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Genetic association between
gene expression profiles in
oligodendrocyte precursor cells
and psychiatric disorders
Reon Kondo, Hiroki Kimura* and Masashi Ikeda

Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
Background: Although neuronal dysfunction has been the focus of many studies

on psychiatric disorders, accumulating evidence suggests that white matter

abnormalities and oligodendrocyte lineage cells, including oligodendrocyte

precursor cells (OPCs), play an important role. Beyond their established

contribution to myelination, synaptic genes in OPCs form connections to

neurons and influence neuronal circuits and plasticity, thereby potentially

contributing to psychiatric pathology.

Methods: We analyzed publicly available single–nucleus RNA sequencing

(snRNA–seq) data from white matter cells of healthy donors with SCZ

genome–wide association study (GWAS) summary statistics. We assessed cell–

type–specific enrichment of SCZ–associated genetic variants and performed

weighted gene co–expression network analysis (WGCNA) to identify disease–

related gene modules in implicated cell types.

Results: OPCs exhibited significant enrichment of SCZ–associated genetic risk

variants and showed pronounced specificity in gene expression patterns.

Through WGCNA, we identified a distinct co–expression module in OPCs that

was enriched for synaptic genes associated with SCZ.

Conclusion: The present results highlight the previously underappreciated role

of OPCs in psychiatric disorders, suggesting that OPC–involved synaptic

interactions may contribute to the pathophysiology of SCZ. This work

underscores the importance of considering OPCs as active players in neural

network dysfunction, with potential implications for future therapeutic strategies.
KEYWORDS

schizophrenia, autism spectrum disorder, oligodendrocyte precursor cells, single-cell
analysis, weighted gene co-expression network analysis
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1 Introduction

Psychiatric disorders such as schizophrenia (SCZ) and autism

spectrum disorder (ASD) represent a significant public health

challenge because of their profound impact on individuals,

families, and society (1). These disorders are complex, involving

both genetic and environmental factors, and their biological

mechanisms remain only partially understood. Recent genomic

studies, including genome–wide association studies (GWAS) and

analyses of copy number variations and single nucleotide variants,

have identified numerous common and rare genetic variants

associated with these conditions (2–6). Magnetic resonance

imaging (MRI)–based brain imaging studies have revealed altered

intra– and inter–regional connectivity, particularly in white matter

regions (7–10). However, the specific mechanisms by which genetic

variants or alterations in imaging studies contribute to different

diseases remain largely unknown.

Advances in single–cell/nucleus RNA sequencing (sc/snRNA–

seq) in the postmortem brain have allowed researchers to study the

association of genetic variants with different diseases at high

resolution, thereby revealing which cell types are most affected by

genetic risk variants (11–13). Among these variants, the

pathogenetic contributions of neural populations are highlighted,

as certain variants affect genes critical for synaptic function,

plasticity, and neurotransmission. For example, in SCZ, variants

affecting synaptic proteins alter neuronal connectivity (4). Similarly,

in ASD, mutations in synaptic genes affect the development of

neural circuitry (14).

In addition to direct synaptic interactions between neurons, the

role of glial cells, including oligodendrocytes, in neural circuit

formation and maintenance, and their contribution to the

development of psychiatric disorders, has attracted attention for

decades (15–18). Oligodendrocytes are responsible for myelinating

axons, thereby enabling rapid electrical signal transmission.

Dysregulation of oligodendrocyte function and myelination has

been associated with disruptions in both white and gray matter,

contributing to impaired synaptic plasticity and altered neural

circuits (17). Also, the impairment in the maturation process of

oligodendrocyte from their precursor, oligodendrocyte precursors

(OPCs) is considered to play a role in the pathogenesis of SCZ (19).

MRI studies have revealed significant white matter changes in SCZ

and ASD, including reductions in white matter volume and

integrity, particularly in brain regions involved in cognition and

social behavior (7–10). These white matter abnormalities, observed

in both SCZ and ASD, are thought to underlie the neurobiological

deficits associated with these conditions.

Recently, weighted gene co–expression network analysis

(WGCNA) has been used to elucidate the complexity of

psychiatric disorder (20–22). This is a robust approach designed

to decipher the intricate relationships within large-scale gene

expression datasets. Unlike traditional differential expression

analyses, WGCNA constructs networks that reveal clusters—or
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modules—of highly co-expressed genes, which can then be

correlated with clinical traits or experimental conditions such as

age, sex, tissue origin, and disease status. This network-based

framework transforms gene expression data into a structure

where each gene is represented as a node, and the weighted edges

signify the strength of the co-expression relationships between gene

pairs. By identifying tightly connected gene modules, researchers

are able to pinpoint groups that likely function together in specific

biological pathways or contribute collectively to phenotypic traits.

This holistic methodology not only simplifies the interpretation of

high-dimensional data but also facilitates the discovery of key driver

genes, or hub genes, that may serve as critical biomarkers or

therapeutic targets (23). Moreover, high–dimensional WGCNA

(hdWGCNA) ca describe co–expressing gene networks in

Alzheimer’s disease and ASD by using single–nucleus gene

expression data (24, 25). These methods analyze gene co–

expression patterns across single–cell data, revealing cell–type–

specific gene modules linked to psychiatric conditions.

Neuronal cell populations have consistently been reported as

enriched for the common genetic risk variations linked to

psychiatric disorders (4, 11, 26). By contrast, findings regarding

OPCs have been more variable (4, 12). Previous studies

investigating the association between genetic risk variants and

specific cell populations have focused on data derived from gray

matter. However, to our knowledge, no studies have examined

whether cell populations in white matter are enriched for common

genetic risk variations. White matter contains abundant myelinated

axons, neurons, and glial cells, including oligodendrocytes and

OPCs. White matter microstructural alterations are a shared

feature of psychiatric disorders (7), and these pathological

changes are not caused solely by abnormal axons. Alterations in

white matter neurons and glial cells have also been implicated in the

pathophysiology of psychiatric disorders, highlighting the

importance of investigating white matter cell populations in

relation to genetic risk.

Given this background, we hypothesized that it would be

possible to identify novel cell populations and gene clusters

implicated in psychiatric disorders by integrating GWAS

summary statistics and single–gene expression data, exploring the

enrichment of genetic risks in specific cell populations within white

matter, and identifying the specific gene modules inside.
2 Materials and methods

2.1 Study design

The cell population related to the pathogenesis of SCZ and its

functional relevance were explored using summary statistics from

GWAS, cluster analysis such as WGCNA and Gene Ontology (GO)

term overrepresentation analysis, and single–cell transcriptomic

analysis. The study design is shown in Figure 1.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1566155
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kondo et al. 10.3389/fpsyt.2025.1566155
2.2 Data retrieval

PGC3 GWAS summary statistics were downloaded from the

Psychiatric Genome Consortium website. For SCZ GWAS data,

summary statistics from the European population were selectively

used. This was the largest data set of summary statistics generated

from European ethnicity. ASD susceptibility genes were

downloaded from the SFARI database (Q1 2024) (27). The

single–nucleus gene expression data derived from the white

matter of healthy humans with European ethnicity (28) were

downloaded from the CZ CELLXGENE Discover database (29),

the single–nucleus gene expression data from ASD were

downloaded from the UCSC Cell Browser website (30), the

single–nucleus gene expression data from patients with SCZ

were downloaded from the GEO database under accession

number GSE254569 (31), and the bulk RNA seq for OPCs from

mouse strain expressing the Disc1–D3 gene in OPCs were

downloaded from the GEO database under accession number

GSE183341 (32).
2.3 Preparation of a cell–type–specific
gene set

A specificity score was calculated for each gene in each cell

population by dividing a gene’s normalized (count per million)

unique molecular identifier counts in one cell type by the sum of

that gene’s expression in all cell types using the EWCE package (11).

Uninformative (i.e., sporadically expressed) genes were removed

prior to this process using the drop_uninformative_genes function.

Genes with a specificity score ranked in the top 10% of the genes

expressed were regarded as specific genes in each cell population.
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2.4 Enrichment of common variant genetic
associations using MAGMA

The MAGMA.Celltyping package (12) was used to evaluate the

enrichment of common variant genetic associations within each cell

population. This package is a wrapper for the gene set enrichment

analysis using MAGMA (33). The function map_snps_to_genes was

run to map single nucleotide polymorphisms (SNPs) in the SCZ

GWAS (4) to genes and then to compute gene–wide association P–

values. The 1000 Genomes data (phase 3) (34) were used as

reference to account for linkage disequilibrium (LD) between

SNPs. The boundaries of each gene’s transcribed region were

extended at a value of 10 kb upstream and 35 kb downstream.

This yields, gene–level genetic association for 18,143 genes. Next, a

linear regression was run to test for a one–sided association between

the top 10% most specific genes in each cell type and the gene–level

genetic association with SCZ. Covariates for gene size, gene density,

the inverse of the minor allele count, per–gene sample size, and the

log of these measures were considered. A total of 15 tests were

performed (one for each cell population), and following Cameron

et al. (26), we report enrichments with a false discovery rate (FDR)

<.05. For the calculation of cell–type–specific gene expression from

only BA4 white matter cells, the number of cells in a cell population

(central nervous tissue macrophage) was too small (five cells) and

thus excluded from the analysis.
2.5 Stratified linkage disequilibrium score
regression

Following others (4, 12, 26), we also conducted stratified linkage

disequilibrium score regression (SLDSR) to assess the enrichment
FIGURE 1

Flowchart of the analysis in this study.
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of SCZ SNP heritability in genes in the top expression specificity

decile of each cell population. Using HapMap Project phase 3 SNPs

with a minor allele frequency >5%, we extended the genomic

coordinates for each gene by 100 kb upstream and downstream of

the transcribed region, as recommended by the SLDSR authors (13).

For each gene set, LD scores were computed for each SNP relative to

nearby SNPs within a 1–cM window, utilizing the 1000 Genomes

phase 3 reference panel files to estimate LD. SCZ SNP heritability

was then stratified for each gene set using a joint fit model

accounting for SNP heritability attributable to 53 genomic

annotations, including genic, enhancer, and conserved regions

(baseline model version 1.2), as performed previously (4, 12, 26).

Statistical significance was determined empirically by calculating a z

score based on whether SCZ SNP heritability was greater in each

gene set compared with the baseline model annotations.
2.6 Gene set enrichment analysis

GO overrepresentation analyses were performed using

clusterProfiler (35). Enriched GO terms were summarized using the

rrvgo package (36) to aid the functional interpretation of the

enrichment. For the enrichment analysis of common variant genetic

associations within genes in each gene module identified in the

WGCNA ana ly s i s , ca l cu la t e_g ene s e t_enr i chment in

MAGMA.Celltyping (12) was used. For the gene set enrichment

analysis of co–expressing gene modules for ASD susceptible genes in

the SFARI database, GeneOverlap (37) was used, with the background

regarded as genes that were classified into some of the co–expressing

modules. When the gene identification conversion was needed for

enrichment analysis, it was performed using bitr in clusterProfiler (35).
2.7 Weighted gene co–expression network
analysis

WGCNA (23) for genes expressed in OPCs was performed

using the hdWGCNA package (25) following the authors’

instruction. Briefly, genes to analyze were selected by the criterion

of expression in more than 5% of the cells tested. The single–

nucleus gene expression data were aggregated into a pseudobulk

expression matrix by sample_ids to represent the data from each

tissue of each donor in the data set. Pairwise correlations of input

features were computed as biweight midcorrelation and weighted

with a soft–power threshold of 7. The topological overlap between

features was calculated and unsupervised clustering via the

Dynamic Tree Cut algorithm (38) was performed to yield a co–

expressing gene network. In the identification of module eigen

genes, sex, postmortem interval, and age were regressed.

To investigate the module charactericity, differential gene

module expression in cell populations, or region of origin, and

other features were performed by FindDMEs in hdWGCNA

package (25).

For module projection, ProjectModules was executed. The

validity of the co–expression network structure in other data sets
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was evaluated by ModulePreservation, which is the implementation

of the method by the original WGCNA authors (39). This method

calculates several network–related metrics and summarizes the

features into a Z summary. The resulting Z summary value for

preservation was used for the evaluation, and values above 10 were

regarded as significant.
2.8 Alterations in the gene set expression
of OPCs in different pathological
conditions

The cell population labels were adopted from an original

analysis of each data set. The data from cells whose cell–type

label corresponded to OPCs were extracted from each data set

and the module scores for the SCZ–implicated gene modules were

computed by Addmodulescore in Seurat (40). For SCZ, 20,947

nuclei from the orbitofrontal cortices of 36 patients were

compared with 16,481 cells from 33 controls (31). For ASD, 5,340

cells from the prefrontal cortices of 13 patients were compared with

4783 cells from 10 controls (30). The statistics were first performed

by comparing nuclei–wise module scores. Then, for individual level

statistics, module score was averaged for nuclei from the same

donor. Sex, age, RNA integrity number (RIN), post–morten interval

(PMI) and Brain.pH were regarded as covariates (for the ASD

dataset, Brain.pH was not available). The formula was

disease_status ~ averaged module score + sex + age + RIN + PMI

+ Brain.pH + (1| lib_batch), and statistics were calculated using

lmerTest (41).

The differentially expressing genes (DEGs) for bulk RNA–seq

from murine OPCs expressing Disc1–d3 were computed using

DESeq2 (42). P–values were adjusted for multiple testing using

the FDR method considering all tested genes. The DEGs with an

adjusted P–value of < 0.01 were considered for the downstream

analysis. The statistics were computed using Fisher’s exact test, and

the resulting P–values were adjusted using the Benjamini–

Hochberg procedure.
2.9 Pseudotime trajectory analysis

Pseudotime trajectory analysis of white matter oligodendrocyte

lineage cells was performed using Monocle3 according to the

authors’ instructions (43). Briefly, clustering was performed at a

resolution of 1e–4 using cluster function. The principal node within

the OPC cluster located at the opposite side of the differentiation–

committed OPC cluster was used as a starting point, and the

pseudotime was calculated. Module gene set expression along the

trajectory was performed based on hdWGCNA documentation.
2.10 Compositional analysis

Compositional differences between patients and controls for the

SCZ dataset were calculated using cacoa (44). The algorithm was
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used in a previous study (45). The cluster–free compositional

difference was investigated for OPCs from the data set. Briefly, at

first, densities for each sample are calculated using either a 2D

embedding (via kernel density estimation, where the space is

divided into a 400×400 grid and normalized). Next, The

difference in densities between conditions is computed for each

data point using the Wilcoxon test statistic, which was chosen for its

power. To assess significance, condition labels are permuted 400

times, and the entire procedure is repeated. A permutation–based

p–value correction method was then applied to adjust for

multiple comparisons.
2.11 Statistical analysis

All analyses except for SLDSC analysis were performed using R

version 4.3.4 (46) and R studio (2024.09.1 + 394) (47). The

manipulation of single–nucleus gene expression data was

performed using Seurat 5.0.1 (40). The Wilcoxon rank–sum test

was used to compare the measurement data. Gene set enrichment

was tested using a one–tailed Fisher’s exact test. P–values < 0.05

were considered statistically significant.
3 Results

3.1 Oligodendrocyte precursor cells
mediate certain psychiatric genetic risks

We tested whether cell populations in white matter mediate the

common genetic liability to SCZ using publicly available single–nucleus

data obtained from the white matter of healthy subjects of European

ethnicity. The single–nucleus data for white matter were composed of
Frontiers in Psychiatry 05
45,852 cells classified into 15 cell types based on the analysis in the

original study and the CELL×GENE database. For easier interpretation

of the data, we renamed two of the cell populations labeled in the data

set as ‘cerebellar granule cell’ and ‘neuron’ because these populations

are not restricted to the cerebellum and express the marker gene CRH

(Supplementary Figure 1).

To implicate the cell population in white matter that mediate

the common genetic liability to SCZ, we calculated the top decile of

gene expression specificity for each of the labeled cell populations

and used the statistical methods MAGMA (12, 33) and SLDSR (13)

to assess SCZ genetic risk enrichment. Both analyses showed

significant enrichment (FDR <.05) of SCZ genetic risk in genes

with high expression specificity for three neuronal cell populations

and OPCs. For oligodendrocytes, significant enrichment was only

observed for MAGMA analysis and not for SLDSR analysis.

Likewise, cell–type–specific enrichment was tested for associations

with common variants with ASD, and no enrichment was observed

in OPCs (Figure 2; Supplementary Table 1). The enrichment signal

in OPCs held when tested with 9,975 cells derived from cortical

white matter (Supplementary Figure 2). When cell–type–specific

enrichment was tested for detailed 60 subcluster cell types

annotated in a previous study (28), no significant enrichments

were observed for 11 subpopulations in the oligodendrocyte lineage

(data not shown).

We also tested the enrichment of 1,176 ASD susceptibility genes

reported in the SFARI database, including rare single–gene

mutations. Using the EWCE package, we assessed enrichment for

the top decile of gene expression specificity for each cell population.

The analysis yielded statistically significant enrichment of strong

candidate ASD susceptibility genes in glutamatergic neurons and

OPCs (Supplementary Figure 2). This result suggested disruption of

the ASD susceptibility genes involved in the pathogenesis of ASD

through their functions in OPCs in white matter.
FIGURE 2

Cell–type–specific enrichment of common genetic risk for psychiatric disorders in white matter. Cell–type–specific enrichment of common genetic
associations for (A) schizophrenia (SCZ) and (B) autism spectrum disorder (ASD) calculated for each cell type using MAGMA (red) and SLDSC (blue).
The genes in the top expression specificity deciles of each cell population were regarded as cell–type–specific genes. The dotted line shows the
significance threshold (q <.05). Asterisks indicate cell populations that satisfied FDR <.05 in both S–LDSC and MAGMA analyses.
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Next, we explored the extent to which observed enrichments of

genetic associations and susceptibility genes in different populations

of white matter cells represent independent signals. Overlap of

5,604 nominally significant SCZ–associated genes (MAGMA gene–

wise P <.05) was observed within the top expression specificity

decile of the four cell populations of the white matter implicated in

the disorder. Our analysis revealed partially overlapping

enrichment signals among these populations.

To determine whether the enrichment of SCZ genetic

associations in OPCs is independent of genes shared with enriched

neuronal cell types, we repeated theMAGMA cell–specific expression

analyses for other implicated cell types while conditioning genes in

the top expression specificity decile of the implicated neuronal cell

types (Figure 3A). Notably, the OPC cell population remained

significantly enriched for SCZ genetic associations (P < 0.05) after

accounting for genes shared with neuronal cell types (Figures 3B–F).

These findings indicate that the enrichment of SCZ genetic

associations in OPCs represents signals independent of neuronal

contributions. Although OPCs only meet the Bonferroni threshold in

MAGMA analysis and the FDR threshold in SLDSC analysis, their

physiological roles related to myelination, coupled with the

independence of their genetic association signals, warranted their

prioritization in subsequent analyses.
3.2 Functional enrichment of the top gene
expression specificity decile of OPCs

To elucidate the cellular processes associated with genes in the

top decile of gene expression specificity for each cell population, we

performed GO term overrepresentation analysis using

clusterProfiler (35). The findings revealed significant enrichment

of synaptic gene expression in OPCs (Supplementary Figure 3A).

Semantic similarity–based summarization of the enriched terms

revealed that synapse–related terms were the most prominently

enriched (Supplementary Figure 3B). Furthermore, the overlaps

between nominally significant SCZ–associated genes, SFARI ASD

risk genes, and OPC specific genes in white matter were enriched

for synaptic genes (Supplementary, Figure 3C). These findings

suggest that synaptic gene function in white matter OPCs plays a

critical role in the white matter alterations observed in the disorder.
3.3 WGCNA analysis of white matter OPCs

To investigate further the gene program in which genetic risks

influence OPCs, we applied WGCNA to the 3094 OPCs in the white

matter single–nucleus RNA–seq data. The pipeline implemented in

hdWGCNA (25) was used to create a pseudobulk expression matrix

for each of the biological replicates, (i.e., each region from each

donors), in the data set and construct a co–expression gene

network. We applied pseudobulk analysis because the numbers of

OPCs were small in each biological replicate of the white matter

data set. To highlight the strong positive correlations, co–expression

similarity was transformed into a signed and weighted adjacency
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matrix by a soft–thresholding method that yielded approximate

scale–free topology. Then, the resulting adjacency matrix was

converted into topological overlap measures (TOMs) and

hierarchical clustering via the Dynamic Tree Cut algorithm (38)

was performed to yield 19 co–expression modules (named

sequentially OPC–M1 to M19 without consideration for

functional relevance), from 9768 genes based on the gene

expression profile in OPCs (Figures 4A, B). Subsequently, module

eigengenes (MEs), defined as the first principal component of the

module’s gene expression, were calculated to represent the

expression of each co–expression module in OPCs. The genes

classified into co–expression modules were ranked by similarity of

their network connection with other genes to that of MEs (kMEs).

To visualize the co–expressing gene network, uniform manifold

approximation and projection (UMAP) was applied to embed the

TOM co–expression network into a two–dimensional manifold

using the topological overlap of each gene with the top 25 genes

from each module as input features (Figure 4C). To visualize the

module specificity in OPCs and other cell populations, the module

was back–projected to the entire dataset. OPC–M16 was the most

s ignificant different ia l ly express ing module in OPCs

(Supplementary Figure 5). To annotate the identified co–

expression modules functionally, an overrepresentation analysis of

GO terms was performed. The results showed that at least one GO

term was overrepresented in 12 co–expression modules

(Figure 4D). Remarkably, some of the co–expression modules

showed enrichment of synaptic genes, with OPC–M16 being the

most enriched module. When the effect of sex was tested, no co-

expression modules showed significant difference for sex. As for

regional difference, OPC-M16 was most prominently expressed in

OPCs from cortical white matter (Supplementary Figure 6).

To test the validity of the co–expressing module in the other

data sets, we evaluated co–expressing network preservation. First,

we tested whether the co–expressing module was limited to the

input white matter data and found that the single–nucleus data of

105,734 OPC nuclei from 107 brain areas containing gray and white

matter (48), to find the existence of a similar network structure in

terms of genes in some of the co–expressing gene modules. The

OPC–M3 and OPC–M16 modules were highly preserved (Z > 10)

in the data set (Figure 4E), which suggests that some of the gene co–

expressing modules are common features of OPCs, regardless of the

region from which they are derived.
3.4 Enrichment of genetic risk in specific
co–expressing modules in OPCs

Co–expressing gene module–specific enrichment analysis of

psychiatric genetic risk associations was performed using

MAGMA. Surprisingly, the common genetic risks for SCZ were

enriched with Bonferroni–corrected significance (p < 2.6×10–3) in a

single co–expression module (OPC–M16) that showed the most

prominent representation of synaptic proteins (Figures 5A, F).

Common genetic risks for ASD did not meet the level of

significance on the co–expressing module (Figure 5B). The EWCE
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enrichment analysis of ASD susceptibility genes from SFARI

revealed enrichment of risk genes in the same single co–

expressing gene module (Supplementary Figure 7).

Because synaptic genes are also expressed in neuronal cell types,

we validated the co–expressing gene module specificity for each cell

type. Overlap analysis of co–expressing gene modules and cell–type

markers revealed that OPC–M16 showed the largest overlap with

markers for OPCs and their differentiated cells, differentiation–

committed OPCs (Figure 5C). On the other hand, the gene module

showed reduced overlap in oligodendrocytes. Thus, among the

oligodendrocyte lineage cell types, the expression level of OPC–

M16 was highest in OPCs, medium in differentiation–committed

OPCs, and lowest in oligodendrocytes, suggesting their function

along the differentiation process (Supplementary Figure 4).

Therefore, we attempted pseudotime trajectory analysis from

OPCs into differentiation–committed OPCs and found the

expression level of the gene module decreased along the

pseudotime trajectory supportive of its involvement in the

differentiation process (Figures 5D, E).

The genes in the disease risk gene–enriched module (OPC–

M16) in the top five enriched GO biological process terms are listed
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in Figure 5F (the top 10 genes ranked by kME values are listed in

Supplementary Table 1). These contain several known canonical

OPC and synaptic genes, among which, PCDH15 stands out for its

established role in OPC proliferation and morphological

development, as well as its use as a reliable OPC marker in

single–cell transcriptomic analyses (49). Notably, DISC1 is a gene

expressed within the oligodendrocyte lineage, with experimental

evidence confirming their involvement in the oligodendrocyte

maturation (50). DISC1 is also involved in synaptic structure and

the coded protein interacts with many of the synaptic proteins (51).

Other synaptic genes such as NLGN1 and GRIK2 play essential

roles in glutamatergic neurotransmission, with NLGN1 being part

of the neuroligin family of postsynaptic adhesion proteins that

modulate synaptic plasticity and cognitive function (52). GRIK2, a

glutamate receptor, is critical in excitatory synaptic signaling.

NRXN1, a presynaptic protein, interacts with neuroligins

(including NLGN1) at synapses, forming a structural and

functional bridge between pre– and postsynaptic sites (52).

Although the precise function of many of these and other genes

in OPCs remains poorly understood, together, these genes offer

insights into the molecular underpinnings of both OPC
FIGURE 3

Evaluation of independent cell–type–specific enrichment signals for SCZ. (A) Venn diagram of the number of genes exhibiting a nominally significant
genetic association with SCZ (MAGMA gene–wise P <.05) shared between the top expression specificity deciles of each cell population implicated in
the disorder at a level exceeding an FDR <.05 threshold in both MAGMA and stratified linkage disequilibrium score regression analysis. (B–F) MAGMA
cell–type–specific gene–enrichment analysis of common schizophrenic genetic associations controlled for each cell population implicated in the
disorder. The cell populations controlled for are shown above each bar graph. Dotted lines indicate the nominal significance threshold (P = .05).
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development and synaptic architecture, further suggesting their

relevance in understanding the complex interplay between

myelination and synaptic transmission in psychiatric disorders.
3.5 OPC co–expressing modules in the
data set derived from pathological
conditions

We explored the expression level of co–expressing modules in

different pathological conditions. Given that current publicly

available single-nucleus gene expression data for SCZ and ASD

are limited to cortical gray matter nuclei, we evaluated the
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expression of the disease risk module by calculating the module

score in OPCs from the gray matter of controls and psychiatric

patients in each dataset (SCZ and ASD). The nuclei–wise

comparison and individual-level comparison accounted for

covariates indicated altered expression of the module (OPC–M16)

in OPCs from patients with SCZ (Figures 6A, B; Supplementary

Figure 8). The co–expressing network structure related to OPC–

M16 was highly preserved in data sets including patinet–derived

nuclei and warrants the comparability (Supplementary Figure 9).

To investigate alterations in OPCs from patients with SCZ that

might contribute to the pathophysiology of the disease,

compositional analysis (44, 45) was performed to find

subpopulational change. The analysis revealed a significant
FIGURE 4

WGCNA analysis of white matter OPCs identified in several co–expressing gene modules. (A) Hierarchical clustering dendrogram of a co–expressing
gene network. (B) Number of genes in each co–expressing gene module. (C) UMAP plot of the co–expression network. Each node represents a
single gene, and edges represent co–expression links between genes and module hub genes. Nodes are colored according to their co–expression
module assignment. The top two hub genes per module are labeled. Network edges were down–sampled for visual clarity. (D) GO term
overrepresentation analysis for each co–expressing gene module. For visibility, only the top pathways enriched in any of the co–expressing modules
are shown. Statistics were performed using Fisher’s exact test and only GO terms with a P–adj <.05 were considered significantly enriched. (E) The
module preservation score of each colored dot represents the score for each co–expressing module. The thick gray area (Z < 2) indicates that the
co–expressing module is not preserved, the pale gray area (2 < Z ≤ 10) that co–expressing module is moderately preserved, and the white area (Z >
10) that the co–expressing module is highly preserved.
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difference in the composition of OPCs (Figure 6C). Comparing the

expression of known differentiation markers of oligodendrocyte

lineage could show that the subpopulational difference might

correlate with the differentiation process. When pseudotime

trajectory analysis was applied based on the expression of

oligodendrocyte lineage markers not included in OPC–M16

(Supplementary Figure 10), more abundant immature state OPCs

were found in SCZ (Figures 6C, D). In addition, the differentiation

process was correlated by OPC–M16 genes, which was enriched for

synaptic genes (Figures 6E, F). These results suggest the presence of

transcriptional changes also in white matter OPCs and impairment

in the differentiation process of OPCs in SCZ patients.
4 Discussion

In this study, we explored the cell–type–specific genetic risk

enrichment of psychiatric disorders within white matter tissue and

identified OPCs as a carrier of SCZ–associated genetic risks related

to myelination. We also found that OPCs in white matter exhibit
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enriched expression of ASD susceptibility genes. WGCNA analysis

further revealed significant enrichment of psychiatric disorder–

associated genes within a co–expressing gene module in OPCs.

Pathway analysis indicated that the effect of these genetic variants

converges on synaptic genes expressed in OPCs. In line with this,

the expression levels of the co–expressing genes were altered in

OPCs derived from patients with SCZ, suggesting that disruptions

in the function of synaptic genes of OPCs contribute, at least

partially, to the neurobiological mechanisms underlying

psychiatric disorders.

As their name signifies, OPCs are classically known for their

ability to differentiate into oligodendrocytes and contribute to

myelination. However, recent studies have depicted their wide

variety of physiological functions. For example, they are involved

with the migration of neuronal cells (53), axonal regeneration upon

injury (54), engulfment of synapses to sculpt neural circuits (55),

and interaction with vessels (56, 57). Regarding myelination, the

proliferation and differentiation of OPCs are meticulously regulated

in a neural activity–dependent manner and not random. They can

make synaptic contacts with neurons and receive electrical signals
FIGURE 5

Enrichment of genetic risks for SCZ in a specific gene module in OPCs. (A, B) Gene set enrichment analysis for common genetic associations using
MAGMA. The genetic risks for SCZ were implicated in a co–expressing gene module in OPCs (A), whereas in ASD, no significant implication was
observed (B). Dotted lines indicate the nominal significance threshold (<.05). Asterisks indicate modules that satisfied Bonferroni–corrected
significance (P <. 2.6×10–3). (C) Overlap of a co–expressing gene module in OPCs and cell–type marker genes. Statistics were performed using
Fisher’s exact test. Marker genes were defined by FindAllMarkers in Seurat with p < 1.0×10–4 and a log–fold change > 1. (D) OPC and differentiation–
committed OPC cell–type labels in the data set (upper). Pseudotime trajectory from OPCs to differentiation–committed OPCs (lower). (E) Expression
level of OPC–M16 along the pseudotime trajectory from immature to differentiation–committed OPCs. Pseudotimes were shown in 20 binned
categories. Each dot represents the average module score for each co–expressing module in each pseudotime bin. (F) Concept network plot of
genes in the top five enriched GO terms for OPC–M16. Statistics were performed using Fisher’s exact test and P–adj <.05 was considered
significant enrichment.
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from neurons (58). Experimentally, the role of synapse and synaptic

genes in OPCs in their differentiation has been reported (59).

Moreover, impaired differentiation of OPCs has been reported in

patients with SCZ (18), and oligodendrocyte maturation has been

suspected as a biological mechanism underlying the pathogenesis of

SCZ (19). These findings suggest a relationship between synaptic

gene expression in OPCs and their differentiation, along with the

resulting myelination of axons. Supporting our results and

speculations, hyperbranching morphology, which is suggestive of

altered connections with other OPC cells in patients with SCZ, has

been reported (32). A similar hyperbranching morphological

phenotype has been observed in OPCs derived from conditional

knockout model mice with Disc1–d3 that lacks functional Disc1

specifically in OPCs, one of the gene in OPC-M16 (32). In that

model, we performed differential expression analysis and GO term

enrichment analysis to confirm the presence of elevated synaptic

gene expression levels in OPCs (Supplementary Figure 11), and the

original analysis revealed the OPC phenotype causes a loss of

synapses in neurons, together indicating a causal association

between a gene belonging to OPC-M16 genes in OPCs and neural

circuits in the pathogenesis of the disease. Regarding ASD, other

studies have suggested that synaptic connection signals, including
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NRXN1–NLGN3, to OPCs are reduced in such patients (60),

highlighting the potential role of OPC synaptic gene alterations in

the communication between OPCs and other cells.

Recent studies have reported sex differences in OPC

characteristics. For example, in vitro studies indicate that female

OPCs exhibit a higher capacity for proliferation and migration,

whereas male OPCs tend to differentiate and myelinate more

effectively (61). Clinically, schizophrenia also displays sexual

dimorphism: male patients often experience an earlier onset,

more severe negative symptoms, greater white matter disruptions,

and significant oligodendrocyte loss, while female patients generally

have a later onset and milder early symptoms with distinct affective

and cognitive profiles (62–64). In ASD, males typically show more

pronounced symptom profiles and network hypoconnectivity,

whereas females exhibit network hyperconnectivity Although few

studies have directly linked OPC differences to sex-specific aspects

of SCZ or ASD, future research integrating cl inical ,

histopathological, imaging, and transcriptomic data could yield

important insights into these variations.

While this study presents promising insights, certain limitations

highlight areas for future exploration. One key limitation is the

limited availability of white matter data. Thus, although the
FIGURE 6

Expression of the co–expression gene module OPC–M16 in the SCZ patient–derived data set. (A) Expression level of OPC–M16 calculated as a
module score. Compared with controls, patients with SCZ exhibited signi cantly elevated OPC–M16 module scores in OPCs. Statistical signi cance
was determined using the rank–sum test. Error bars represent the standard error of the mean. (B) The elevation remained signi cant in patients with
SCZ when tested by averaging cells from the same patients and after adjusting for covariates. Statistical signi cance was determined using linear
mixed–effects models, accounting for relevant covariates. (C) Case–control compositional analysis using OPCs from the SCZ data set. Z–values and
areas with statistical signi cance (FDR <.05) with adjusted z–values are shown. Red indicates more cells from patients with SCZ, and blue indicates
more cells from controls. (D) Pseudotime trajectory analysis based on the expression levels of OPC markers not included in OPC–M16. (E) Heatmap
of OPC–M16 module scores. Values were scaled in FeaturePlot in Seurat. (F) Correlation between pseudotime and OPC–M16 module scores.
Smoothed lines for each condition are plotted and gray areas show 95% con dence intervals. For each condition, the progression of pseudotime and
decreased module scores for OPC–M16 were correlated (P <.001). For visibility, OPCs that were within 5 SD of the mean UMAP coordinates are
shown (20 cells that are outside were excluded from the plot above). *P < 0.05, ***P < 0.001.
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network structure of the co–expressing genes was preserved in the

data from other brain regions, a direct investigation of white matter

data from patients is needed. Furthermore, the data set containing

white matter and gray matter from same donors that enables

evaluation of the effect of individual genetic variation to the

regions and inter-region relationships would greatly enhance the

understanding of white matter alterations. The intricate interaction

between gray and white matter could not be evaluated by currently

available data. Because axons myelinated in white matter

predominantly originate from neuronal cell populations in gray

matter, genetic risks that affect neurons in gray matter also influence

cells in white matter. This interrelationship needs to be considered

to gain a more complete understanding of the precise biological

mechanisms underlying the pathogenesis of the disease. In addition,

psychiatric genetic risks, particularly those related to synaptic

function, exert their effects through not only OPCs, but also

neuronal cell populations. Importantly, these genetic risks can

impact patient life–spans from prenatal development to

senescence. This temporal dimension necessitates a more

comprehensive understanding of the development of the nervous

system and the aging process. Thus, while the precise magnitude of

the effects mediated by OPCs remains challenging to estimate with

current data, ongoing advances in data availability, multimodal

integration, and analytical techniques provide a promising path

forward. By addressing these gaps, future research holds the

potential to unlock deeper insights into the role of OPCs and

broader neural networks in psychiatric disorders, ultimately guiding

the development of novel therapeutic approaches.
5 Conclusion

This study highlights the potential contributions of synaptic

genes in OPCs to the pathogenesis of psychiatric disorders,

especially SCZ and ASD. Further validation using larger data sets

from human patients, along with the integration of data from other

modalities (e.g., spatial transcriptomics, single–nucleus ATAC–seq,

individual–level genomic data), is therefore essential. Additionally,

elucidating the precise molecular mechanisms by which OPCs

mediate psychiatric genetic risks in pathophysiology and

pathological development could offer novel perspectives and

potential therapeutics for psychiatric disorders.
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