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validation of biomarkers
associated with mitochondrial
and programmed cell death in
major depressive disorder
Shengjie Xiong1*, Lixin Liao1, Meng Chen2 and Qing Gan3

1Department of Psychiatry, Chengdu Second People’s Hospital, Chengdu, Sichuan, China,
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Sichuan, China, 3Department of Emergency, Chengdu Second People’s Hospital, Chengdu,
Sichuan, China
Background: Major depressive disorder (MDD) is associated with mitochondrial

dysfunction and programmed cell death (PCD), though the underlying

mechanisms remain unclear. This study aimed to investigate the molecular

pathways involved in MDD using a transcriptomic analysis approach.

Methods: Transcriptomic data related to MDD were obtained from public

databases. Differentially expressed genes (DEGs), PCD-related genes (PCDs),

and mitochondrial-related genes (MitoGs) were analyzed to identify key gene

sets: PCD-DEGs and MitoG-DEGs. Correlation analysis (|correlation coefficient|

> 0.9, p < 0.05) was performed to select candidate genes. Protein-protein

interaction (PPI) network analysis and intersection of four algorithms were used

to identify key candidate genes. Machine learning and gene expression validation

were employed, followed by reverse transcription-quantitative polymerase chain

reaction (RT-qPCR) for further validation. A nomogram was developed to predict

MDD probability based on biomarkers. Additional analyses included immune

infiltration, regulatory networks, and drug predictions.

Results: CD63, IL17RA, and IL1R1 were identified as potential biomarkers, with

significantly higher expression levels in the MDD cohort. These findings were

validated by RT-qPCR. A nomogram based on these biomarkers demonstrated

predictive capacity for MDD. Differential immune cell infiltration was observed,

with significant differences in nine immune cell types, including activated T cells

and eosinophils, between the MDD and control groups. ATF1 was identified as a

common transcription factor for CD63, IL17RA, and IL1R1. Shared miRNAs for

CD63 and IL1R1 included hsa-miR-490-3p and hsa-miR-125a-3p. Drug

prediction analysis identified 50 potential drugs, including verteporfin,

etynodiol, and histamine, targeting these biomarkers.
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Conclusion: CD63, IL17RA, and IL1R1 are key biomarkers for MDD, providing

insights for diagnostic development and targeted therapies. The predictive

nomogram and drug predictions offer valuable tools for MDD management.
KEYWORDS

major depressive disorder, biomarkers, programmed cell death, mitochondria,
bioinformatics analysis
1 Introduction

Major Depressive Disorder (MDD) is a severe mood disorder

characterized by dominant depressive mood, which includes core

symptoms such as anhedonia, cognitive and memory impairments,

and loss of interest (1). By 2030, MDD is projected to be the leading

cause of the global burden of disease (2). Known risk factors for

MDD include genetic predisposition, social environment,

psychological factors, hormonal imbalances, and neurotransmitter

dysregulation (3, 4). Despite various hypotheses, such as the

monoamine, cytokine, circadian rhythm, neurotrophic, and

inflammation hypotheses (5), a comprehensive understanding of

the pathophysiology of MDD remains elusive. In terms of treatment

strategy, active initial treatment is the best choice to deal with MDD,

and the combination treatment model shows a good application

prospect, which can not only improve the response rate of patients,

but also help reduce the loss of MDD patients in the course of short

- and long-term treatment (6). However, long-term use of

antidepressants is associated with a range of side effects, including

mood retarding (7), sexual dysfunction (8), and weight gain (9),

which further affect patients’ quality of life and treatment

compliance. The emergence of biomarkers provides us with more

accurate diagnosis and intervention means, which can help reduce

the economic health burden of MDD on society, and they provide

new possibilities for improving diagnosis methods, optimizing

interventions, innovative treatment methods, and predicting

treatment response (10). Therefore, it is of vital significance for

the research and treatment of MDD to deeply explore the

unelucidated physiological and biochemical mechanisms of MDD

and actively search for potential biomarkers.

Mitochondria, as the primary energy producers in cells, are

central to several physiological functions, including signal

transduction, regulation of reactive oxygen species (ROS),

substance metabolism, and apoptosis (11). Damage to

mitochondrial DNA disrupts cellular connectivity and

communication, ultimately compromising cellular function and

health (12). Research has highlighted the link between

mitochondrial dysfunction and depression, with depressive,

melancholic, and anxious states more frequently observed in

individuals with mitochondrial impairments (13). Moreover,

peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1a) is a key part of the mitochondrial genome
02
transcription system that maintains mitochondrial biogenesis in

the brain (14), and its dysfunction can affect mitochondrial function

and neuronal health and is associated with depression (15).

Increased mitochondrial fragmentation has been noted in MDD,

with the severity of the disorder correlating with alterations in

mitochondrial autophagy proteins and mitochondrial dynamics

(16). At the same time, it has been found that reactive oxygen

species and nitrogen species can cause damage to brain function by

regulating the activity of neurotransmitter systems, especially

glutamatergic systems, which are closely related to the

neurobiology of depression (17). Despite these observations, the

specific target proteins involved in the mitochondrial-MDD

interaction remain under investigation.

Programmed cell death (PCD) is a regulated, autonomous

process by which cells systematically terminate their life activities,

a mechanism essential for tissue development and homeostasis in

multicellular organisms (18). The PCD gene Pdcd4 has been

implicated in depression by specifically inhibiting proteins

associated with neuronal function, thus promoting the

progression of depressive symptoms. Suppressing Pdcd4

expression has been shown to alleviate these symptoms (19), with

recent studies providing direct evidence that targeting Pdcd4 can

improve depression outcomes (20). A key pathological feature of

MDD is astrocyte damage, particularly through pyroptosis, a form

of PCD, in chronic stress-induced depressive models (21). From a

cellular biology perspective, PCD contributes to the pathogenesis of

MDD by disrupting or impairing neuronal synapses during the

disease’s prolonged course (22). Given these observations, the

interplay between MDD and PCD warrants further exploration.

As previously noted, mitochondrial bioactivity and function are

integral to MDD (23), and mitochondrial signaling is closely linked

with various PCD mechanisms (24). Previous studies have made

progress in the role of mitochondrial and PCD mechanisms in

MDD, but did not correlate the two. The current study fills this gap

by integrating the mechanism of action of mitochondria and PCD

and revealing their synergistic effect and pathophysiological

mechanism in MDD, which provides a new direction for deeper

understanding of MDD and the development of new

treatment strategies.

Physiological and pathological state of the whole body, but also

provide rich information for the analysis of immune infiltration. In

this study, genes associated with 18 different cell death modes
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(including necrosis, anoikis, ferroptosis, cup death, lysosome-

dependent cell death, and heat death) and MitoGs were included

based on peripheral blood samples from public databases. Through

differential expression analysis, enrichment analysis, and protein-

protein interaction (PPI) network analysis, potential biomarkers for

MDD were identified. A nomogram model was then constructed to

assess the predictive power of these biomarkers for the disease.

Additionally, a range of bioinformatics methods, including

molecular regulatory network analysis, immune infiltration

analysis, and drug prediction analysis, were employed to offer

valuable insights for MDD diagnosis and the development of

novel therapeutic strategies. The flow of this study was shown in

Supplementary Figure S1 (25).
2 Materials and methods

2.1 Data collection

Transcriptome sequencing data were sourced from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/). The training set comprised GSE76826 (GPL17077 platform),

which included 10 blood samples from patients with MDD and 12

control blood samples (Supplementary Table S1). Depressive state

was measured using the Structured Interview Guide for Hamilton

Depression (SIGH-D) scale. The validation set, GSE98793 (GPL570

platform), contained 128 MDD blood samples and 64 control blood

samples (Supplementary Table S2). 64 patients in the MDD patient

group were also diagnosed with Generalized Anxiety Disorder

based on the results of the MINI questionnaire assessment. A

total of 1,548 PCD genes were extracted from the literature (26)

(Supplementary Table S3), while 1,136 mitochondrial-related genes

(MitoGs) were obtained from the MitoCarta3.0 database (http://

www.broadinstitute.org/mitocarta) as referenced in the literature

(27) (Supplementary Table S4).
2.2 Identification of candidate genes

Differentially expressed genes (DEGs) in both MDD and

control samples within GSE76826 were identified using the limma

package (v 3.54.1) (28), with thresholds set at p < 0.05 and |log2 fold

change (FC)| > 0.5. Subsequently, the ggplot2 package (v 3.3.6) (29)

was employed to generate a volcano plot, visually representing these

DEGs and highlighting the top 10 upregulated and downregulated

genes based on |log2FC|. A heatmap displaying the expression

patterns of the top 10 DEGs was created using the pheatmap

package (v 1.0.12) (30), with gene expression sorted by |log2FC|.

To identify PCD-related genes exhibiting differential expression,

DEGs were intersected with PCDs, yielding PCDs-DEGs. Similarly,

DEGs were intersected with MitoGs to derive MitoGs-DEGs. These

intersections were visualized using the ggvenn package (v 0.1.9)

(31). Spearman correlation analysis, conducted with the psych

package (v 2.2.9) (32), assessed the correlation between PCDs-
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DEGs and MitoGs-DEGs, with a threshold of |correlation

coefficient (cor)| > 0.9 and p < 0.05. After eliminating duplicates,

genes with significant correlations were selected as candidate genes

for further analysis.
2.3 Enrichment analysis and protein-
protein interaction network of candidate
genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were performed using the

clusterProfiler package (v 4.6.2) (33), with p < 0.05 as the

significance threshold. The top 15 GO pathways and top 10

KEGG pathways were visualized by ranking them in ascending

order of p-values. To explore protein interactions among the

candidate genes, a PPI network was constructed using the Search

Tool for the Retrieval of Interacting Genes (STRING) database

(https://string-db.org/) with a confidence score threshold of 0.4.

The cytoHubba plugin in Cytoscape (v 3.9.1) (34) was used to

evaluate genes associated with each node, applying algorithms

including Degree, Maximum Clique Centrality (MCC), Maximum

Neighborhood Component (MNC), and Density of Maximum

Neighborhood Component (DMNC). The top 30 genes for each

algorithm, based on ranking scores, were selected. An intersection

analysis was performed to identify key candidate genes identified by

the various algorithms.
2.4 Machine learning algorithms and
identification of candidate biomarkers

The Boruta algorithm was initially employed to identify Boruta

feature genes using the Boruta package (v 8.0.0) (35). The highest

importance value of the shadow features (shadow Max) was set as a

benchmark, and genes with importance values exceeding this

threshold were retained as Boruta feature genes (p = 0.01, mcAdj =

T, maxRuns = 300). Next, random forest (RF) analysis was performed

on the key candidate genes using the randomForest package (v 4.7-

1.1) (36). The number of trees was optimized to minimize errors,

avoid overfitting and reduce computational costs, and after re-training

the model, RF feature genes were selected from the key candidates

based on whether the importance value exceeded the median.

Additionally, the key candidate genes underwent rigorous evaluation

via the Support Vector Machine-Recursive Feature Elimination

(SVM-RFE) algorithm. Key candidate genes were classified using

support vector machine (SVM), and the genes with lower

importance were ranked according to their importance and

gradually eliminated, so that the most relevant genes to the disease

were screened out through several iterations. During the evaluation

process, 5-fold cross-validation was used to calculate the error rates of

different feature sets, and the importance ranking, error rate and

accuracy of genes in each iteration were recorded, and the genes

corresponding to the feature set with the lowest error rate were finally
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/mitocarta
http://www.broadinstitute.org/mitocarta
https://string-db.org/
https://doi.org/10.3389/fpsyt.2025.1564380
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Xiong et al. 10.3389/fpsyt.2025.1564380
selected as SVM-RFE feature genes. Finally, the genes selected by the

three machine learning algorithms were intersected to identify the

candidate biomarkers.
2.5 Identification of biomarkers

To assess the expression levels of candidate biomarkers, datasets

GSE98793 and GSE76826 were analyzed, and the expression

differences between MDD and control groups were compared

using the Wilcoxon test. Significant expression differences across

both datasets with consistent trends were visualized using a violin

plot generated with the ggplot2 package (v 3.3.6), and these genes

were designated as biomarkers (p < 0.05). To validate the accuracy

of these biomarkers, reverse transcription-quantitative polymerase

chain reaction (RT-qPCR) was performed using blood samples

from 5 patients with MDD and 5 healthy individuals. All samples

were obtained from Chengdu Second People’s Hospital, with

informed consent from the donors. The study was approved by

the Medical Ethics Review Committee of Chengdu Second People’s

Hospital (approval number: [KY]PJ2024246). Total RNA was

extracted using the Trizol method (Ambion, 15596018CN, USA)

(37), and cDNA was synthesized using the SweScript First Strand

cDNA Synthesis Kit (Servicebio, G3333-50, China). GAPDH was

used as an internal reference gene, and the expression levels of

biomarkers were calculated using the 2-DDCt method (38). Statistical

significance was considered at p < 0.05. Primer sequences are listed

in Supplementary Table S5. The GraphPad Prism (v 8.0) (39) was

used for data analysis and visualization.
2.6 Construction and evaluation of
nomogram

A nomogram was developed using the rms package (v 6.5.0)

(40), and the pROC package (v 1.18.0) was used to generate a

receiver operating characteristic (ROC) curve to evaluate its

predictive performance, with an area under the curve (AUC) >

0.7. Calibration curves were then plotted using the rms package to

assess the nomogram’s accuracy. The results indicated no

significant difference between the predicted values and actual

observations, confirming that the model was well-calibrated (p >

0.05). Furthermore, decision curve analysis (DCA) was performed

to evaluate the clinical utility of the nomogram, utilizing the rmda

package (v 1.6) (https://github.com/mdbrown/rmda).
2.7 Immune infiltration analysis

Immune infiltration analysis provided insights into various

immune cell populations, predicted treatment responses, and

contributed to the development of immunotherapeutic strategies

by revealing the complex interactions between immune cells and
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biomarkers. Initially, the gene expression profiles of each sample in

the GSE76826 dataset were enriched by the ssGSEA algorithm (41)

using the set of 28 immune-related genes provided by the TISIDB

database (http://cis.hku.hk/TISIDB/) in conjunction with the GSVA

software package (v 1.46.0) (42). The ssGSEA algorithm was used to

compute each immune cell gene set enrichment scores that reflect

the relative abundance or activity of specific immune cell types in

the sample. Based on the analysis of these enrichment scores, we can

infer the composition and proportions of different immune cell

types in the samples, thus further revealing the characteristics of the

immune microenvironment. The Wilcoxon test (MDD vs. control,

p < 0.05) was used to evaluate differences in the proportion of

immune cells between MDD and control groups. The results were

visualized using the ggplot2 package (v 3.3.6). Differential immune

cell infiltration was then visualized using the pheatmap package

(v 1.0.12). Furthermore, Spearman correlation analysis was

conducted to assess correlations between differential immune cells

and between biomarkers and differential immune cells across all

samples in GSE76826, using the corrplot package (v 0.92) (43)

(|cor| > 0.3, p < 0.05).
2.8 Regulatory network analysis

The regulatory network analysis provided a comprehensive

mapping of molecular interactions, facilitating the identification

of key regulatory hubs, uncovering complex biological pathways,

and aiding the prediction of therapeutic targets. Initially,

NetworkAnalyst (https://www.networkanalyst.ca/NetworkAnalyst/)

was used to identify transcription factors (TFs) associated with the

biomarkers. Themicrocosm database (https://tools4mirs.org/software/

mirna_databases/microcosm-targets/) was then used to predict

microRNAs (miRNAs) with regulatory roles in relation to the

biomarkers. Visualization of the TF-mRNA and miRNA-mRNA

regulatory networks was performed using Cytoscape software (v 3.9.1).
2.9 Drug prediction

The Drug SIGnatures DataBase (DSigDB) (https://

dsigdb.tanlab.org/DSigDBv1.0/) was used to identify potential

drugs associated with biomarkers, retaining the top 50

compounds with combined scores ranging from 0.90 to 1,733.47.

The drug-mRNA regulatory network was visualized using

Cytoscape software (v 3.9.1).
2.10 Ethics approval statement

The studies involving human participants were reviewed and

approved by the Medical Ethics Review Committee of Chengdu

Second People’s Hospital, with written informed consent provided

by the patients/participants for their participation in the study.
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2.11 Statistical analysis

Statistical analysis was performed using the R programming

language (v 4.2.2). Group differences were assessed using the

Wilcoxon test, with p < 0.05 considered statistically significant.

Comparisons between groups in the RT-qPCR analysis were made

using t-tests.
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3 Results

3.1 Identification of 55 candidate genes

The differential expression analysis initially revealed a total of

2,554 DEGs, with 911 up-regulated and 1,643 down-regulated in

MDD samples compared to controls (Figures 1A, B). A total of 132
FIGURE 1

Identification of 55 candidate genes. (A) Volcano plot of differentially expressed genes (DEGs), with red dots representing upregulated genes, blue
dots representing downregulated genes, and grey dots indicating non-significant genes. (B) Heatmap displaying the differential expression of genes,
where high expression is indicated in red and low expression in green. The upper section is a heatmap of the expression density of the top10 genes
down-regulated on the sample, showing the lines of the five quartiles and the mean; the lower section is a heatmap of the expression of the top10
genes down-regulated on the sample. (C) Venn diagram illustrating the intersection of DEGs and PCDs. (D) Venn diagram showing the intersection
of DEGs and MitoGs.
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FIGURE 2

Functional analysis of 55 candidate genes. (A) Gene Ontology (GO) enrichment analysis for candidate genes. The figure consists of left and right
parts, the left half is the GO enrichment analysis circular graph, the inner circle is the bar graph, the height of the bar graph indicates the significance
of the pathway, the higher the more significant; the bar graph is the z-score, the darker the color the bigger the z-score is, the z-score score can
imply that the pathway is up-regulated/down-regulated; the outer circle shows a scatterplot of the expression level of the genes in each pathway,
the upregulated indicates upregulated genes in each pathway, and downregulated indicates downregulated genes in each pathway. The right half is
GO-enriched pathway description information. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of candidate
genes. The left half of the circle is the name of the enriched genes, the color shade represents the size of log2FC, the darker the color, the larger
the log2FC, and the blue is the down-regulated genes; the right half of the circle is the enriched functional pathways, different colors represent
different pathways, the pathway names corresponding to the colors can be referred to the Terms at the bottom of the picture, and the size of the
color squares change with the number of enriched genes, the more genes are enriched in the pathway, the larger the color squares are. The more
genes are enriched in the pathway, the larger the color square is. The middle lines link the genes enriched in different pathways. Some genes may be
enriched in more than one pathway at the same time, suggesting that they may have multiple regulatory functions. (C) Protein-protein interaction
network of candidate genes. Each circle represents a gene, the connecting lines represent the presence of interactions, and the colors represent the
size of the degree, with yellow to purple indicating that the degree is small to large. (D) Venn diagram of intersecting genes identified by four
different algorithms in “CytoHubba”.
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PCDs-DEGs and 39 MitoGs-DEGs were then identified

(Figures 1C, D). Spearman correlation analysis further narrowed

the selection down to 55 candidate genes for subsequent

investigation (Supplementary Table S6).
3.2 Functional analysis of 55 candidate
genes

Functional enrichment analysis identified key biological

processes, pathways, and gene interactions, providing deeper
Frontiers in Psychiatry 07
insight into the molecular mechanisms underlying MDD. The

candidate genes were significantly enriched across 1,129 GO

signaling pathways, including 994 biological processes (BPs) such

as the positive regulation of response to external stimuli, 70 cellular

components (CCs) such as the vacuolar membrane, and 65

molecular functions (MFs) such as ubiquitin-like protein ligase

binding. Additionally, 77 KEGG signaling pathways were identified,

including the PI3K-Akt signaling pathway, MAPK signaling

pathway, and HIF-1 signaling pathway (Figures 2A, B,

Supplementary Tables S7, S8). The PPI network for the candidate

genes contained 46 nodes and 104 edges, with 26 key candidate
FIGURE 3

Identification and expression validation of biomarkers. (A) Boruta algorithm screening for signature genes. (B) Random forest model screening for
key genes. Horizontal coordinates indicate immune cells and vertical coordinates indicate enrichment scores of immune cells. (C) Feature gene
screening using the SVM-RFE algorithm. (D) Venn diagram of genetic intersections identified by the three algorithms. (E) Expression analysis of
candidate biomarkers in GSE76826. ***p < 0.001. (F) Expression analysis of candidate biomarkers in GSE98793. *p < 0.05, **p < 0.01, ns: p > 0.05.
(G-I) RT-qPCR results for CD63, IL17RA, and IL1R1. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1564380
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Xiong et al. 10.3389/fpsyt.2025.1564380
genes identified from the intersection of four algorithms, including

TLR4, PTEN, and MAPK1 (Figures 2C, D, Supplementary Table

S9). Notably, genes such as CEBPB, STAT5B, FN1, TLR4, MAPK1,

PTEN, and FOXO3 were positioned centrally within the network,

suggesting significant interactions with other proteins.
3.3 Identification and expression validation
of biomarkers

The Boruta algorithm robustly identified important features by

comparing shadow features. From this analysis, 17 Boruta feature

genes were selected (Figure 3A). RF analysis further identified 13 RF

feature genes, including CEBPB, LYN, and CD63, with an

importance value median greater than 0.3464709 (Figure 3B).

SVM-RFE analysis revealed 17 SVM-RFE feature genes

(Figure 3C). By intersecting the genes identified by the three

algorithms, 11 candidate biomarkers were obtained: LYN, CD63,

HSPA1A, IL17RA, CUL3, FOXO3, LAMP2, FADD, PTEN, IFNAR1,

and IL1R1 (Figure 3D). Gene expression analysis further confirmed

that CD63, IL17RA, and IL1R1 exhibited consistent expression

patterns across the GSE76826 and GSE98793 datasets, with

significant differences observed between MDD and control groups
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(p < 0.05) (Figures 3E, F). Specifically, CD63, IL17RA, and IL1R1

were markedly up-regulated in MDD compared to controls. Finally,

the results of RT-qPCR demonstrated that CD63 (FC = 5.23),

IL17RA (FC = 5.51), and IL1R1 (FC = 4. 29) were significantly

highly expressed in MDD patients (p < 0.001). (Figures 3G–I).

Overall, the expression trends of these biomarkers were consistent

with those observed in the GSE76826 and GSE98793 datasets,

supporting the reliability of the biomarkers identified through this

filtering and characterization process.
3.4 The precise predictive capability of the
nomogram

A nomogram was initially developed to evaluate the predictive

accuracy of CD63, IL17RA, and IL1R1 for MDD (Figure 4A). The

subsequent ROC curve analysis of the nomogram model revealed

exceptional performance (AUC = 0.95) (Figure 4B). The calibration

curve’s slope, nearing ideal, confirmed the model’s predictive

accuracy (p = 0.527) (Figure 4C). The DCA curve further

demonstrated the model’s robust clinical utility (Figure 4D).

Overall, these results highlight the nomogram’s high predictive

accuracy and substantial clinical applicability for MDD.
FIGURE 4

Predictive accuracy of the nomogram. (A) Nomogram predicting the accuracy of MDD. (B) ROC curve analysis for the nomogram. (C) Calibration
curve for the nomogram. (D) Decision curve analysis (DCA) for the nomogram.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1564380
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Xiong et al. 10.3389/fpsyt.2025.1564380
3.5 Immune infiltration analysis of
biomarkers

Immune cell presence and activity within the microenvironment

significantly impact patient outcomes, making it a key area for

therapeutic investigation. The estimated proportions of 28 distinct

immune cell types across samples in GSE76826 are shown in

Figure 5A. Analysis of immune cell infiltration revealed significant

differences in the enrichment scores of nine cell types. A marked

increase in eosinophils, gamma delta T cells, immature dendritic cells,

and macrophages was observed in the MDD group, while activated B

cells, CD8+ T cells, CD4+ central memory T cells, CD8+ effector

memory T cells, and immature B cells showed a notable decrease

(Figure 5B). The immune infiltration levels of these differential cell

types in the control and MDD groups are displayed, with activated B

cells exhibiting reduced expression in the MDD group (Figure 5C).

These results suggest a distinct immunological landscape in MDD,

potentially reflecting altered activation and maturation of critical

immune cells.
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Analysis of immune cell associations revealed the strongest positive

correlation between activated B cells and immature B cells (cor = 0.97,

p = 6.93 × 10-17), while the strongest negative correlation was observed

between CD8 effector memory T cells and macrophages (cor = -0.79, p

= 8.02 × 10-5) (Figure 5D, Supplementary Table S10). Notably, CD63

showed a strong positive correlation with macrophages (cor = 0.70, p =

5.89 × 10-5), while IL17RA (cor = 0.87, p = 1.03 × 10-7) and IL1R1 (cor

= 0.87, p = 1.62 × 10-7) exhibited strong positive correlations with

CD63. In contrast, CD63 (cor = -0.71, p = 8.02 × 10-5) and IL17RA (cor

= -0.80, p = 3.27 × 10-5) demonstrated strong negative correlations with

immature B cells, and IL1R1 (cor = -0.76, p = 2.30 × 10-5) negatively

correlated with CD8 effector memory T cells.
3.6 Regulatory network analysis and drug
prediction

Molecular regulatory networks are essential for understanding

gene regulation mechanisms in biological cells and the pathogenesis
FIGURE 5

Immune infiltration analysis of biomarkers. (A) Estimation of the proportions of 28 different immune cell types in GSE76826 samples. (B) Differences
in immune cell expression between the MDD and control groups in GSE76826. *p < 0.05, **p < 0.01, ***p < 0.001. (C) Heatmap of immune cell
abundance in MDD and control groups, with red indicating high abundance and blue indicating low abundance. (D) Heatmap showing correlations
between differential immune cells and biomarkers. Red indicates positive correlation, the stronger the correlation, the redder the color, blue
indicates negative correlation, the stronger the correlation, the bluer the color, and the percentage of colors in the circle indicates the size of the
correlation coefficient.
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of related diseases. The constructed TF-mRNA network identified

95 TFs predicted by the biomarkers (Figure 6A). ATF1 emerged as

the common TF across all three biomarkers, while IRF1 was shared

between CD63 and IL17RA, and HBP1, DRAP1, TGIF2, and

TFDP1 were common to CD63 and IL1R1. The microcosm

database predicted that CD63 targets 9 miRNAs, IL17RA targets

26, and IL1R1 targets 15. The miRNA-mRNA regulatory network

revealed interactions such as hsa-miR-148b-3p-IL17RA, hsa-miR-
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548c-3p-CD63, and hsa-miR-490-5p-IL1R1 (Figure 6B). Notably,

the shared miRNAs between CD63 and IL1R1 included hsa-miR-

490-3p and hsa-miR-125a-3p. Furthermore, small-molecule drug

therapies are crucial in managing MDD. Based on interaction

scores, the top 50 potential drugs (scores ranging from 120.43 to

1,733.47) were identified for MDD. Fifteen agents (e.g., histamine,

diphenylpyraline, and fenbuconazole) were linked to CD63, while

IL17RA was associated with three drugs (verteporfin, parthenolide,
FIGURE 6

Regulatory network analysis and drug prediction. (A) Transcription factor (TF)-biomarker regulatory network. Red circles represent biomarkers, and
blue diamonds represent transcription factors. (B) miRNA-biomarker (mRNA) regulatory network. Red circles represent biomarkers, and blue arrows
represent miRNAs. (C) Drug-biomarker interaction predictive network. Red nodes represent biomarkers, and green nodes represent drugs.
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and iohexol), and IL1R1 was connected to 32 drugs (e.g., etynodiol,

ciglitazone, and chrysin) (Figure 6C). This approach emphasizes the

potential for personalized therapies, enhancing understanding of

drug responses in MDD and advancing precision psychiatry.
4 Discussion

The onset age and somatic symptoms of MDD are influenced by

genetic factors, with different genetic variants contributing to

significant variations in the age of onset, as well as the types and

severity of somatic symptoms (44). Delving further into the

biological basis of MDD may yield substantial clinical benefits.

This study began with bioinformatics techniques, including

differential expression, correlation, and algorithmic analysis based

on protein-protein interactions, which led to the identification of 26

key candidate genes. Machine learning algorithms and gene

expression validation subsequently confirmed three critical

biomarkers for MDD: CD63, IL17RA, and IL1R1. A nomogram

model was developed based on these biomarkers, demonstrating

strong predictive performance. Additionally, immune infiltration

analysis, molecular regulatory network analysis, and drug

prediction were conducted, providing foundational support for

pharmacological targeting, treatment, and diagnosis of MDD.

CD63, a tetraspanin protein present on various cell types, is

particularly abundant on lysosomes and multivesicular bodies (45).

It is involved in several cellular functions, including cell signaling,

adhesion, and immune regulation (46, 47). A study examining type

2 diabetes mellitus (T2DM) found significantly higher CD63

expression in T2DM individuals with comorbid depression

compared to those with diabetes alone (48), suggesting that CD63

could serve as a potential biomarker for depression, particularly in

individuals with comorbid T2DM. Chronic stress, a well-known

trigger for depression, has been shown to increase pro-

inflammatory platelet activity, affecting brain function through

inflammatory pathways and worsening depressive symptoms (49).

In states of chronic stress, the number of CD63+ platelets notably

rises, leading to elevated pro-inflammatory platelet activity in the

bloodstream (50). These findings propose that increased CD63+

platelets may serve as an intermediary linking physical

inflammatory conditions to psychosomatic health issues. Another

study also demonstrated increased CD63 expression in platelets

from patients with depression (51), suggesting that alterations in

CD63 expression could be pivotal in platelet hyperactivation among

depressed individuals. In this study, CD63 expression was

significantly upregulated in patients with MDD, aligning with

existing evidence that CD63 exacerbates the pathological course

of depression. This finding offers novel insights into the diagnosis

and treatment of depression, indicating that monitoring CD63

expression levels could be valuable for assessing patient

conditions and evaluating treatment efficacy.

Interleukin 17 Receptor A (IL17RA), a cell surface receptor in

the IL-17 receptor family, is primarily responsible for mediating IL-

17 signaling, contributing to inflammatory processes and immune

responses (52). Elevated IL-17 levels in the gut and serum are linked
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to chronic neuroinflammation, which reduces 5-HT concentrations

in the hippocampus and induces depressive-like behaviors in mice

(53). Furthermore, IL-17 has been identified as a specific

inflammatory marker associated with Parkinson’s disease

depression (54). An epigenetic meta-analysis on MDD suggests

that IL17RA plays a role in the neurobiological mechanisms of

depression, likely through inflammation (55). This study similarly

designates IL17RA as a risk factor for MDD, supporting the widely

accepted mechanism in which IL17RA modulates neural function

through IL-17-mediated inflammatory responses. In addition,

disruption of the IL-17A-IL-17RA interaction was found to

broaden the inflammatory response, which had a significant effect

on mitochondrial fission, modulating mitochondrial fission

sensitivity by inhibiting phosphorylation of downstream Drp-1

through STAT-3 signaling (56), which may lead to mitochondrial

dynamics dysfunction, thereby affecting the development and

progression of depression (23). Consequently, targeting IL17RA

emerges as a promising therapeutic strategy for MDD.

Interleukin 1 Receptor Type 1 (IL-1R1) is a receptor involved in

the signaling of Interleukin 1 (IL-1), a cytokine secreted primarily

by macrophages and monocytes, which plays a pivotal role in

inflammatory and immune responses (57, 58). IL-1R1 expression

is upregulated in the lymphocytes of patients with MDD, with its

mRNA level in lymphocytes serving as a potential biomarker for

depression (59). Genome-wide association studies (GWAS) have

pinpointed specific single nucleotide polymorphisms (SNPs) in the

IL1R1 gene, such as rs2540315 and rs75746675, that are linked to

antidepressant responses (60). Inflammatory cytokines like IL-1, IL-

2, and IL-6 have been shown to predict treatment outcomes in

treatment-resistant depression (61). In this study, we found a

potential link between CD63, IL17RA, IL-1R1, and MDD, all of

which are associated with inflammation. Circulating mitochondrial

DNA in MDD patients has been shown to contribute to

inflammation in MDD (62), and further studies found that

monocytes from patients who experienced childhood adversity

had an enhanced inflammatory response, which would drive the

cells toward pyroptosis (63). These findings suggest that

inflammation, mitochondrial function and programmed cell death

play important roles in the pathogenesis of MDD. However, further

studies are needed to explore their specific mechanisms in MDD.

Immunoinfiltration analysis revealed an increased proportion

of eosinophils, gd T cells, and macrophages in patients with MDD.

A recent study highlighted eosinophils as an independent predictor

of MDD, playing a role in the pathological inflammatory response

associated with the condition (64). gd T cells, a type of

unconventional T cell, have been shown to influence host

susceptibility to chronic stress within the gut system (65), thereby

raising the risk of depression. Additionally, substantial evidence

supports macrophage activation in the central nervous system,

where they release inflammatory cytokines that contribute to

MDD progression (66). Correlation analysis of immune cell

differences demonstrated a strong positive correlation between

CD63 and macrophages, suggesting that elevated CD63 levels

may interact synergistically with macrophage activation in MDD.

Previous studies have indicated a reduction in mature B cells that
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are antigen-naive, immune-regulatory B cell subsets, and

transitional B cells in patients with MDD (67). This study

similarly found decreased expression of activated B cells and

immature B cells in MDD, consistent with the general decline of

B cell populations observed in the condition. The reduction in

immature B cells may reflect issues with B cell generation and

differentiation in patients with MDD, while the decrease in

activated B cells could impair the maintenance of immune

balance. The strong negative correlation between IL17RA and

immature B cells suggests that targeting IL17RA or the IL-17

signaling pathway may aid in restoring immature B cell numbers

and function, potentially alleviating MDD symptoms.

In this study, functional enrichment analysis revealed that

targets such as CD63, IL17RA, and IL1R1 are involved in

depression-related pathways, including the HIF-1, MAPK, and

PI3K-Akt signaling pathways. Notably, the activation of the HIF-

1 signaling pathway has been shown to mitigate depression

progression in rats by enhancing synaptic function and

neurogenesis (68). Current research identifies the HIF-1 pathway

as a key therapeutic target for depression (69). Similarly, the MAPK

signaling pathway plays a critical role in depression, with the

MAPK-CREB1-BDNF signaling axis, a branch of the MAPK

pathway, reducing depressive symptoms in mice by modulating

hippocampal neuronal damage (70). In MDD, the MAPK pathway

serves as a central hub in the pathological mechanisms of disease

progression, with molecular alterations triggered by various

stressors being regulated through this pathway (71). Moreover,

the PI3K/Akt signaling pathway, essential for brain cell growth and

survival, influences depression through several mechanisms,

including modulation of neurotransmitter activity, regulation of

neuroinflammation, promotion of hippocampal neurogenesis, and

repair of synaptic damage (72). These findings suggest that these

targets may modify depression’s pathological mechanisms by

participating in or influencing these pathways.

PCR results aligned with bioinformatics analysis, showing

upregulated expression of CD63, IL17RA, and IL1R1 in the MDD

group compared to the control group, further confirming the

reliabil ity of the bioinformatics predictions. Through

comprehensive molecular regulatory network analysis,

transcription factors such as ATF1, IRF1, HBP1, DRAP1, TGIF2,

and TFDP1 were identified as potential regulatory factors in

depression, warranting further exploration. Additionally, the

miRNA-mRNA regulatory network highlighted miRNAs like hsa-

miR-148b-3p, hsa-miR-548c-3p, and hsa-miR-490-5p as valuable

for depression-related research. Although several potential drugs

targeting CD63, IL17RA, and IL1R1 were identified, limited

research exists on their effects on MDD or depression. The

development of targeted therapies for MDD, with a focus on

clinical translation, remains a critical area for future research.

This study identified CD63, IL17RA, and IL1R1 as key targets in

MDD and elucidated the potential mechanisms through which they

exert their effects, laying a foundation for future MDD research.

However, the study has certain limitations. First, the inclusion of
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additional samples is necessary to improve the reliability of the

predicted biomarkers. Second, while bioinformatics analysis offers

valuable insights, further research is needed to translate these

findings into clinical applications. Finally, additional gene

knockout and animal cell experiments should be conducted to

further validate the biological functions of these genes.
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MDD major depressive disorder
Frontiers in Psychiatr
DEGs differentially expressed genes
PCDs programmed cell death-related genes
MitoGs mitochondrial-related genes
cor correlation coefficient
PPI protein-protein interaction
RT-qPCR reverse transcription-quantitative polymerase chain reaction
ROS reactive oxygen species
PGC-1a peroxisome proliferator-activated receptor gamma

coactivator 1-a
PCD programmed cell death
MitoGs-DEGs mitochondrial-related differentially expressed genes
PCDs-DEGs programmed cell death-related differentially expressed genes
GEO gene expression omnibus
FC fold change
GO gene ontology
KEGG kyoto encyclopedia of genes and genomes
STRING search tool for the retrieval of interacting genes
MCC maximum clique centrality
MNC maximum neighborhood component
y 15
DMNC density of maximum neighborhood component
RF random forest
SVM-RFE support vector machine-recursive feature elimination
ROC receiver operating characteristic
AUC area under the curve
DCA decision curve analysis
TFs transcription factors
miRNAs microRNAs
DSigDB drug signatures database
BPs biological processes
CCs cellular components
MFs molecular functions
T2DM type 2 diabetes mellitus
IL17RA interleukin 17 receptor A
IL-1R1 interleukin 1 receptor type 1
IL-1 interleukin 1
GWAS genome-wide association studies
SNPs single nucleotide polymorphisms
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