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Introduction: An AI-assisted deep learning strategy was applied to analyze the

neurobiological characteristics of depression in mouse models. Integration of

weighted gene co-expression network analysis (WGCNA) with the random forest

algorithm enabled the identification of critical genes strongly associated with

depression onset, offering theoretical support and potential biomarkers for early

diagnosis and precision treatment.

Methods: Gene expression data from depression-related mouse models were

obtained from public GEO datasets (e.g., GSE102556) and normalized using Z-

score transformation. WGCNA was employed to construct gene co-expression

networks and explore associations between modules and depression-like

behavioral phenotypes. Depression-related gene modules were identified and

subjected to feature selection using the random forest model. The biological

relevance of selected genes was further assessed, and model accuracy was

validated through performance evaluation.

Results:Our findings revealed significant differential expression of genes such as

Oprm1, BDNF, Tph2, and Zfp769 in the depression mouse model (p < 0.05).

Notably, Oprm1 exhibited the highest feature importance, contributing to a

model accuracy of 94.5%. Gene expression patterns showed strong

consistency across the prefrontal cortex (PFC) and nucleus accumbens (NAC).

Conclusion: The combined application of machine learning and transcriptomic

analysis effectively identified core neurobiological genes in a depression model.

Genes including Oprm1 and BDNF demonstrated functional relevance in

modulating neural activity and behavior, offering promising candidates for early

diagnosis and individualized treatment of depression.
KEYWORDS

depression, mouse model, artificial intelligence, gene co-expression network, random
forest, neurobiology, cognitive dysfunction
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Introduction

Depression is one of the most prevalent mental health issues

worldwide. Estimates from the World Health Organization (WHO)

indicate that approximately 300 million individuals are affected

worldwide (1, 2). Depression not only severely impacts patients’

quality of life but also increases the risk of suicide, imposing a

significant burden on families and society (3, 4). Although

advancements have been made in depression treatment, early

diagnosis and effective therapeutic interventions remain

substantial challenges (5, 6). Current diagnostic methods

primarily rely on subjective assessments of clinical symptoms,

which are susceptible to individual interpretation and may

contribute to misdiagnosis or delayed detection (7). Moreover,

treatment responses vary widely among patients, and existing

therapeutic approaches are not universally effective. These

challenges underscore the urgent need for precision medicine in

the management of depression (8).

Advancements in genomics have prompted investigations into

the genetic and molecular mechanisms underlying depression. Gene

expression analysis, particularly genome-wide expression profiling,

has opened new avenues for elucidating the biological basis of

depression (9, 10). Large-scale bioinformatics datasets have

facilitated the identification of numerous genes and biological

pathways associated with depression (11). For example, the

abnormal expression of genes such as brain-derived neurotrophic

factor (BDNF) and serotonin transporter (SERT) has been closely

linked to the pathogenesis of depression. Analytical approaches such

as weighted gene co-expression network analysis (WGCNA) have

been employed to identify critical genes and pathways involved in

depression (12). These tools facilitate the investigation of complex

gene interaction networks in the context of the disease (13).

Animal models, particularly mouse models, are invaluable tools

for studying the neurobiological mechanisms of depression. By

mimicking human behaviors and physiological responses, mouse

models provide a platform to explore the underlying mechanisms of

disease progression and evaluate potential therapeutic strategies

(14). In depression research, stress-induced or genetically modified

mouse models exhibit behavioral traits similar to those observed in

human depression (15), such as behavioral inhibition, anxiety, and

cognitive dysfunction. These models enable the investigation of

neurobiological alterations associated with depression at the

molecular level (16), including neurotransmitter system

dysregulation and altered neuroplasticity, which are key factors in

the pathophysiology of depression (17, 18).

An artificial intelligence (AI)–assisted machine learning

approach was employed to analyze gene expression profiles
Abbreviations: AI, Artificial Intelligence; BDNF, Brain-Derived Neurotrophic

Factor; CUS, Chronic Unpredictable Stress; iPSC, Induced Pluripotent Stem Cell;

MDD, Major Depressive Disorder; NAC, Nucleus Accumbens; PFC, Prefrontal

Cortex; Rps26, Ribosomal Protein S26; SERT, Serotonin Transporter; TOM,

Topological Overlap Matrix; Tph2, Tryptophan Hydroxylase 2; WGCNA,

Weighted Gene Co-Expression Network Analysis ; WHO, World

Health Organization.
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derived from depression mouse models. The analytical framework

integrated WGCNA with a random forest algorithm, enabling

efficient processing of large-scale transcriptomic data and

identification of key genes and biomarkers associated with

depressive pathology (19, 20). WGCNA facilitated the detection

of co-expression patterns across samples and the construction of

gene modules, while the random forest model assessed the

importance of each gene in classification tasks, supporting the

selection of candidate genes with predictive value for disease

differentiation (21). Application of this combined strategy enabled

comprehensive interpretation of genome-wide transcriptional

alterations in depression and enhanced the accuracy of disease

prediction, thereby contributing to the development of

individualized treatment strategies.

The primary objective of this study was to analyze gene

expression data from a depression mouse model using advanced AI

technologies and machine learning algorithms. This approach aimed

to identify key genes and biomarkers closely associated with the onset

and progression of depression. Identification of these biomarkers is

expected to provide novel theoretical foundations and experimental

evidence for early diagnosis and therapeutic development. From both

scientific and clinical perspectives, the findings hold the potential to

advance precision medicine in the context of depression, particularly

in the design and implementation of personalized treatment

strategies. By identifying and validating new disease biomarkers

and therapeutic targets, this research aims to offer more effective

and safer treatment options for patients with depression, ultimately

optimizing depression management and significantly improving

patient quality of life.
Materials and methods

Gene data collection in depression mouse
models

A large number of analyzable gene expression datasets related to

depression in mice were obtained from the publicly available GEO

database (PMID: 28825715, GSE102556). To minimize the

influence of uncontrollable confounding variables in the machine

learning analysis, only mouse-derived data were included. The

selected dataset comprised samples from the prefrontal cortex

(PFC) and nucleus accumbens (NAC), including 9 male and 10

female CUS-treated mice and 10 male and 9 female control mice in

the PFC group, as well as 10 male and 10 female CUS-treated mice

and 10 male and 10 female control mice in the NAC group.

Although both sexes were included, the analysis focused on gene

expression changes in the PFC and NAC under chronic

unpredictable stress (CUS), and sex was not included as an

independent variable in the statistical models. In this dataset,

gene expression changes were assessed in the NAC and PFC

before and after exposure to CUS. These transcriptional

alterations corresponded to variations in neurotransmitter

regulation and behavioral performance, thereby exhibiting distinct

neurobiological characteristics.
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Visualization and preprocessing of gene
expression data in depression mouse
models

Gene expression data from depression mouse models were

analyzed following Z-score normalization, which standardized

values within the range of –5 to 5. This normalization process

reduced variability across genes and enabled more consistent and

interpretable comparisons between experimental groups, as

illustrated in Figure 1. Normalized data revealed trends in gene

expression across distinct conditions.

The comparative analysis focused on two key brain regions: the

NAC and the PFC. Significant differential gene expression was

identified in both regions. The NAC, a brain region involved in

reward processing and motivation, exhibited gene expression

changes potentially associated with depressive symptoms such as

anhedonia and diminished drive. In contrast, the PFC, which is

involved in decision-making, emotional regulation, and social

behavior, showed gene expression alterations that may

correspond to cognitive and affective dysfunction commonly

observed in individuals with depression.

Significant gene expression changes were detected across

multiple brain regions following CUS testing. These changes were

evident in the absolute values of gene expression and overall
Frontiers in Psychiatry 03
expression patterns. The observed transcriptional shifts suggest a

substantial impact of CUS on the physiological and psychological

states of the mice, subsequently influencing the expression of related

genes. These findings provide crucial insights into the biological

basis of depression and imply the involvement of region-specific

mechanisms in different brain areas. Analysis of the dataset

demonstrated its significant value for depression research.

Standardized gene expression profiles established a reliable

foundation for subsequent bioinformatics analyses, including

accurate gene function annotation and pathway analysis. In

addition, differential expression patterns in the NAC and PFC

regions highlighted potential biomarkers that may contribute to

the early diagnosis of depression and the development of targeted

therapeutic strategies.
Neurobiological feature identification
model for depression in mice using
WGCNA and random forest

To better understand the biological basis of depression, systems

biology approaches have been increasingly employed, integrating

genomics and bioinformatics tools to identify neurobiological

features associated with depression. A neurobiological feature
FIGURE 1

Visualization of the head and neck ultrasound dataset. Hierarchical clustering heatmap showing Z-score normalized expression values of
differentially expressed genes across brain regions (NAC and PFC) and treatment conditions (CUS and control). Each row represents a gene (labeled
by Ensembl ID), and each column corresponds to a sample. Samples are divided into four groups: NAC control (NAC_CTL), NAC CUS-treated
(NAC_CUS), PFC control (PFC_CTL), and PFC CUS-treated (PFC_CUS), as indicated on the x-axis. Red and blue indicate upregulation and
downregulation, respectively. The heatmap reveals distinct transcriptional signatures associated with both brain region and stress exposure.
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identification model was developed based on WGCNA and a

random forest algorithm, as illustrated in Figure 2. The goal was

to provide novel insights for the early diagnosis and personalized

treatment of depression.

High-throughput gene expression profiling was first performed

on brain tissue samples from depression mouse models. WGCNA

was then used to construct a gene co-expression network and

identify modules consisting of genes with similar expression

patterns. The correlation between the module eigengenes and

depression-related behavioral phenotypes was analyzed to select

candidate modules potentially associated with the phenotype (22).

Following module identification, relationships between selected

modules and depression phenotypes were evaluated by calculating

the correlations between module eigengenes and depression-related

behaviors. Modules exhibiting strong associations were considered

critical in the onset and progression of depression. This analytical

step offered key insights into the molecular mechanisms underlying

depressive states and established the foundation for subsequent

feature selection.

Identified gene modules were subsequently integrated with a

random forest model to calculate distinct neurobiological features.

Random forest, an ensemble learning algorithm with strong

classification and regression capabilities (23), was selected for its

effectiveness in analyzing high-dimensional omics data

characterized by a high feature-to-sample ratio and complex

nonlinear relationships. As a bagging-based method, the model

resists overfitting, making it especially suitable for gene expression

datasets where the number of features far exceeds the number of

samples. In addition, random forest does not impose strict

assumptions on input variable distributions and can effectively

capture nonlinear interactions, allowing for accurate modeling of

multi-gene feature sets derived from WGCNA. The algorithm also

generates interpretable feature importance scores, which aid in

identifying potential key genes and support downstream

biological interpretation. Compared to other black-box models

such as support vector machines (SVMs) or neural networks,

random forest offers greater interpretability, facilitating

integration with functional annotation analyses. Therefore, the

random forest model was chosen in this study for its balanced

performance, stability, and biological interpretability, making it the

optimal method for our research objectives.

The random forest algorithm was applied to model gene

features extracted from WGCNA to identify neurobiological

characteristics associated with depression. The dataset was

divided into training and testing sets to evaluate model

performance and to determine gene features significantly

contributing to depression classification. Cross-validation was

used during model training to optimize parameters and enhance

predictive accuracy. The model generated classification outcomes

and feature importance scores, which highlighted genes most

relevant to depression-related neurobiological traits. These results

established a basis for further biological validation and

clinical application.
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In summary, this study successfully developed a neurobiological

feature identification model for depression in mice by combining

WGCNA and the random forest model. The model revealed co-

expression networks of depression-associated genes and identified

key neurobiological features relevant to disease mechanisms. This

research provides novel perspectives for the discovery of biomarkers

and personalized treatments for depression. Further research may

investigate the clinical relevance of the identified neurobiological

features. Comprehensive biological validation is expected to

generate evidence supporting early diagnosis and intervention,

thereby advancing progress in depression research and mental

health care.
Statistical analysis

A combination of software tools and statistical methods was

used to construct a neurobiological feature identification model for

depression in mice. Data preprocessing and analysis were

performed in Jupyter Notebook using Python. Libraries like

pandas and Matplotlib were used for data loading, cleaning, and

visualization. After obtaining the raw expression matrix from the

GEO database, genes with extensive missing values were removed,

and Z-score normalization was applied to constrain expression

values within the range of –5 to 5. This transformation ensured

comparability across samples and prepared the dataset for

subsequent machine learning modeling. For statistical analysis,

independent samples t-tests (Student’s t-test) were used to

evaluate the significance of group differences, such as between

CUS and control groups, based on normalized gene expression

values. The combination of probability-based model output and

hypothesis testing ensured statistical robustness and enhanced the

biological interpretability of the results.

The Random Forest algorithm was implemented using the Scikit-

learn library. Genes fromWGCNAmodules were selected as candidate

features and used as input variables. The dataset was randomly divided

into training (80%) and testing (20%) subsets to reduce overfitting and

ensure generalizability. During model construction, 100 decision trees

(n_estimators = 100) were used without constraints on depth

(max_depth = None), and Gini impurity was adopted as the

splitting criterion. Five-fold cross-validation was conducted to tune

hyperparameters and assess stability. The optimal parameters were

selected based on mean values of AUC and accuracy across folds.

Feature importance was computed using the Gini importance index,

indicating each gene’s relative contribution to model predictions. Final

evaluation was performed on the test set, and metrics such as accuracy,

precision, recall, specificity, and AUC were calculated to assess

classification performance.

During data processing, Z-score normalization eliminated

differences in feature scale, and incomplete data were excluded to

maintain training consistency. Visualizations were created using

Matplotlib and Visio to support data interpretation. Venn diagrams

were used to display overlapping neurobiological features, and
frontiersin.or
g

https://doi.org/10.3389/fpsyt.2025.1564095
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gao et al. 10.3389/fpsyt.2025.1564095
bubble plots illustrated functional patterns of candidate genes.

Feature distribution and classification results were presented to

reveal the model’s behavior under different conditions. Integration

of statistical methods with visualization techniques enabled
Frontiers in Psychiatry 05
comprehensive validation of model performance. Analytical

results supported the robustness and reliability of the modeling

approach, offering a reference for future depression-related research

and clinical application.
FIGURE 2

Depression mouse neurobiological feature identification model combining WGCNA and random forest. Workflow integrating Weighted Gene Co-
Expression Network Analysis (WGCNA) with Random Forest for feature gene identification. The pipeline begins with the construction of a gene-gene
correlation matrix based on RNA-seq data, followed by conversion into an adjacency matrix and a topological overlap matrix (TOM). Gene modules
are identified using dynamic tree cutting. Subsequently, a Random Forest algorithm ranks genes based on their classification contribution, enabling
selection of candidate neurobiological features that differentiate CUS and control mice.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1564095
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gao et al. 10.3389/fpsyt.2025.1564095
Results

Visualization of normalized gene
expression data in depression mouse
models

Venn diagrams were employed to compare gene expression in

two distinct brain regions, the NAC and the PFC, as shown in

Figure 3. This analysis aimed to uncover the gene expression

characteristics of specific brain regions in response to CUS in

depression mouse models. According to the results of the Venn

diagrams, 20,971 genes were commonly expressed between CUS-

treated and control mice in the NAC region, while 19,643 genes

were shared in the PFC region (Figures 3A, B), indicating extensive

gene expression remodeling in both regions under chronic stress.

To further characterize transcriptional alterations, the top 50

differentially expressed genes were visualized for comparisons

between nucleus accumbens (NAC) control group (NAC_CTRL)

and the chronic unpredictable stress-treated group (NAC_CUS), as

well as between the prefrontal cortex (PFC) control group

(PFC_CTRL) and the CUS-treated group (PFC_CUS)

(Figures 3C, D). The top 50 differentially expressed genes showed

distinct expression patterns between CUS-treated and control

groups in both the NAC and PFC, indicating robust

transcriptional responses to chronic stress. Despite functional

differences between the two regions, both exhibited significant

gene expression remodeling under stress conditions.

The NAC, a critical brain region associated with reward and

motivation, displayed gene expression changes potentially linked to

emotional regulation and behavioral responses in depression (24).

A total of 20,971 co-expressed genes were identified, likely involving

in neuroplasticity, inflammatory responses, and neurotransmitter

metabolism. These gene expression changes likely reflect stress-

induced adaptive mechanisms, suggesting its pivotal role in the

pathogenesis of depression. The PFC, an essential region for

regulating cognition and emotion, also exhibited notable gene

expression changes (25). The 19,643 co-expressed genes may be

associated with decision-making, emotional regulation, and social

behavior. Gene expression remodeling in the PFCmay contribute to

cognitive impairments and emotional dysregulation, thereby

aggravating depressive symptoms. These results highlight the

critical role of the PFC in depression, particularly in emotion

regulation and behavioral decision-making.

Comparison of gene expression between the NAC and PFC

regions provided deeper insight into the neurobiological

mechanisms underlying depression. The findings revealed region-

specific transcriptional responses to stress and identified potential

biomarkers with relevance to disease onset and progression. Co-

expressed genes detected in both regions may serve as candidate

targets for the early diagnosis and personalized treatment of

depression, contributing to advances in mental health research.

Future studies are warranted to investigate the specific functions of

these genes in various brain regions and their role in the

pathogenesis of depression, providing scientific evidence for

developing novel therapeutic strategies.
Frontiers in Psychiatry 06
Visualization of WGCNA-based gene data
analysis

To systematically identify key gene clusters involved in the

regulation of depression, WGCNA was applied to construct

modules and visualize co-expression networks based on

transcriptomic data from depression mouse models. The goal was

to identify gene clusters with highly correlated expression patterns

and lay the foundation for subsequent phenotype correlation

analysis (26, 27). Visualization of model training metrics enabled

qualitative assessment of neurobiological characteristics, as shown

in Figure 4.

The topological overlap matrix (TOM) was visualized to

examine the relationships among gene modules (Figure 5). TOM

quantifies the similarity between gene pairs by considering both

direct and shared connections, offering a more accurate

representation of inter-gene relationships compared to simple

correlation matrices. Hierarchical clustering of the TOM enabled

the grouping of genes into modules with high topological overlap,

often indicative of shared functional or regulatory roles. Modules

identified through this process represent gene sets potentially

involved in common biological pathways. Genes exhibiting high

connectivity within each module were considered hub genes, likely

to play central roles in network structure. Functional significance of

these genes warrants further validation through differential

expression analysis or phenotype correlation studies. In our study,

the first gene module was identified as a key functional cluster. In

summary, TOM visualization provided a comprehensive view of

inter-module relationships and supported downstream steps such

as module identification, functional annotation, and key gene

discovery. These results contributed to a deeper understanding of

gene function and interaction networks in the context

of depression.
Visualization of the results of the
neurobiological characteristics recognition
model for depression mice

To systematically evaluate the performance of the constructed

Random Forest model in identifying neurobiological features in

depression mouse models, multi-dimensional visualizations were

used, including a confusion matrix (Figure 6A), a receiver operating

characteristic (ROC) curve (Figure 6B), and a bar chart

summarizing multiple performance metrics (Figure 6C). These

visual representations not only validated the model’s classification

ability but also provided data support for subsequent optimization

and feature interpretation.

The confusion matrix (Figure 6A) displayed the agreement

between predicted and actual group labels. The results showed

that the model achieved a classification accuracy of 95% for the

control group (Ctrl) and 94% for the CUS model group, with an

overall classification accuracy of 94.5%. These results demonstrated

that the model accurately distinguished between the two

neurobiological states. A few misclassifications were observed in
frontiersin.org
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the stress group, possibly reflecting intermediate or heterogeneous

gene expression states, which may offer insights into classification

boundaries and potential subtypes.

Model discrimination ability in probability space was further

evaluated by plotting an ROC curve (Figure 6B). The area under the

curve (AUC) reached 0.937, indicating strong predictive

performance across varying classification thresholds. As a metric

less sensitive to class imbalance, AUC provided a more robust

evaluation of the model’s generalizability, supporting its

applicability in diagnostic stratification and translational research.

A bar chart (Figure 6C) was generated to assess five key metrics:

precision, recall, F1 score, accuracy, and specificity. Precision and

specificity each reached 0.950, the recall was 0.940, and both F1

score and accuracy were 0.945 (Supplementary Table S1). These
Frontiers in Psychiatry 07
balanced results indicated consistent performance across positive

and negative class predictions, a critical requirement in biomedical

classification tasks to avoid prediction bias and improve

model reliability.

In summary, the integrated evaluation using the confusion

matrix, ROC analysis, and classification metrics confirmed the

high accuracy, stability, and generalization ability of the Random

Forest model in identifying neurobiological characteristics of

depression in mice. The model effectively distinguished between

control and CUS mice and provided a foundation for downstream

identification of key genes and diagnostic marker systems. Future

research may enhance the model’s diagnostic utility by integrating

additional biological modalities (e.g., metabolomics, epigenomics)

and behavioral data to further enhance its translational potential.
FIGURE 3

Venn diagram of gene expression counts across different brain regions. (A) Venn diagram comparing gene expression between the NAC control
group (NAC_CTRL) and the CUS-treated group (NAC_CUS). A total of 20,971 genes were commonly expressed, with 1,675 and 1,653 genes uniquely
expressed in each group, respectively, indicating notable transcriptomic changes in this region under CUS exposure. (B) Venn diagram comparing
the PFC control group (PFC_CTRL) and the CUS-treated group (PFC_CUS). A total of 19,643 genes were shared between the two groups, with 1,505
and 1,907 genes uniquely expressed in each group, respectively. (C) Heatmap showing the top 50 differentially expressed genes between NAC_CTRL
and NAC_CUS. (D) Heatmap showing the top 50 differentially expressed genes between PFC_CTRL and PFC_CUS.
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Extraction and analysis of key genes in
depression mouse model

To investigate gene expression changes associated with

neurobiological characteristics of depression, eight key genes were

identified through feature extraction, as shown in Figure 7. The

selected genes included Oprm1, BDNF, tryptophan hydroxylase 2

(Tph2), Zfp769, Sucnr1, ribosomal protein S26 (Rps26), Rxfp3, and

Grin3a. Further analysis of these eight genes (Table 1) in the

depression mouse model revealed the following insights:
Fron
1. Oprm1: This gene encodes the m-opioid receptor involved

in mood and pain regulation (28). Altered expression in

depression models has been linked to emotional

dysregulation (29).

2. BDNF: BDNF plays a key role in neuroplasticity, and its

downregulation has been associated with depressive

symptoms and cognitive dysfunction (30).
tiers in Psychiatry 08
3. Tph2: Tph2, a rate-limiting enzyme in serotonin synthesis,

shows reduced expression in depressive states, implicating

serotonergic dysfunction (31).

4. Zfp769: This gene encodes a zinc finger protein involved in

gene regulation. Members of this family have been

associated with neurodegeneration and chronic

neuroinflammation (32).

5. Sucnr1: Sucnr1, a receptor for short-chain fatty acids,

participates in metabolic signaling and exhibits

differential expression in models of central nervous

system inflammation (33).

6. Rps26: Rps26, a component of the ribosomal machinery,

has been implicated in altered protein synthesis in

neuropsychiatr ic disorders, including anorexia

nervosa (34).

7. Rxfp3: This gene encodes a receptor involved in regulating

neuroendocrine functions such as stress response, arousal,

feeding, and cognition. Its relevance to neurological

conditions has been widely reported (35).
FIGURE 4

Visualization of gene analysis based on WGCNA. Network construction process using WGCNA. (A) Scale-free topology fit index (r²) plotted against
soft-thresholding power (b); higher r² values indicate better fit to scale-free network criteria, typically exceeding 0.8. (B) Mean connectivity plotted
against b values, showing a decreasing trend with increasing b. The optimal b is selected where r² first exceeds 0.8. (C) Gene modules identified via
dynamic tree cutting on the TOM; modules consist of genes with similar expression patterns and likely shared biological functions.
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Fron
8. Grin3a: This gene is related to neuroendocrine function.

Altered expression has been observed in depressive mouse

models, suggesting a role in emotional regulation (36).
Collectively, these genes contribute to diverse regulatory

pathways, including neurotransmitter metabolism (Tph2),

neurotrophic signaling (BDNF), metabolic regulation (Sucnr1),

and ribosomal function (Rps26), supporting their multilayered

regulatory roles in the development of depression.

To further investigate the role of these eight genes in the

neurobiological characteristics of depression in mouse models,

gene expression data were visualized using bubble plots across

different brain regions (Figure 8). In the plot, circle size

represents the significance level of gene expression in each region,

while the color reflects the expression level. This approach enabled a

comparative analysis of spatial expression patterns and their

associations with depressive phenotypes. Among the eight genes,

Oprm1, BDNF, Tph2, Zfp769, Sucnr1, Rps26, and Grin3a showed

high significance levels across multiple brain regions, while Rxfp3
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displayed relatively lower significance (Supplementary Table S2).

These findings suggest that most of the identified genes may play

essential roles in the molecular mechanisms underlying depression

in mice. For instance, the high significance level of the Oprm1 gene

supports its involvement in mood regulation and nociceptive

processing (29). Elevated expression and significance of BDNF

further confirm its established role in neuroplasticity and

emotional regulation (30). The high expression of Tph2, related

to serotonin synthesis, may contribute to the modulation of mood

and emotional responses (31).

Furthermore, the significance levels of Zfp769, Sucnr1, Rps26,

and Grin3a suggest potential regulatory functions in the stress

response and depressive phenotypes. Altered expression patterns

of these genes may reflect adaptive neurobiological responses to

chronic stress, highlighting their relevance to the onset and

progression of depressive disorders.

In summary, bubble plot visualization offered a clearer

perspective on the functional relevance and potential mechanisms

of the identified genes in the depression mouse model. These findings
FIGURE 5

Visualization of the TOM between gene modules. TOM values range from 0 to 1, with higher values indicating greater similarity between gene
modules. Smaller modules demonstrate higher internal similarity, suggesting potential functional or regulatory coherence. In contrast, larger
modules exhibit lower overlap, indicating greater heterogeneity in gene function. Notably, Module 1 shows low similarity with other modules but
contains the largest number of genes. The unique characteristics of this module suggest its potential relevance in depression-related pathways and
warrant further investigation.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1564095
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gao et al. 10.3389/fpsyt.2025.1564095
offered significant insights for further exploration of biomarkers and

therapeutic targets for depression. Future studies may further explore

the functional roles and molecular interactions of these genes to

advance the understanding of depression pathogenesis.
Discussion

Depression is one of the most burdensome neuropsychiatric

disorders globally, with high incidence and recurrence rates

emphasizing the urgent need for further research (3, 37, 38).

Current diagnostic approaches primarily rely on the subjective

assessment of clinical symptoms (39) and lack reliable objective

biomarkers (40), posing significant challenges for early disease

detection and personalized interventions (41). The present study

applied AI techniques in combination with transcriptomic data to

investigate neurobiological features in mouse models of depression.

By identifying key regulatory genes and expression patterns, the

analysis provided both theoretical insights and practical
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foundations for advancing objective diagnosis and personalized

intervention in depression.

Theoretically, this project contributes to a deeper

understanding of the pathogenesis of depression. The NAC and

PFC are critical brain regions that regulate mood and cognitive

functions and are closely associated with the pathophysiology of

depression (38). However, existing studies are mainly limited to

single-level analyses and fail to uncover the complex gene

regulatory networks between brain regions (42). In this study,

WGCNA was used to identify gene modules with similar

expression patterns, followed by correlation analysis between

module eigengenes and depression-related behavioral phenotypes.

Subsequently, a Random Forest model was employed for feature

selection to identify candidate genes with high classification

importance. This integrative approach revealed potential

regulatory networks underlying depression. The multidimensional

integrative analysis not only identified key functional genes and

their interactions but also enabled the construction of molecular

regulatory frameworks associated with depression. These findings
FIGURE 6

Visual performance evaluation of the random forest model. (A) Confusion matrix showing the classification accuracy of the model in identifying
control (Ctrl) and chronic unpredictable stress (CUS) model mice. (B) ROC curve illustrating the model’s classification performance across various
decision thresholds. (C) Bar chart presenting five classification metrics: Precision, Recall, F1 Score, Accuracy, and Specificity.
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advanced the understanding of the complex biological mechanisms

underlying the disorder.

Furthermore, this study provides new insights into diagnosing

and treating depression from a practical perspective. Analysis of

transcriptomic data from depression-related mouse models in the

GEO database enabled the identification of key genes, including

Oprm1, BDNF, and Tph2, which exhibited marked expression

differences between the NAC and PFC regions. These genes

showed potential as biomarkers and may serve as candidate

indicators for early diagnosis and clinical subtyping of depression.
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Additionally, machine learning models were employed to

predict the functional importance of these genes, laying the

groundwork for the development of targeted intervention

strategies. The integration of transcriptomic analysis with artificial

intelligence established a robust framework that supports the

advancement of precision medicine approaches in depression

research and clinical translation.

Finally, this study presents a significant methodological

innovation by integrating WGCNA with the random forest

algorithm. Traditional gene expression data analysis methods are
FIGURE 7

Visualization of feature extraction for each layer in the prognostic model. Bar plot displaying the relative contribution of eight genes calculated by
the Random Forest model. The horizontal axis represents the importance score of each gene (Important Gene Features Scores), with higher values
indicating greater weight in the model’s classification decisions.
TABLE 1 Key genes identified in the depression mouse model and their functions with supporting literature.

Gene Full name Functional analysis and literature support

Oprm1 opioid receptor mu 1
Encodes the m-opioid receptor, involved in pain and emotion regulation (28); expression changes observed
in depression mouse models, possibly affecting emotional response (29).

BDNF brain derived neurotrophic factor
Plays a key role in neuroplasticity; low levels are associated with depression, affecting learning and
memory (30).

Tph2 tryptophan hydroxylase 2
A key enzyme in serotonin synthesis; decreased expression is closely associated with the onset of depressive
symptoms (31).

Zfp769 zinc finger protein 769
Encodes a zinc finger protein involved in gene regulation; associated with susceptibility to
neurodegeneration and chronic inflammation (32).

Sucnr1 succinate receptor 1
Encodes a short-chain fatty acid receptor involved in metabolic regulation; differentially expressed in
chronic CNS inflammation (33).

Rps26 ribosomal protein S26
Involved in protein synthesis; plays a role in the neurobiology of anorexia nervosa, indicating disrupted
subcortical appetite circuits (34).

Rxfp3 relaxin family peptide receptor 3
Encodes a receptor that regulates neuroendocrine functions; involved in feeding, stress, arousal, and
cognition; potential target for neurological disorders (35).

Grin3a —
Related to neuroendocrine function; expression changes observed in depressed mice, potentially affecting
stress response and emotional states (36).
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often based on linear assumptions and fail to address complex non-

linear relationships between genes. In contrast, the combined use of

WGCNA and machine learning enabled the extraction of latent

structure from high-dimensional data, effectively addressing

limitations in handling biological complexity and variability.

Furthermore, this study highlights the application of AI-assisted

technologies in biomedical data analysis, providing a scalable

research paradigm for investigating the molecular mechanisms

and potential biomarkers of other neuropsychiatric disorders,

such as anxiety and bipolar disorder.

The clinical relevance of the study lies in applying AI-assisted

machine learning methods, such as WGCNA and the random forest

model, to identify key genes associated with depression in a mouse

model. Genes like Oprm1 and BDNF, which exhibited significant

differential expression and strong functional relevance in the

neurobiology of depression, emerged as potential molecular

indicators. The analysis deepened understanding of the biological

basis of depression while offering candidate biomarkers for early

diagnosis and disease monitoring. Furthermore, these findings

contribute to developing therapeutic strategies targeting specific

molecular pathways, which may improve the personalization of

depression treatment, offering more precise therapeutic options,

potentially reducing side effects, and enhancing treatment efficacy.
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Methodologically, the integration of machine learning

techniques with nonlinear feature learning and systems biology-

based network analysis demonstrated strong advantages in

analyzing high-dimensional omics data. This combined strategy

established a novel framework for investigating mechanisms of

complex disease and emphasized the broader applicability of AI-

assisted analysis in neuropsychiatric research.

However, several limitations should be acknowledged,

particularly regarding the translational challenges of extending

findings from mouse models to human research. Interspecies

differences remain a critical barrier, given the substantial variation

in brain anatomy, neural circuitry, developmental trajectories, and

gene regulatory mechanisms between mice and humans. As a result,

the functional relevance of genes such as Oprm1 and BDNF

identified in mouse models warrants further validation in primate

systems. Although certain brain regions involved in emotional

regulation are evolutionarily conserved between rodents and

humans, notable differences in synaptic transmission and

hormonal response may limit the direct extrapolation of results.

Second, the differentially expressed genes identified in this study

were analyzed and evaluated exclusively in mouse models, lacking

validation in human samples. Future research should incorporate

cross-validation strategies using publicly available human datasets
FIGURE 8

Visualization of the bubble plot for eight key genes. Bubble plot representing expression levels and statistical significance of eight key genes (Oprm1,
BDNF, Tph2, Zfp769, Sucnr1, Rps26, Rxfp3, and Grin3a) across different brain regions—nucleus accumbens (NAC) and prefrontal cortex (PFC)—and
sexes (male: _m, female: _f). Bubble size reflects significance (inverse of p-value), and color intensity indicates Log2 fold change in expression. The
color scale is shown on the right.
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(e.g., GTEx, PsychENCODE), peripheral blood transcriptomic data,

and brain imaging-transcriptome datasets (e.g., fMRI-coupled

RNA-seq) to ensure the expression consistency and stability of

these genes in clinical samples.

To overcome the limitations of cross-species translation, the

application of human induced pluripotent stem cells (iPSCs) offers a

promising avenue. iPSCs, derived from skin or blood cells of

patients with depression, can be differentiated in vitro into

neurons, astrocytes, or three-dimensional brain organoids to

more accurately simulate the biological state of the human

nervous system. Thus, future research should prioritize three

directions: (1) constructing humanized models (e.g., iPSC-derived

neurons and brain organoids) to mimic human neurodevelopment

and gene regulation; (2) integrating multi-omics data from large-

scale clinical cohorts to conduct cross-validation and enhance

external validity; and (3) promoting interdisciplinary

collaboration with clinical psychiatry departments to conduct

multi-center and real-world studies, thereby accelerating the

translation of basic research into clinical applications.
Conclusion

The present study systematically analyzed gene expression

features in the NAC and PFC regions of depression mouse

models using WGCNA and the Random Forest model. The

results revealed 20,971 and 19,643 co-expressed genes in the NAC

and PFC regions, respectively, in the CUS model, indicating

extensive transcriptomic remodeling. The Random Forest model

achieved an accuracy of 94.5% and an AUC of 0.937, demonstrating

strong classification performance. Based on feature importance

scores, eight key genes were identified, including Oprm1, BDNF,

Tph2, Zfp769, with Oprm1 showing the highest contribution.

Bubble plot visualization confirmed significant expression of these

genes in critical brain regions, supporting their potential

as biomarkers.

Collectively, these findings contribute to mechanistic insights

into depression, demonstrate the feasibility of AI-assisted

biomarker discovery, and provide a data-driven framework for

diagnostic model development. Despite the inherent limitations of

translating results from animal models to clinical settings, the study

offers a theoretical basis and methodological roadmap for future

research. Continued validation and refinement of these findings

may facilitate the development of objective diagnostic tools and

individualized treatment strategies, advancing precision medicine

approaches in depression and yielding broader benefits for clinical

practice and public mental health.
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