in

speed amplitude can also be used for temporal dynamics-related

data (see, for example, 30, 58).

2.2.1 Distance normalization
To account for the translation of the subject along the optical

axis, we performed the following z-score normalization: for each

frame, we took the mean and standard deviation of each positional

coordinate component, x and y, and performed a transformation

like a z-score calculation:

zx =
(x − mx)

sx
, zy =

(y − my)

sy
:

This transformation thereby produces a time series of

normalized faces (collections of 68 points), each with a mean of 0
Frontiers in Psychiatry 05
and a standard deviation of 1. While this normalization does not

prevent distortions from head rotations or lens compression, it

nonetheless is an essential preprocessing step to create invariance to

the distance from the camera.

2.2.2 Micro-movement spikes and
distribution fitting

The distribution of the peaks’ amplitude is subject to

distribution fitting, yielding the continuous Gamma family of

probability distributions as a good fit to capture both the autistic

and neurotypical stochastic ranges. This is so because the autistic

sample also includes the memoryless exponential distribution,

which has a shape parameter a = 1 in the Gamma family.

We then empirically estimated the Gamma mean in each

subregion Gm = a · b, and for each point on the ordered series of

grid points in the subregion, we obtained the absolute deviations

from the empirical Gm . This is shown in Figure 3A with the peaks of

the absolute deviations from the Gm marked red dots. For each peak,

we normalized the value using the formula in Figure 3B to scale out

neighboring effects related to anatomical differences and disparities

in distances between the grid points across the participants (59).

Figure 3C then shows the data from the normalized peaks, which we

named micro-movement spikes [granted US patents (60–63) filed

in 2012] and for which we obtained the frequency histogram and

Gamma fitting. These are also expressed in Figure 3E as spikes

ranging in the real valued interval from 0 to 1 across the original
FIGURE 2

Pipeline of data acquisition and pre-processing. (A) Sample grid from OpenFace was extracted from 5 seconds of video data captured using a
research app. (B) OpenFace grid was used to track the 68 markers numbered from 0 to 67. (C) The trigeminal ganglion-inspired parcellation of the
face grid points into three facial subregions of V1, V2, and V3 to analyze the data according to subregions. (D) The 5-second positional pixel
trajectories across the subregions. (E) One grid point 5-second positional trajectories of the X and Y coordinates converted from pixels to mm.
(F) The smoothed position to enable proper differentiation to obtain the velocity with scalar values (speed) in panel G obtained by gluing all
segments of the region (V1 in this case) and (H) obtaining the frequency histogram of the peaks (red dots) in panel (G) Multiple fitting distributions
were examined and the continuous Gamma family of probability distributions selected as the best fit in a maximum likelihood sense. Written
informed parental consent was obtained from the parents of the individual.
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number of points in the series of Figure 3A. Compare these to

Figure 3C with fewer points of non-zero absolute deviations from

the empirical Gamma mean of the region (V1 in this case). The

micro-movement spike (MMS) comprising all frames can be turned

into binary spikes and other sets of information theoretical tools

employed (as in recent work from our lab; 64) when we used time

series data of a longer time range. In the present work, since we

deliberately chose the lowest possible time range (5 seconds) that still

enables statistical power, we focused on stochastic analyses instead.

Upon estimation of the best fitting distribution to the peaks of

the non-zero deviations from the empirical Gm , we found once again

that the continuous Gamma family of probability distributions best

fits the data (in a maximum likelihood estimation sense). We then

plotted the Gamma shape (a) and the Gamma scale (b) parameters

of the Gamma family thus obtained on a parameter plane with 95%

confidence intervals. In Figure 3F, we show an example of an ASD

vs. a TD participant, and in Figure 3G, we show the empirical

Gamma Probability Density Function (PDFs) for each of the three

facial regions, V1, V2, and V3, that we have defined in this study.

Figure 3H shows another parameter space spanned by the Gamma

scale (the noise-to-signal ratio GNSR = Gs
Gm

= a·b2

a·b = b) of each

subregion. We then used the scalar value of the vectorial

representation of these respective noise levels (V1, V2, and V3),

i.e., the Gamma Noise to Signal Ratio (NSR) and the Gamma

skewness of each of the empirical distributions, to plot the scalar
Frontiers in Psychiatry 06
quantities as points on a parameter plane. This parameter plane

spanned by these two dimensions of the data is shown in Figure 3I

for the example of ASD and TD representative participants.

Lastly, we measured, pairwise, the distances between the

distributions of the MMS peaks for each face region and

participant. To that end, we used the Earth Mover’s Distance

(EMD) (65, 66) and plotted the color maps for each of the facial

gestural assays. We used the resulting matrices as input to a tree

classifier, and given the number of subtypes of interest, we then

quantified the percentage of ASD vs. TD participants in each cluster

that the algorithm found. These were reported on each leaf of the

branches denoting emerging subtypes in the tree structure.
2.3 Action unit identification

The OpenFace interface reveals universal AUs present (as a

binary matrix of N frames by 18 columns) in each facial expression.

This is in the form of an N × 18 matrix, where N is the number of

frames collected at 30 Hz and 18 are AUs defined in the OpenFace

GitHub site (see Note 2). The intensity of the AUs is also defined in

an N × 17 matrix.

Across frames, we used the edit distance (67) of the column-

wise binary vector denoting the presence of the AU to measure its

frequency across the 5 seconds of motion yielding approximately
FIGURE 3

Pipeline of data analysis. (A) Absolute deviations from the empirically estimated Gamma mean ( Gm ) were obtained for each point of the set, and the

peaks were extracted for local scaling. (B) Local scaling to normalize the speed amplitude and dampen effects of anatomical differences and lengths
across faces. The local peak was scaled by the sum of the peak value and the average value of its neighboring local minima. (C) The micro-
movement spikes (MMSs), considering only the frames with the speed deviation peaks above 0 value. (D) The histogram of the MMSs and the fitted
Gamma probability distribution function. (E) The full MMSs inclusive of 0-valued entries in (A) retaining all original frames distributed bimodally
between small and larger deviations and can be used in other analyses beyond the scope of this paper. (F) The Gamma parameter plane spanned by
the shape and the scale values and 2 representative values derived from the empirical speed’s MMSs with 95% confidence intervals. (G) Empirical
Gamma PDFs corresponding to the representative values in panels (F, H) Parameter space spanned by the Gamma scale (NSR) obtained from all
points in V1, V2, and V3, also for the representative participants of panels (F, I) Parameter plane spanned by the norm of the V1, V2, and V3 Gamma
NSR and the norm of the V1, V2, and V3 Gamma Skewness from the example in panel (F).
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150 frames per point in the grid (plus/minus two frames upon

OpenFace estimation). Then, we obtained the most common

pattern present (the mode) to denote the presence of the AU.

This pattern was saved along with its corresponding intensity

values. We saved intensities equal to and above the 0.001 level.

We did this for the individuals of the ASD and TD control groups.

We then pooled across the intensity values and thus identified and

reported on the frequency histograms of intensity values for the

AUs that are present in each group.
3 Results

3.1 Stochastic differences between ASD
and TD are captured at rest

At rest, TD individuals produced separable patterns of facial

micro-movements from ASD participants. Each one of the facial

regions showed separable patterns, expressing more variability in the

ASD participants across all subregions. Figures 4A–C show the
Frontiers in Psychiatry 07
patterns of Gamma shape and scale parameters along with the

empirical PDFs that shift in ASD relative to controls, with the

standardized absolute deviations from the Gamma mean

corresponding to the micro-movements’ spikes of the facial subregion.

Along the dimensions of the Gamma NSR in Figure 4D, we

observed orderly patterns, suggesting that this projection of the

high-dimensional data may produce an embedding of contiguous

points distinguishable between ASD and TD. These are conserved

in Figure 4E along the parameter plane that focuses on the scalar

quantities. In Figure 4D, elevated NSR in V3 for a subset of

participants on the spectrum revealed correspondence with those

with the ASD-HS subset with the diagnosis of apraxia. These

patterns expressed statistically significant differences in the

Gamma scale (NSR) and higher skewness parameter (indicative of

heavy-tailed distributions with more frequent appearance of high-

speed motions in the MMSs). Please see Supplementary Figure 3

showing pairwise Wilcoxon rank-sum test statistics (equivalent to

the Mann–Whitney U-test) for ASD vs. TD inclusive of micro-

expressions during the resting state vs. micro-expressions for anger,

happiness, sadness, and surprise. Area V1 was consistently
FIGURE 4

Results from the analysis of resting state data, whereby 5 seconds of the face at rest was captured on video, and the pipelines in Figures 2 and 3
were executed. (A–C) Gamma plane results for each of the V1, V2, and V3 facial regions. Inset corresponds to the empirical Gamma PDFs showing
shifted density and differences in dispersion and skewness. Notice the span of the ASD scatter with broader variability (along both dimensions) at rest
than that of the TD controls. (D) Gamma NSR parameter space also reveals differences in the scatter between ASD and TD groups, with higher noise
for the mandibular region V3 in ASD-HS apraxia subgroup. Lower skewness in TD is also evident. Higher skewness in ASD points at heavier tails in the
empirical Gamma PDFs with higher speed deviations from the empirical Gamma (MMS speed peaks) mean. These represent rare events relative to controls
with lower skewness tendencies. (E) Parameter plane spanned by the norm of the Gamma distributions' NSR (scale parameter) from the (V1, V2, V3) vector
and the corresponding norm of the Gamma distributions' skewness of V1, V2, V3). (F) Color map of the EMD taken pairwise for ASD and TD participants
across all regions V1, V2, V3. (G) Corresponding tree with cluster composition. (F) Pairwise EMD obtained for both groups, and each of the face subregions
separate ASD from TD and provide structure denoting differences in distributions of the normalized speed peaks at rest. (G) Tree clustering of (F) outputs
with different compositions in the 6 subtypes (3 face regions × 2 groups). ASD, autism spectrum disorder; TD, typically developed; HS, high support; EMD,
Earth Mover’s Distance.
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significantly different between TD and ASD participants across the

resting state and all other micro-expressions (taken pairwise, p <

0.01). Furthermore, in V1, within each of the cohorts, the resting

state micro-expressions were significantly different from those in all

other states. In the ASD group, happiness and surprise also differed

significantly from all other micro-expressions (p < 0.01). In the TD

group, anger vs. surprise was significantly different at p < 0.01, and

sadness vs. anger was significantly different at p < 0.05. In areas V2

and V3, statistical differences followed more complex patterns.

In V2, TD at resting state differed from all ASD micro-

expressions but only significantly for resting and happiness at p <

0.01. TD anger and surprised differed significantly from ASD

happiness at p < 0.01. Within the TD group, resting differed from

happiness and sadness, as did happiness and sadness relative to

surprise, all at p < 0.05. Within the ASD cohort, anger differed from

happiness and happiness from anger at p < 0.01. Surprise in ASD

differed from all micro-expressions with significance relative to rest

and happiness, p < 0.01.

In V3, the resting micro-expressions in ASD differed from all

micro-expressions in TD (p < 0.01). ASD happiness differed

significantly from TD anger and TD happiness (p < 0.01). Within
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the ASD cohort, ASD happiness differed from resting, anger,

sadness, and surprise (p < 0.01). ASD surprise differed from all

micro-expressions with significance at p < 0.01 for happiness and p

< 0.05 for resting, while anger and sadness did not reach

significance relative to surprise.

In Figure 4D, we compare the Gamma NSR along each of the

facial subregions. The patterns separate participants with ASD-HS

apraxia along the V3 (mandibular region) from other ASD

participants and TD controls. All ASD distributions from the

resting condition showed higher skewness than those from the

TD controls and broader ranges of the Gamma NSR, with heavier

right-tailed distributions for the ASD-HS participants. This can be

appreciated in Figure 4E. Furthermore, there is a visible structure in

the EMD matrix of Figure 4F denoting the pairwise differences in

distributions according to the similarity metric (EMD) across the

participant’s three facial subregions. Within the TD group, we saw

similarities in the distributions of standardized speed MMSs in the

lower values of the EMD. Furthermore, clear differences between

the ASD and TD groups were captured with automatic clustering

using six groups (ASD vs. TD and three face regions) that break

down the composition of each subtype in Figure 4G.
FIGURE 5

Results from the analysis of anger micro-expressions, whereby 5 seconds of the face was captured on video upon instruction of how to enact facial
micro-expressions of an angry face. The pipelines in Figures 2 and 3 were executed to appreciate the shifts from resting state in Figure 4. (A–C)
Scatters on the Gamma plane show broader ranges of motion in TD signaling more variability in the two dimensions across the TD population.
(D) The ASD scatter on the Gamma NSR space separates from the TD scatter, which spans broader ranges of noise (variability in speed MMSs) across
all facial subregions. (E) Higher skewness scalar quantities in ASD signal heavier-tailed empirical Gamma PDFs during anger expressions, denoting
more rare events of faster deviation peaks from the empirical Gamma mean. (F) Pairwise EMD metric shows more similarity among controls (blue
tones with low EMD values) than ASD and differences in normalized speed deviations (MMSs) across all regions. ASD group is more similar in V1
(comprising the eyebrow and eye micro-expressions). (G) Different clusters and their composition for the 6 subgroups (2 groups × 3 subregions of
the face). TD, typically developed; ASD, autism spectrum disorder; MMSs, micro-movement spikes; EMD, Earth Mover’s Distance.
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3.2 Facial micro-movements during
expressions of anger, happiness, sadness,
and surprise show significant stochastic
differences between ASD and TD

In the subset of individuals where, upon resting, we measured

anger, happiness, sadness, and surprise micro-expressions as

instructed by the person taking the measurements (as in Note 2),

profound differences were captured in the Gamma NSR (along all

three facial subregions) and Gamma skewness by the empirical

distributions’ shifts. Figures 5–8 show these patterns for each of the

parameter spaces of interest. Statistically significant differences were

found across all pairwise comparisons using the rank-sum

(Wilcoxon) test. For the scalar quantity of the Gamma scale, TD

anger vs. ASD anger was significantly different at the alpha 0.05

level, p < 0.02, resting p < 8.4 × 10−8, sadness p < 5.7 × 10−4,

surprised p < 7.57 × 10−6, and no significant differences in the GNSR

micro-expressions for happiness between TD and ASD. The

skewness scalar quantity also showed significant differences across

all micro-expressions with p << 0.001.
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The EMD matrices and automatic cluster analyses across these

emotional gestures also revealed the composition of the different

subtypes amenable to visualizing their differences. In all cases, the

patterns clearly showed broad ranges of variability in the GammaNSR

of the ASD participants and higher skewness ranges for ASD. The

latter corresponded to higher MMS speed peak deviations from the

empirical Gamma mean of the group, estimated for the anger activity.

Infrequent events of faster speed peaks in ASD than those in the TD

distributions showed in the ASD group, thus resulting in higher

skewness. The summaries of these parameter ranges are depicted in

panels D and E of each of Figures 5-8. Likewise, the EMDmatrices and

tree clustering revealed the differentiation and inner similarities of the

groups across the face subregions under study.
3.3 Action units reveal facial emotions in
ASD at the speed micro-movement level

The analysis of AUs revealed that most AUs present in TD

participants are also present in ASD participants albeit with
FIGURE 6

Results from the analysis of happiness micro-expressions, whereby 5 seconds of the face was captured on video upon instruction of how to make a
happy face by smiling. The pipelines in Figures 2 and 3 were executed to appreciate the shifts from resting state in Figure 4. (A–C) Gamma plane
scatters show marked differences in the V3 mandibular area engaged in motions to produce a smile. Subregions V1 and V2 show more overlapping
patterns, apart from outliers with higher noise, which correspond to the ASD-HS apraxia subgroup. (D) Separation between the scatters of TD and
ASD show higher ranges of speed MMS variability in TD motions and outliers (ASD-HS apraxia subgroup) span broader ranges of noise. (E) The ASD
scatter shows higher Gamma skewness ranges indicating heavier right tails of the distributions as with resting and anger, with more rare events
(higher deviations from the Gamma speed mean boasting faster changes in position of the points). (E) Parameter plane spanned by the norms of the
Gamma probability distributions' NSR and skewness from (V1, V2, V3) showing the higher skewness values for ASD (denoting the accumulation of
more rare events on the right tail (higher speed fluctuations away from the empirical Gamma mean) (F) Color map from pairwise EMD across ASD
and TD face regions V1, V2, V3. (G) Corresponding tree cluster with compositions from each group. (F) Pairwise EMD shows similarity within V1,
most of the groups in V2 and V3 in ASD across the group, and differences in V1–V2 and V2–V3 comparisons with ASD. The TD group boasts more
similarity across regions. Pairwise comparisons show V2 as the most similar region between TD and ASD. ASD, autism spectrum disorder; HS, high
support; TD, typically developed; MMS, micro-movement spike; EMD, Earth Mover’s Distance.
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different distributions of intensities. At rest, TD did not show the lip

corner puller present in ASD but showed upper lid raise absent in

ASD participants. All other AUs present in TD were also present in

ASD (brow lower, lid tightener, dimpler, and lip tightener). This can

be seen in Figure 9 for all AUs across the V1–V2–V3 facial

subregions. There we also appreciate the differences in the

intensity values and their distributions.

Anger (Figure 10A) reveals the presence of the brow lower for

both ASD and TD, with higher intensity across ASD participants

and different intensity distributions relative to TDs. The TD group

showed upper lid raiser, which was absent in the ASD group. Lid

tightener was also more intense in ASD than TD and had a different

distribution of intensities than TD. Cheek raiser was less intense in

the ASD group than in the TD group, with significantly lower

intensity range and values. Inner brow raiser was present in both

ASD and TD but was far more intense in ASD than in TD. ASD had

an eye blink AU present, which was absent in TD.

In subregions V2 and V3, anger speed motions from the facial

expression revealed nose wrinkling and lips apart in ASD but not in

TD. All other AUs were present in both groups, with differences in

the range of intensities. Lip corner puller and lip tightener had

comparable intensities in TD and ASD, but the dimpler AU was

more intense in ASD than TD.

Happiness (Figure 10B) speed micro-motions revealed the

presence of brow lower in ASD (commonly present in anger
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micro-expressions) but absence in TD. Upper lip raiser was

present in both groups but expressed with higher intensity in

ASD. Likewise, lid tightener was present in both but far more

intense in ASD than TD, with fundamentally different distributions

of intensities across the two groups’ participants. Cheek raiser, a

prominent AU in micro-expression of happiness (see Note 1), was

present in both groups but more intense and with broader ranges of

values in TD than ASD. As with anger, blinking was present during

happiness gestures in ASD but absent in TD.

Sad micro-expressions (Figure 11A) revealed in V1 the brow

lower AU with much higher intensity values in ASD. Upper lid

raiser was absent from ASD, but both groups had lid tightener with

comparable distributions of intensity values across participants. In

ASD, the cheek raiser was present with low intensity and absent in

TD. Subregions V2 and V3 showed the lip corner puller and chin

raiser in ASD, but these AUs were absent in TD. The outer brow

raiser was absent in ASD but present in TD. In subregions V2 and

V3, upper lip raiser was present but much less intense in ASD than

in TD. The dimpler was more intense in ASD than in TD, and the

distribution of intensities across participants was different, with a

much narrower and lower value range in TD.

Surprise (Figure 10B) in subregion V1 had brow lower, inner

brow raiser, upper lid raiser, and cheek raiser in ASD, but these AUs

were absent in TD. TD showed lid tightener, but this AU was absent

in ASD. For regions V2 and V3, jaw drop (common in surprise
FIGURE 7

Results from the analysis of sad micro-expressions, whereby 5 seconds of the face was captured on video upon instruction of how to make a sad
face (as in Note 1). The pipelines in Figures 2 and 3 were executed to appreciate the shifts from resting state in Figure 4. (A–C) Gamma plane
scatters and insets showing the empirical Gamma PDFs. Notice the marked shifts in each case with V3 at the highest differentiation. (D) Both scatters
on the Gamma NSR parameter space showing the departure of ASD from TD scatter. (E) The Gamma NSR scalar quantity vs. the Gamma skewness
scalar quantity also separates the groups. (F) The pairwise EMD matrix showing differentiation within the ASD group and higher similarity within the
TD group. Highly structured patterns of EMD across the three regions are marked between the two groups. (G) The tree clustering analyses and
reporting on the composition of each subgroup. ASD, autism spectrum disorder; TD, typically developed; EMD, Earth Mover’s Distance.
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micro-expressions) was present in TD but absent in ASD, along

with upper lip raiser. Other AUs were present in both groups but

with different levels and distribution ranges of intensities. The lip

corner puller was far more distributed in TD than ASD, but ASD

had some outliers with high-intensity values, a trend also observed

in the lip tightener. The dimpler was present in both and had a

comparable distribution of intensity values. Chin raiser was only

present in ASD (complementing jaw drop that was only present

in TD).
3.4 In non-speakers, ASD-HS with apraxia
is separable from ASD-HS

Across resting, anger, happiness, sadness, and surprise, the

subset of non-speaker participants with apraxia diagnosis differed

significantly from the subset of non-speaker participants with the

ASD diagnosis alone. This can be appreciated in Figure 12A where

we depict the Gamma NSR corresponding to V1, V2, and V3 facial

regions and in Figure 12B where we show the parameter plane of

the Gamma NSR scalar vs. the Gamma skewness scalar obtained

from the three subregions. Figure 12C shows the empirical Gamma

PDFs for selected subregions in each of the facial micro-expressions.

In each case, the non-speakers with ASD-HS with apraxia separate
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from the non-speakers with ASD-HS. Supplementary Figure 5

shows the pairwise statistical comparisons significant at the 0.01

alpha level for the Mann–Whitney test.
3.5 Differentiation between ASD-LS and TD
across the seven facial universal
micro-expressions

The empirical distributions of speed MMSs derived from the

positional pixel trajectories in the points of the V1, V2, and V3

regions in ASD-LS (participants requiring a lower level of support

and having speaking abilities) were compared to those of TD

controls close to their age. The results are shown in Figure 13A

using the normalized EMD metric values for each pairwise

comparison. The structure of this matrix reveals the differences

between regions and participating groups. Within each group and

facial region, we appreciated the structure of the matrix and saw the

self-emerging boundaries of higher values of standardized EMD

(denoting higher differences in distribution) with an overall higher

similarity within the TD group than within the ASD-LS group (see

the more prevalent blue hues denoting similarity in distributions of

speed peaks in the standardized MMSs). Figure 13B shows the

subtypes emerging from the 14 clusters spanned by the two groups
FIGURE 8

Results from the analysis of surprise micro-expressions, whereby 5 seconds of the face was captured on video upon instruction of how to make a
surprised face (as in Note 1). The pipelines in Figures 2 and 3 were executed to appreciate the shifts from resting state in Figure 4. (A–C) Gamma
plane scatters with insets showing the corresponding empirically estimated Gamma PDFs. (D) Gamma NSR parameter space with separated groups.
(E) Gamma NSR scalar quantity vs. skewness scalar quantity of the two groups. Notice the overlap with some of the members of the TD group along
both axes and the separation of most TD participants along the NSR axis due to more uniformity in facial patterns across the TD group. (F) The
pairwise EMD matrix showing structure within the ASD group indicative of V1–V2 similarity vs. V1–V3 differentiation. TD group also shows high
structure within the group and highest departure in distributions from the ASD group for area V3. ASD, autism spectrum disorder; TD, typically
developed; EMD, Earth Mover’s Distance.
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and seven facial micro-expressions according to the cluster analysis.

The composition of the 14 clusters grouping ASD or TD

participants across the leaf of each tree branch was also reported

according to the higher percentage of the group for each leaf.
3.6 TD composition and non-speaker ASD-
HS parental differences

We compared the Gamma NSR ( GNSR) across each of the facial

subregions in Figure 14A for all TD controls and color-coded the

TD parents of non-speaker ASD-HS participants. This comparison

revealed that most parents lie within a different subregion of this

parameter space, away from most other TD participants of

comparable age. Their speed peaks from the standardized MMSs

showed lower levels of noise (lower variability), denoting some

commonality among this random draw of this population.

Furthermore, they self-clustered into dads, moms, and moms

wi th neuropsych ia t r i c condi t ions (MOMsM). When

superimposing the non-speaker ASD-HS and non-speaker ASD-

HS with apraxia on the GNSR vs. the Gamma Skewness parameter

plane of Figure 14B, we appreciated that the NSR levels of the ASD-

HS apraxia were comparable to those of their parents. There were
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higher skewness values for 6/9 participants in this ASD-HS apraxia

group, denoting higher speed (faster) deviations from the Gamma

mean, a feature that seems to be within a uniquely higher range for

this subset of the group.
4 Discussion

This work aimed at characterizing the nuances of facial

emotional micro-movements using a brief and simple assay under

the guidance of instructed emotional facial movements in micro-

expressions. Using new personalized methods that do not a priori

assume theoretical distributions, we wanted to better understand

hidden aspects of facial motor control in autistic individuals. These

participants spanned from lower to higher levels of support. The

study included ASD-HS non-speakers who communicate through

various augmented communication methods. To that end, we

designed a research data acquisition app that requires very little

effort and is brief. The acquisition step offers instructions amenable

to being deployed outside the lab during natural activities. These

included activities at their school, at a social event where we

randomly sampled people in both the TD and ASD groups, and

at various clinical settings (studios) where they received therapies.
FIGURE 9

Action units (AUs) engaged during resting state. Overlapping AUs between ASD and TD participants in brow lower and lid tightener show different
ranges of intensity but common presence in both groups. Upper lid raiser only appeared in the TD group. These are AUs corresponding to area V1.
In V2 and V3 areas, lip tightener was commonly present in both groups albeit with different distributions of intensities. The AU lip corner puller was
present in ASD but absent in TD, whereas the dimpler was present only in TDs. ASD, autism spectrum disorder; TD, typically developed.
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4.1 Highly dysregulated patterns in ASD
at rest

The resting state activity had elevated levels of noise across the

ASD group, with increasing trends for ASD-HS non-speakers and

highest ranges for non-speakers of ASD-HS with a diagnosis of

apraxia. The latter is an interesting subset because most if not all

ASD-HS participants have a disconnect between the movement

plan and the execution of their intended motions. However, in the

subgroup with the specific apraxia diagnosis, their baseline

dysregulation must be visible to the extent that it reaches the level

of visual detection and be diagnosed as an additional disorder. In

this sense, resting state noise in facial micro-movements derived

from the speed parameter seems to be informative of increasing

levels of support across ASD. This result, in the realm of facial

micro-movements, is congruent with prior results from our lab

involving body micro-movements. Specifically, it is consistent with

results concerning excessive motor noise during resting state fMRI

reflected in the head motions’ variability (35), including increasing

trends with the use of psychotropic medications (36) and general

involuntary motions at rest in ASD (29, 38). It is also consistent

with increasing random noise in the speed’s micro-movements of

voluntary motions increasing with the level of clinical ASD severity

in the context of pointing to communicate a decision and/or

pointing to a visually prompted target (22, 29). In both bodies of

work, we found that the higher the level of support needed in ASD,

the higher the Gamma noise level in the micro-movements of the
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speed kinematic parameter, with increasing trends as the

population ages (29, 38, 39).

Within the framework of facial micro-movements, this is the first

time that we saw the Gamma noise profiles and can further

appreciate the correlation of increasing levels of random noise in

the speed motion variability with increasing levels of needed support

that have visible apraxia at the highest end. Although evaluating the

3D gaze data from OpenFace outputs will be reserved for a future

study, prior work in the field has revealed elevated oculomotor

randomness in ASD with increasing trends in noise levels that, as

in the pointing case, increase with the level of severity (68). Under

these conditions, the type of eye–hand coordination required to

deploy the arm linkage (with high degrees of freedom to control)

forward to bring the finger to accurately point to a visually prompted

target, and then backward to rest, must be very challenging for these

individuals. We know, from studying goal-directed movements in the

context of deafferentation, that in the absence of reafferent feedback

sensation from micro-movements, the neural (surface EEG)

correlates of directional motion intent reflect a much higher

cognitive load than controls who have proper micro-movement

reafferent feedback (69). It is likely that with excessive random

noise in the reafferent feedback code, the participants with ASD

also experience a higher cognitive load in that they would have to pay

attention and be highly aware of activities that typically transpire

largely beneath awareness. In this sense, the facial micro-movements

activity may reflect the type of dysregulation that a system

overburdened with such taxing states is bound to experience.
FIGURE 10

Action units for anger and happiness were also commonly present in both groups, but the ranges of intensities and their distributions differed
between groups. The ASD group had AU eye blink present, but this was absent in the TD group for both (A) anger and (B) happiness. Upper lid raiser
was absent in anger for ASD but present for TD. In happiness, brow lower (a common AU for anger) was present in ASD but absent in TD. ASD,
autism spectrum disorder; AU, action unit; TD, typically developed.
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The present results were derived using the same unifying

statistical platform for individualized behavioral analysis that we

have used in previous work involving biorhythmic activity data

from wearable devices and pose estimation using computer vision

techniques (Statistical Platform for Individualized Behavioral

Analysis (SPIBA); 70, 71), which have the potential to link, across

the population, multiple levels of micro-movements’ noise speed with

levels of facial apraxia. They can also reveal issues with eye–hand

coordination during pointing behavior to communicate a decision or

to point to a visually prompted target. Together, these results have

implications for the design and deployment of augmented

communication methods. Any communication technique

developed for ASD individuals will need to consider these elevated

noise levels in the speed parameter to design regulatory support

aimed at dampening the motor noise during their clinical therapy

and/or school-teaching sessions. Of the activities that we examined

under this digital lens, we found that the resting state maximally

captured disparities across the cohort. This simple assay may indeed

provide the type of information that we need to estimate how

regulated a system is, in the precise sense of assessing its level of

volitional control. The level of control of the facial and body micro-

movements at rest may be informative of individualized levels of

overall motor control in flux. It may also help us derive individualized
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indexes of motor control reflecting the level of agreement between

mental intent and physical execution of the intent—an aspect of

motor control that is uniquely different in ASD.

The motor noise, which shifts dynamically at the output level as

activities of daily life carry on (30, 64), may also serve as a proxy of

the quality of feedback that a person’s Central Nervous System

(CNS) is receiving from the Peripheral Nervous System (PNS),

informing the CNS of ongoing activity, even at the sub-second time

scale. As such, the level of regulation of the system and the level of

smoothness in action execution (matching the intended plan of the

action) may be reflected, at a micro-level, on the facial activity. At

one extreme, we have levels of noise and speed MMS distribution

skewness that correspond to neurotypical levels. In stark contrast at

the other end, we have the largest departure from neurotypical

levels on the visibly detectable apraxia. In such cases, the intended

plan visibly mismatches the action execution, and even an observer,

like a speech therapist giving this diagnosis of apraxia, can detect the

mismatch relative to the expected neurotypical levels. Based on

these results and the body of knowledge that we have accumulated

over a decade of work, we posit that the stochastic signatures of the

facial speed micro-movements data may indeed provide a window

into the levels of feedback noise, the level of dysregulation, and the

associated levels of needed support in ASD.
FIGURE 11

Action units (AUs) for sad (A) and surprise (B). As with the other micro-expressions and resting state, several AUs in V1 were commonly present in
both groups, yet their intensity differs in ranges and distribution shapes (see text). In the sad micro-expression, the upper lid raised, and outer brow
raiser was absent in ASD, but the cheek raiser (key to the happiness micro-expression) was instead present in ASD but absent in TD. For V2 and V3
subregions, in the sad micro-expression, the TD did not have AUs for the lip corner puller and chin raiser, which were both present in ASD. All others
were common to both groups but differed in intensity distribution and ranges. The lip tightener common to both groups had comparable intensity.
For the surprise micro-expression, more AUs were present in ASD than TD for V1 with complementary patterns. Lid tightener was present in ASD but
absent in TD, while brow lower, inner brow raiser, upper lid raiser, and cheek raiser were activated in ASD but not in TD. Subregions V2 and V3 had
overlapping AUs for lip corner puller, dimpler, and lip tightener, yet their distributions of intensity differ. ASD had AUs for upper lip raiser and chin
raiser present, but these were not present in TD. Lastly, jaw drop, which is common in the surprise micro-expression, was present in TD but absent
in ASD, which instead activated chin raiser. ASD, autism spectrum disorder; TD, typically developed.
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FIGURE 12

Comparison between non-speaker ASD-HS and those with the additional apraxia diagnosis. (A) The Gamma NSR parameter space for resting, anger,
happiness, sadness, and surprise tested in this subset of the groups. (B) The Gamma NSR scalar quantity vs. the Gamma skewness scalar quantity
parameter plane with the scatters colored coded according to the three groups. Notice the departure of the apraxia subgroup from the others.
(C) Selected empirical Gamma PDFs for different subregions of the face. ASD, autism spectrum disorder; HS, high support.
FIGURE 13

Pairwise EMD for the seven recognized facial universal micro-expressions (anger, contempt, disgust, fear, happiness, sadness, and surprise) (A)
showing more uniformity (similarity) of distributions in the TD groups and distribution differentiation between ASD-LS group and TD. (B) Tree
clustering according to 14 subtypes (2 groups × 7 micro-expressions) with the percentage composition of each cluster. EMD, Earth Mover’s
Distance; TD, typically developed; ASD, autism spectrum disorder; LS, low support.
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4.2 Presence of action units in ASD but
differences in intensity ranges
and distributions

Across ASD, we found AUs present underlying the speed

micro-movements derived from positional trajectories of the 68

points in the grid that we extracted from videos using OpenFace

algorithms. Contrary to the assumption that ASD individuals do

not have emotions or lack empathy, we found that they indeed

engage (on command) the universal AUs across the face, across

subregions V1, V2, and V3 of the digital grid. They, however, do so

with different ranges of intensity than those captured in the TD

group. As such, the variations in speed amplitudes of the micro-

movements from facial universal micro-expressions associated with

emotions operate at unexpected stochastic ranges. We posit from

these results that folks observing these ranges to screen social

engagement and emotions seem to miss these ranges amid rapidly

changing social dynamics. It is possible that the expected values of

such ranges in neurotypicals do not overlap with those of ASD.

Since our visual perception largely depends on our sensitivity levels

to visual motion and is biased by that prior experience, we may fail

to systematically detect such ASD facial speed ranges. In other

words, the ASD facial speed ranges may not intersect with our

“detection priors” for the ranges of speed that we typically expect.

These results suggest that reliance on observation alone is bound to

fail in capturing the emotional capacities of the ASD system and

miss an opportunity to engage a person in social exchange.

Across all emotional states probed with the standardized micro-

movement data type for true personalized assessment, we saw

fundamental differences in the ASD facial micro-expressions but

the presence of AUs, nevertheless. This suggests systematic

engagement with the person providing the instructions to
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perform the assay and automatic recruitment of AUs on

command. In all those brief 5-second tasks, the ASD participant,

across all levels of support and spoken abilities, showed the

potential to engage in emotional contexts as the facial system

recruited relevant AUs, albeit doing so across different levels of

intensity and different distribution ranges of intensity values than

TD controls. As with the variations in facial speed micro-

movements, under those unexpected ranges, the naked eye of an

observer, trying to discern emotional states, will surely miss them.

This is so because of inherent statistical learning biases and

expected values acquired through interactions with other TD

people who are most likely operating within those TD ranges.
4.3 Potential for discovery of social–
emotional communication in ASD

Given the bidirectional nature of facial micro-expressions,

namely, the type of close reafferent loops that engage emotions, it

is possible that through training of TD diagnosticians, they can

learn to better detect these unexpected ranges of both ASD facial

speed micro-movements and ASD AUs’ intensities. It appears that

clinicians can detect the two extremes, namely, neurotypical ranges

and visible apraxia. They would then engage the ASD individual

with greater success than currently done. The results from this

investigation are indeed encouraging because they bring a new level

of awareness about ASD emotions. Although these levels of

intensity and noise are shifted from our perceptual radar, they are

present nonetheless in the ASD face. Contrary to the current

assumptions and subjective opinions, here, we clearly see that the

standardized speed micro-movements present in ASD faces can

serve to engage TD controls. As the ASD participants engaged the
FIGURE 14

Analysis of TD group labeling the parents of ASD-HS and ASD-HS apraxia (A) On the GNSR space, according to moms, dads, and moms who reported
autoimmune disorders and other neuropsychiatric conditions (acquired as adults). Notice the separation and clustering of each subtype departing
from other TDs including those of comparable ages. (B) Parameter plane of GNSR scalar quantity vs. skewness quantity also shows the ASD-HS and
ASD-HS apraxia relative to other TDs. Notice the uniqueness in patterns of some participants with ASD-HD apraxia. TD, typically developed; ASD,
autism spectrum disorder; HS, high support.
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underlying universal AUs across the different regions of the face

grid, we were able to capture these ranges with new analytical

means. Moreover, we did so by merely using off-the-shelf

instruments that most of us carry around these days.

Our work does not require training large models through

machine learning algorithms. Instead, we took direct

measurements of speed variability across facial regions evoked by

simple, brief assays. Through these unobtrusive, highly scalable

means, using commercially available tools on the go, we can further

explore other avenues to engage the ASD facial system in

unprecedented ways. Bringing these (up to now hidden) ranges of

ASD emotions to awareness may make it easier for diagnosticians

and therapists engaging with ASD fellows to detect them. Co-

adapting our ranges and the ASD ranges is indeed possible now

under our new personalized statistical techniques.

This approach to autism is a large departure from trying to

impose our neurotypical ways on the ASD person while neglecting

the capabilities that their coping systems had already developed by

the time that they received the ASD diagnosis. Instead of

“normalizing” the ASD individual by imposing our ranges of

motion and emotions, here, we propose to expand our perceptual

umwelt. By learning to identify the ASD perceptual world and

augmenting ours with new expected values, we can also improve

our detection systems to operate in a truly diversified humanity.

Furthermore, mutual awareness of both our ranges of AUs’

intensity and theirs can bring us closer to building social rapport

with the ASD person rather than stigmatizing ASD fellows as social

outcasts lacking empathy by assuming that they do not have the

desire to engage and communicate with others.

The flip side of augmenting our perceptual umwelt is training

ASD individuals to become more aware of their own ranges of

micro-motions in the first place. Doing so could help them build

self-awareness of their facial micro-expressions and, in this way,

own them, learn to control them, and then learn to project desirable

configurations at will. Connecting the intent to move with the actual

speed of micro-movements could thus become a form of

therapeutic intervention mediated by the persons themselves

rather than top-down imposed externally by another agent.

Owning the action and its consequences can bring the autistic

individual to a much-needed level of motor autonomy. Achieving

this goal of motor autonomy from the bottom up in autism rather

than imposing change from a form of top-down control, e.g.,

through the currently promoted behavioral conditioning/

modification stance, would bring to the autistic person the

balance between self-autonomy and self-control (8, 64, 72). In

turn, this would enhance their socio-motor agency during social

and communication exchanges.

This approach to ASD emotions and social potential is in tune

with what autistic individuals themselves want, according to interviews

conducted in our lab using the ADOS instrument (40, 73). These

observational instruments (the ADOS and the DSM), which deem the

ASD person incapable of social communication and boasts a deficit

model of social interactions, could in fact benefit from pairing the

subjective observational criteria with the type of personalized objective

quantification techniques that we show here. Training the
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diagnosticians in ADOS and DSM settings could significantly

improve the diagnostic criteria and help eliminate the stigma that

subjective opinion creates across research, clinical settings, and society

at large (74–76).
4.4 Implications for sensory motor
differences related to the brainstem in ASD

The present methods could be applied to screen for signs of

brainstem neurodevelopmental differences because the facial

regions (ophthalmic, maxillary, and mandibular) are innervated

by the trigeminal nerves, which, in turn, connect to the brainstem.

In this sense, visual, touch, and auditory stimuli could be used to

probe the functioning of such regions in the processing of light,

light touch/pressure/movements/pain/temperature, and sound,

respectively. Indeed, with respect to sound processing, for

instance, retrospective studies have suggested that prolonged

auditory brainstem response (ABR) latencies are prevalent in

neonates who go on to receive a diagnosis of ASD by 3–4 years of

age (58). Furthermore, using clinical observation, the earliest sign

predictive of autism is motor delay (77, 78) missed by traditional

scales (79) but asserted in 87% of those diagnosed with ASD. These

could now be probed non-invasively through the facial involuntary,

reflexive, and spontaneous motions.

The facial micro-motions captured here on brief videos could

help us track, from a very early age, the development of attention

(80, 81), reorienting the head and body for motor control and

coordination. Throughout the facial structures and functions

involving sensory processing by sensory organs in the eyes, ears,

nose, and mouth, we could screen the infant system for unexpected

differences indicative of early derailment from the neurotypical

developmental path. These sensory organs located on the head

sample sensory inputs from different modalities and help form

spatio-temporal maps required for the development of proper

somatic-sensory-motor integration. These are needed during early

dyadic social interactions that develop differently in autism (82).

Starting with absent or severely distorted body maps and body

schemas (83) and following with delayed milestones in reaching,

grasping, postural control, gait, and overall social timing (84–88),

ASD, which is an umbrella term for many neurodevelopmental

disorders (89–92), could be screened with the help of non-invasive

digital means such as those used in this study.

Another area of importance in autism is pain. States of pain

could be ascertained through facial micro-movements, a feature

that we have recently found present in autistic individuals at rest

(52, 53). Sensory hyper- or hypo-sensitivities are common in ASD

(90%) and affect all senses (93), inclusive of kinesthetic, pain and

temperature reafference, proprioception (6), interoception, and

vestibular integration (94, 95). Some are recognized by the

diagnostic criteria, and many can be traced to malfunctioning of

the brainstem (96), including sensory motor integration, centrally

organized by the superior colliculus, the locus coeruleus, the raphe

nucleus, and the olivary systems (97–100). Prolonged sensory

processing delays are consistent with the findings of extensive
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literature documenting ABR abnormalities in ASD at various ages.

Histological study has found the auditory hindbrain (including the

superior olive and inferior colliculus) to have significantly fewer

neurons, while surviving neurons have smaller and dysmorphic cell

bodies (101, 102). Furthermore, white matter volume in the

brainstem of children with ASD is inversely proportional to

motor performance (103, 104). Facial features, including the eyes’

gaze direction, head orientation, and mouth-voice analysis, are part

of our current studies involving non-speakers requiring high

support and deploying the means presented in this paper. These

new technologies enable remote use, doing assessments from the

comfort of their homes within a participant-centered paradigm.

Indeed, the face can be a proxy of states of dysregulation ubiquitous

in this population and help us identify ways to regulate the system

and relieve it from the cognitive load of having to consciously

monitor all aspects of motor control, coordination, and sequencing

in activities of daily living that typically occur automatically and

largely beneath awareness.
4.5 Caveats and future steps

The subset of participating parents was modest. However, their

signatures across the facial universal micro-expressions probed in this

study revealed unique characteristics. Their features were closer to the

stochastic signatures of their offspring than to those of controls

around their age. This result is consistent with prior work in motor

control biomarkers involving the upper body, during voluntary

pointing behavior (28, 29). In those previous studies from our lab,

parents of ASD participants showed motor signatures that separated

them from age- and sex-matched TD adult controls—as their

standardized speed micro-movement signatures were closer to

those of their offspring. As with this previous work, here, we point

out the possibilities of genetic overlap and/or motor mimicry. The

latter could emerge from the efforts by parents to communicate and

build rapport with their children over years of interactions.

The study of 126 participants may seem adequate, but given the

broad spectrum of variability in ASD—as shown here for the

stochastic ranges that we unveiled—it will be important to

considerably scale up this research. The present study provides

proof of concept that we can do so using simple and brief apps. In

future iterations of this study, we plan to gamify the interactions, so

we can collect brief data samples in more naturalistic settings,

particularly making it more attractive for children of school age.

Our work offers new analytics that do not require machine

learning but rather sample directly the empirical distributions

corresponding to a person’s individual levels of facial speed noise.

Indeed, we see a whole family of PDFs for each participant, starting

with the resting state and sweeping through other distributions for

anger, disgust, contempt, happiness, sadness, and surprise. With the

exponential rise of autism and its absorption of other developmental

disorders, we may have to altogether create more emotions to cover

those of the autism spectrum. The universality of those micro-

expressions, which Paul Ekman helped define, stops with this side

of the human spectrum. As such, we do fail to recognize autistic
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emotions and have profound deficits in socially engaging and

communicating with autistic individuals. How can we close this gap?
5 Conclusions

Discerning such important research questions in future studies

may lead us to learn more about new ways to successfully connect

and co-adapt with the autistic motor system—as most parents likely

have done. Such an approach to autism would also help broaden our

own perceptual ranges and build the proper perceptual umwelt to

communicate at a very basic level with the ASD world, particularly

the world of non-speakers, which remains such a mystery to science.

The means that we introduced in this study can certainly help

us deploy large-scale studies to expand on our results and to pursue

new questions involving the fascinating world of ASD social

communication and emotional exchange.
Note 1 . Vane s s a Van Edward s ’ s f a c i a l m i c ro -

expression description.

Note 2. GitHub site for OpenFace.

Note 3. Action units used in the study from OpenFace.
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