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Background: Approximately 50% of individuals with psychosis spectrum

disorders (PSD) experience visual hallucinations and deficits in visual

processing. Cerebral blood flow (CBF) alterations have been identified in the

occipital lobe (OL) and fusiform gyrus (FG) in PSD. However, prior studies neither

report on cytoarchitectonic subregions of the OL or FG, nor their correlations

with cognition. Moreover, perfusion differences across neurobiologically defined

psychosis Biotypes in these regions are not investigated yet.

Methods: ExploreASL and FreeSurfer were used to extract perfusion measures

from pseudo-continuous arterial spin labeling scans of visual (hOc1-hOc3v,

middle temporal area (MT)) and fusiform (FG2-FG4) subregions in 122 bipolar

disorder with psychosis (BP), 179 schizoaffective disorder (SAD), 203

schizophrenia (SZ), and 350 healthy controls (NC), as well as psychosis

Biotypes (BT1-3). The data was adjusted for scanner effects using ComBat.

Analyses were co-varied for total gray matter CBF. We used R to perform

statistical comparisons across PSD and NC and across Biotypes. Partial

Spearman correlation was performed between CBF and cognitive measures.

Benjamini & Hochberg correction was used to correct for multiple comparisons.

Results: PSD exhibited greater perfusion in MT and FG2 compared to NC.

Perfusion significantly differed across psychosis Biotypes in hOc1 but not
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across diagnostic groups. Higher MT and FG4 perfusion in PSD were associated

with worse overall cognitive performance.

Conclusions: Visual and fusiform subregions demonstrate significant perfusion

alterations which may indicate neurovascular deficits in PSD. Moreover, these

perfusion alterations may contribute to cognitive impairments and visual

abnormalities in psychosis.
KEYWORDS

arterial spin labeling, cerebral blood flow, V5/MT, fusiform gyrus, psychosis spectrum
disorders, cognition
Introduction

The visual system is impaired in psychosis spectrum disorders

(PSD) and they manifest as perceptual (1), structural (2) and

perfusion changes (3). Studies demonstrated that ~50% of

individuals with schizophrenia (SZ) experience visual distortions,

including altered perception of shape, color, motion, and facial

expressions (4–7). Furthermore, it was demonstrated that motion

processing is impaired in SZ (8) and that the accuracy of correctly

identifying emotional states expressed in human faces is lower in SZ

and schizoaffective disorder (SAD) compared to controls, which

may affect social cognition (9, 10).

We previously identified brain structural changes which include

smaller surface area, thickness, and volume measures in Brodmann

area 17 (V1), Brodmann area 18 (V2) and middle temporal area

(MT) in individuals with first episode psychosis (2) and PSD

compared to controls (11). We also demonstrated that these

visual cortical areas are associated with worse negative (2) and

positive symptoms (Adhan et al., 2023)1, as well as poorer cognition

in psychotic disorders (11). With respect to the fusiform gyrus (FG),

thinner cortex and smaller cortical surface area in the FG was

shown in SZ compared to controls (12). Associations between

volume and thickness measures in the FG and a cognitive

composite score was found in individuals with SZ (13). These

findings emphasize the crucial role that FG plays in SZ.

Basic visual function and facial processing were previously

mapped and a new cytoarchitectonic parcellation of the ventral

visual stream was developed dividing the occipital lobe (OL) and

FG each into four subregions (see Supplementary Figure S1) that

overlap with retinotopic areas in the brain (14, 15). The associated

functions of each region are described in Supplementary Table S1

(15–31).

Despite the increasing number of studies analyzing the visual

system in the context of PSD (32), there is no study to date
, Bannai D, et al. Age at
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reporting on perfusion alterations in cytoarchitectonic subregions

of the ventral visual stream, which may expand our understanding

of visual cortical alterations beyond structural changes. Studies

suggested there is increased perfusion in the OL and FG in

individuals with PSD (33, 34), while others described decreased

perfusion (3, 35). Studies showed lower cerebral blood flow (CBF)

in the OL in SZ compared to controls (35–37). In an Arterial Spin

Labeling (ASL) study, we previously reported greater grey matter

(GM) CBF in the left lateral occipital cortex in bipolar disorder

(BD) compared to controls (33). It was shown that higher perfusion

in the left lateral occipital cortex was associated with poorer

cognition in BD (33). Moreover, it was found that there are sex-

specific alterations in the visual cortex in individuals with psychosis

(11). Individuals with SZ receiving antipsychotic treatment

exhibited greater CBF in the right temporal FG compared with

controls (34). A different ASL study found reduced CBF in the FG in

all SZ and SAD individuals with positive psychotic symptoms

compared to controls (3). Thus, cognitive and symptomatic

measures in PSD may be associated with ventral visual stream

perfusion in addition to structural changes.

Using a large multi-site dataset from the Bipolar-Schizophrenia

Network on Intermediate Phenotypes (B-SNIP) consortium, we

aimed to resolve those conflicting findings on perfusion alterations

in the ventral visual stream in PSD. The primary goal of this study

was to analyze perfusion alterations in cytoarchitectonic subregions

of the OL (hOc1-hOc4v), MT, and FG (FG1-FG4) in individuals

with psychosis compared to controls. While previous ASL studies

following a region of interest (ROI) approach investigated the OL

and FG as whole, our study aims at analyzing those regions with

greater cytoarchitectonic fidelity which is strongly coupled to

retinotopic mapping (15). Secondly, we aim to compare perfusion

in the ROIs across psychosis groups using diagnostic groups and

neurobiologically defined psychosis Biotypes, which were identified

based on electrophysiological and cognitive biomarkers (38). We

aimed at determining whether this new grouping is better at

differentiating psychosis individuals compared to traditional

clinical diagnostic characterization. Lastly, we aimed to investigate

correlations between perfusion in the cytoarchitectonic subregions
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of the OL, FG and MT with cognitive and clinical measures. We

expected greater perfusion in OL subregions to be associated with

worse symptoms and cognition in individuals with PSD.
Materials and methods

Study sample

The study was a retrospective study. Study participants were

individuals with psychotic bipolar disorder (BP, n=122), SAD

(n=179), SZ (n=203), and healthy controls (NC) (n=350) from

the B-SNIP 2 and Psychosis and Affective Research Domains and

Intermediate Phenotypes (PARDIP) (non-psychotic bipolar was

excluded) study. Study procedures described in (33, 39) were

approved by Institutional Review Boards and informed consent

was provided by all participants. Participants underwent Structured

Clinical Interview for Diagnostic and Statistical Manual of Mental

Disorders (DSM)-IV Axis I Disorders (40). Pregnancy, history of

head injury with loss of consciousness for more than 10 minutes,

intellectual disability, substance use dependence in the past 30 days

or history of systemic medical or neurological disorder impacting

mood or cognition were exclusion criteria (9). Symptom severity

was evaluated using the Positive and Negative Syndrome Scale

(PANSS) (41), Young Mania Rating Scale (YMRS) (42), and

Montgomery-Åsberg Depression Rating Scale (MADRS) (43). The

Global Assessment of Functioning (GAF) score was determined for

all participants (44). Participants were asked whether they have ever

been a smoker and for the once who answered this question with

“Yes”, a follow-up question was asked whether one has smoked in

the past 30 days. Additionally, nicotine dependence (very low, low,

medium, high, very high) was examined with the Fagerström Test

for Nicotine Dependence (FTND) score (45, 46), which was

available for 218 participants. A history of visual hallucinations is

assessed by the Lifetime of Psychosis Scale (LDPS) (47).

Cognition was assessed based on the Brief Assessment of

Cognition in Schizophrenia (BACS) (48). BACS scores were

normalized for sex and age to generate z-transformed scores (49).

BACS scores were missing from 41 participants.

Furthermore, PSD individuals were assigned a B-SNIP Biotype

(BT1-3) according to the method described in (38, 50, 51).The PSD

group consisted of 154 BT1, 153 BT2 and 197 BT3. Demographic

and clinical characteristics for PSD and NC are displayed in Table 1

and for diagnostic as well as Biotype groups in Supplementary

Tables S2, S3, respectively.
Image acquisition

Magnetic resonance imaging (MRI) data was acquired during

resting-state and participants were asked to keep their eyes open.

Seven 3 Tesla scanners were used and pseudo-continuous arterial

spin labeling (pCASL) sequences were applied: GE HDx (Athens),

GE Discovery MR750 (Boston1, Massachusetts), GE HDxt

(Boston2), GE HDxt (Boston3), Philips dSteam Achieva
Frontiers in Psychiatry 03
(Chicago), Philips Achieva (Dallas), Siemens Skyra (Hartford)

(see Supplementary Table S4 for scanner parameters, image

resolution, and signal-to-noise ratio). Different scanners were

used in Boston since there was a hardware and software upgrade

during the study.

Additionally, a 1.2 mm isotropic anatomical T1-weighted scan

was acquired for each subject, using the Alzheimer’s Disease

Neuroimaging Initiative (ADNI)-1/ADNI-2 protocol parameters

(52). The sequence type for the Chicago, Dallas and Hartford

scanners was MP RAGE, while the Boston and Athens scanners

acquired an IR SPGR scan (Supplementary Table S4).
Image pre-processing

Cortical GM CBF maps were prepared using ExploreASL

version 1.9.0 (53). Head motion was corrected by an adapted

version of the statistical parametric mapping 12 (SPM12) motion

correction procedures (53, 54). Partial volume correction was

applied by the ExploreASL pipeline (53). ExploreASL’s image

processing procedure of bias field correction was omitted in favor
TABLE 1 Demographic and clinical measures in individuals with
psychosis spectrum disorders and healthy controls.

NC
(n=350)

PSD
(n=504)

p-value

Age, Years 33.86 (11.79) 36.84 (11.67) <0.001

Sex (M/F) 139/211 248/256 0.008

Race (CA/AA/OT) 196/91/63 218/196/90 <0.001

Handedness (R/L/B) 320/25/5 447/46/11 0.411

Lifetime history of being a
smoker (Yes/No)

78/270 288/207 <0.001

Smoking in the past 30 days
(Yes/No)

22/56 197/91 <0.001

FTND rating (Very low/Low/
Medium/High/Very high)

14/4/1/2/1 67/58/28/34/9 0.101

GAF (mean, SD) 84.51 (6.46) 53.59 (13.19) <0.001

Age of illness onset, Years – 18.04 (7.54) –

PANSS Total – 61.24 (19.68) –

PANSS General 30.45 (9.39) –

PANSS Positive – 15.74 (6.29) –

PANSS Negative – 15.01 (6.65) –

YMRS Total – 9.11 (7.60) –

MADRS Total – 11.24 (10.43) –

BACS Composite -0.28 (1.20) -1.52 (1.37) <0.001
fro
Values are presented as mean (Standard deviation), n (%), or n.
AA, African American; B, Ambidextrous; BACS, Brief Assessment of Cognition in
Schizophrenia; CA, Caucasian; F, Female; FTND, Fagerström Test for Nicotine
Dependence; GAF, Global Assessment of Functioning; L, Left; M, Male; MADRS,
Montgomery–Åsberg Depression Rating Scale; NC, healthy controls; OT, other; PANSS,
Positive and Negative Syndrome Scale; PSD, psychosis spectrum disorders; R, Right; YMRS,
Young Mania Rating Scale.
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of the statistical harmonization method ComBat (https://rdrr.io/

bioc/sva/man/ComBat.html). For extracting CBF values in the

ROIs, the vcAtlas (see Supplementary Figure S2) described in (15)

and the MT atlas derived from the FreeSurfer Brodmann Area

estimations were transformed from fsaverage to Montreal

Neurological Institute (MNI) space using FMRIB Software

Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The

transformed atlas was applied on all participants to acquire mean

GM CBF for each ventral visual stream subregion (53, 55). FG1 and

hOc4v were discarded from further analysis as ExploreASL’s ROI

analysis by default skips regions smaller than 1 ml as a sensible cut-

off to avoid the analysis of spurious signals coming from too

small regions.

For quality control, each CBF image was visually inspected, and

31 images were discarded due to head motion, scanner artifacts

blurring the inferior region, labeling failure or missing signal due to

inadequate head positioning. Based on a motion parameter

estimated by ExploreASL, 17 subjects that deviated more than

two standard deviations (SDs) from the mean motion value were

removed. Moreover, to address measurement errors, ASL images

were removed based on global and lobe-wise GM CBF by site for

individuals that deviated beyond four SDs in each of the regions

(total n=10). See the Supplementary Material for a detailed

description of the quality control pipeline.

As seven different ASL acquisition methods were used, significant

scanner-dependent differences were introduced to the CBF data. To

account for scanner differences, ComBat from the Surrogate Variable

Analysis package in R was applied to the total GM CBF and to each of

the ventral visual stream ROIs. The perfusion data was normalized

before the application of ComBat. Diagnostic group, sex and age were

used as covariates to control for differences in the data due to biological

variables. ComBat then estimates scanner effects with an empirical

Bayes framework and adjusts the data for these effects (56). Significant

scanner differences were eliminated in all ROIs after applying ComBat

(Before harmonization: Supplementary Figure S3, and after

harmonization: Supplementary Figure S4). Reversing the scaling of

the ComBat-adjusted perfusion measures is not possible due to the

estimation process, however we applied a simple rescaling and included

the main results for the rescaled data in the Supplementary Material to

aid in providing more biological meaning to the data.
Statistical analysis

Statistical analyses were performed in R (version 4.1.3). A

sensitivity analysis was conducted to examine the moderating

effects of demographic and clinical variables on the ROI GM CBF.

Outliers in the ROIs deviatingmore than 4 SDs per site were removed

(n=6) and the remaining were winsorized to 3 SDs (n=27). GM CBF

in the ROIs was covaried for ComBat-adjusted total GM CBF in

order to take potential whole brain perfusion alterations into account

and to assess regional specificity (model A) (3, 34). To additionally

consider the effect of demographical characteristics, group
Frontiers in Psychiatry 04
comparisons were repeated using total GM CBF, sex and age as

covariates (model B). As parametric assumptions were violated, two-

way analyses of variance (ANOVA) for trimmed means (57) with a

group-by-sex design was applied to GM CBF comparisons in the

primary (PSD vs. NC) aim. For the secondary aim (diagnostic groups

and Biotypes) an ANOVA for trimmed means with a Biotype-by-

diagnostic group design was used to compare GM-CBF in the ROIs.

Effect sizes were calculated using the explanatory measure of effect

size x (58), with x =0.10, 0.30, 0.50 representing small, medium, and

large effect sizes, respectively (57). Benjamini & Hochberg (BH)-

correction was applied to correct for multiple comparisons

considering number of regions (7 comparisons) (59, 60). Corrected

p-values are denoted by “pBH”. The threshold for statistical

significance was set at pBH=0.05.

Associations between perfusion with cognitive and clinical

measures were assessed using partial Spearman correlations due to

violation of parametric assumptions. ComBat-adjusted total GM CBF

was used as covariate for the scanner-adjusted perfusion measures in

model A. For model B, perfusion was covaried for total GM CBF, age

and sex. BH-correction was performed accounting for multiple

comparisons for cognitive measures (n=7 regions, n=2 groups, n=7

cognitive scores) and for clinical correlations (n=7 regions, n=1 group,

n=4 clinical measures). A Fisher’s r to z transformation was conducted

to compare correlation coefficients between the two groups.

Additionally, a canonical correlation analysis (CCA) was performed

between the total GM adjusted perfusion in the ROIs and cognitive

scores. Statistical significance of canonical correlation coefficients was

assessed using F-Approximation of Wilks’ Lambda (61).
Results

Demographic characteristics

Individuals with PSD and NC differed significantly for age, sex,

race, GAF, BACS composite score, lifetime history of being a

smoker and smoking in the past 30 days, but not for the FTND

rating (Table 1). The diagnostic groups (excluding NC) showed

significant differences in all demographic and clinical variables

except for lifetime history of being a smoker and the FTND

rating (Supplementary Table S2). The Biotype groups and NC

differed significantly in age, sex, race, the smoking variables, GAF

and BACS composite score, but not in handedness (Supplementary

Table S3). The Biotypes (excluding NC) differed in all demographic

and clinical variables, except for handedness, age of illness onset,

YMRS total and MADRS total score.
Modifying effects on regional GM CBF

Sex showed significant effects on the GM CBF in all ROIs. Age

had a significant effect on FG3, hOc1 and MT perfusion, while

handedness only displayed effects in FG3. Race, FTND rating and
frontiersin.or
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smoking in the past 30 days did not show a significant effect on

perfusion in any of the regions.
Perfusion differences in individuals with
PSD

Persons with PSD demonstrated greater perfusion in MT

(x=0.142, pBH=0.014) and FG2 (x=0.154, pBH=0.014) compared to

NC (model A) (Figures 1A, B). All other regions did not show

significant differences in perfusion between PSD and NC

(Supplementary Table S5). When covarying perfusion measures

for total GM CBF, sex and age (model B), there was a trend of

perfusion difference between PSD and NC in MT (x=0.135,
pBH=0.056) and FG2 (x=0.124, pBH=0.056) (Supplementary

Table S7).

The Biotype-by-diagnostic group analysis discarding NC

revealed significant perfusion differences across Biotypes in hOc1

(x=0.155, pBH=0.014) (model A). Post-hoc tests revealed that

Biotypes 2 (x=0.154, pBH=0.026) and 3 (x=0.198, pBH=0.001)
showed significantly higher perfusion in hOc1 compared to

Biotype 1 (Figure 2). There were no significant differences across

diagnostic groups and no significant interaction effects between

Biotypes and diagnostic groups in any region. The detailed results

for all regions are listed in Supplementary Table S8. Similarly, for

model B Biotype-by-diagnostic group analysis exhibited significant

differences across Biotypes in hOc1 (x=0.132, pBH=0.028). Biotype 3
showed higher perfusion compared to Biotype 1 in hOc1 (x=0.195,
pBH=0.001). There were no significant diagnostic group differences

or interaction effects in any of the regions for model B

(Supplementary Table S9).
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Associations between perfusion and
cognitive and clinical measures

In model A, higher MT perfusion in PSD was associated with lower

BACS composite score (r=-0.148, pBH=0.008) (see Table 2, Figure 3A).

Specifically, greater perfusion inMT significantly correlated with poorer

verbal memory (r=-0.188, pBH=0.001) and digit sequencing score (r=-

0.157, pBH=0.006). Higher FG4 perfusion in PSD was associated with

lower BACS composite score (r=-0.183, pBH=0.001) (see Table 2,

Figure 3B). Greater FG4 perfusion significantly correlated with lower

performance in verbal memory (r=-0.149, pBH=0.008), symbol coding

(r=-0.155, pBH=0.006), tower of London (r=-0.158, pBH=0.006) and digit

sequencing (r=-0.128, pBH=0.035) in individuals with PSD (see Table 2).

There was a negative correlation between hOc2 perfusion and BACS

digit sequencing (r=-0.137, pBH=0.020). No other region showed

significant associations between cognitive measures and perfusion,

including those in NC (Supplementary Table S13). Regarding the

CCA, there were seven canonical dimensions (see Supplementary

Table S15). Statistical significance was found in the first (p=1.295 10-

7) and the second (p=0.005) dimension of the CCA. The coefficients

suggest that FG4 and MT CBF as well as BACS composite score and

verbal memory contribute the most to the first correlation dimension.

The second correlation was mostly driven by hOc3v and FG4 CBF as

well as the BACS composite and verbal fluency score.

Comparing the correlation coefficients for the BACS composite

score with perfusion in FG4 and MT between PSD and NC showed

a trend of difference for FG4 (z=2.106, pBH=0.067) and MT

(z=1.829, pBH=0.067).

For model B, there were significant associations between higher

MT perfusion and poorer verbal memory (r=-0.148, pBH=0.033)

and digit sequencing score (r=-0.139, pBH=0.033) in PSD. Greater
FIGURE 1

Cerebral blood flow (CBF) differences in MT and FG2. Boxplot with density plots demonstrating group differences between healthy controls (NC) and
individuals with psychosis spectrum disorders (PSD) in MT (A) and FG2 (B). MT and FG2 CBF were adapted for scanner-differences using ComBat.
CBF was covaried for ComBat-adjusted total gray matter (GM) CBF. Panel (A) shows significantly higher MT CBF in PSD compared with NC
(pBH=0.014). Panel (B) demonstrates significantly greater FG2 CBF in PSD compared with NC (pBH=0.014). * denotes pBH<0.05.
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perfusion in FG4 significantly correlated with worse BACS

composite (r=-0.173, pBH=0.012) (Supplementary Table S14),

symbol coding (r=-0.164, pBH=0.014), verbal memory (r=-0.138,

pBH=0.033), digit sequencing (r=-0.137, pBH=0.033) and tower of

London score (r=-0.142, pBH=0.033) in PSD. Greater hOc2

perfusion was associated with worse digit sequencing score (r=-

0.131, pBH=0.047) for individuals with PSD.

No significant associations were found between perfusion

measures with PANSS positive and negative scores, YMRS or

MADRS scores for both models (Supplementary Tables S16, S17).
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Discussion

In this study, we used pCASL to investigate resting-state CBF

and correlations with clinical and cognitive measures in PSD. We

demonstrated 1) significantly greater perfusion in MT and FG2 in

individuals with PSD compared to NC; 2) significant perfusion

differences across Biotypes in hOc1 while BT2 and BT3 showed

higher perfusion compared to the BT1; 3) a significant relationship

between higher perfusion in both MT and FG4 with poor

cognitive performance.
TABLE 2 Correlations between cognitive measures and perfusion in ventral visual stream.

Cognitive Measure Group Perfusion Measure r-value p-value pBH-value

BACS composite score PSD MT CBF -0.148 6.10 10-4 0.008

BACS verbal memory PSD MT CBF -0.188 1.31 10-5 0.001

BACS digit sequencing PSD MT CBF -0.157 2.76 10-4 0.006

BACS digit sequencing PSD hOc2 CBF -0.137 0.002 0.020

BACS composite score PSD FG4 CBF -0.183 2.21 10-5 0.001

BACS verbal memory PSD FG4 CBF -0.149 5.57 10-4 0.008

BACS symbol coding PSD FG4 CBF -0.155 3.30 10-4 0.006

BACS tower of London PSD FG4 CBF -0.158 2.47 10-4 0.006

BACS digit sequencing PSD FG4 CBF -0.128 3.24 10-3 0.035
BACS, Brief Assessment of Cognition in Schizophrenia; pBH-value=Benjamini & Hochberg corrected p-value; PSD, psychosis spectrum disorders.
Partial Spearman correlations were performed separately in individuals with psychosis spectrum disorders (PSD) and healthy controls (NC) between the cognitive measures (BACS composite
score and BACS subscores) and perfusion in the vcAtlas subregions. Scanner-adjusted perfusion measures were covaried for total GM-CBF. BACS scores were already normalized for age and sex.
Correction for multiple comparisons was carried out across the seven BACS scores (one composite and six subscores) and perfusion in all regions in the two groups using Benjamini & Hochberg
method. Only measures surviving multiple comparison correction are reported in this table.
FIGURE 2

Cerebral blood flow (CBF) differences across Biotypes in hOc1. CBF was adapted for scanner-differences via ComBat and covaried for total gray
matter (GM) CBF. There was significantly higher hOc1 CBF in BT2 (pBH=0.026) and BT3 compared to BT1 (pBH=0.001). Benjamini & Hochberg
corrected p-values are denoted with “pBH”. * denotes pBH<0.05, ** denotes pBH<0.01.
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Studies examining perfusion alterations in the ventral visual

stream in PSD are limited. The studies that do exist are restricted by

small sample sizes and mixed results, ranging from perfusion

reductions in the FG in SZ (3) to greater perfusion in the right

temporal FG in SZ compared to NC (34), while very few perfusion

studies exist examining MT in psychosis (33). Our findings

contribute to the literature demonstrating greater perfusion in the

ventral visual stream in individuals with psychosis (33, 34). The

findings in this study also build upon our work using optical

coherence tomography and angiography of the retina in

indiv idua ls wi th psychos i s , where we demonstra ted

cytoarchitectural deficits (62–64), as well as retinovascular

dysfunction associated with SZ (65, 66). In the latter study, we

showed that higher retinovascular measures being associated with

worse symptoms and functioning in the early stages of SZ and with

lower symptoms and better functioning in the later stages of SZ.

From a functional standpoint, MT is involved in processing

visual motion information (27, 67). It was previously shown that

individuals with PSD had significantly reduced area, volume and

thickness in V1, V2 and MT compared to NC (11). Lesions in MT

are linked with abnormal motion perception capabilities, including

the perception of velocities (68). With respect to PSD, velocity

discrimination (1) and motion processing (8) were significantly

impaired in SZ compared to NC. Furthermore, it was shown that SZ

individuals exhibited a higher threshold in detecting the direction of

motion of a dot pattern relative to NC, which implies a deficit for

higher level processing in the visual motion system, involving brain

areas such as MT (69). In terms of brain activity, individuals with

SZ showed altered activity in the MT compared to NC during visual

motion direction and velocity processing tasks (70, 71). These

findings emphasize the deficits in determining motion direction
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and velocity discrimination in PSD, which might be linked to

abnormal perfusion in MT observed in this study.

Given the key role of FG2 in face and object recognition (29, 72)

and since several studies showed that individuals with PSD exhibit a

poorer ability in both discriminating faces (73, 74) and recognizing

emotional expressions in faces (9, 75–79), greater CBF in FG2 might

contribute to face processing deficits. The hyperperfusion in FG2 in

PSD at baseline might be related to neuronal uncoupling, which

refers to a disrupted relationship between neural activation, brain

metabolism and CBF (80). Neurovascular uncoupling was shown to

be present in SZ and SAD (81) and may contribute to the perfusion

alterations found in this study. Deficits in facial processing and

facial emotion recognition were associated with poor social

functioning and problems in social behavior in SZ (82).

Abnormal perfusion in the FG might play an important role in

social and emotional deficits in PSD. The question of whether there

is a correlation between perfusion alterations in FG2 and overall

facial processing deficits in PSD requires further investigation.

In PSD individuals there were significant perfusion differences

in hOc1 across Biotypes but not across diagnostic groups for both

models A and B, which indicates the ability of Biotypes to better

discriminate psychosis subtypes in this region from a

neurobiological perspective compared to traditional grouping.

Furthermore, BT2 showed greater perfusion compared to BT1 in

hOc1 (model A), which might be supported by the fact that BT2 is

characterized by overactive neural activity (38).

Although it cannot be derived from the current study, what is

causing perfusion alterations in PSD remains an open question.

Previous studies pointed out that blood-brain barrier (BBB)

hyperpermeability, abnormalities of blood vessels and dysfunction

of neuroinflammatory responses were linked to SZ (83–88).
FIGURE 3

Cerebral blood flow (CBF) correlation with cognitive measures in MT and FG4. Scatter plot in (A) showing partial Spearman correlations between
scanner-adjusted MT CBF and Brief Assessment of Cognition in Schizophrenia (BACS) composite score in individuals with psychosis spectrum
disorders (PSD) and healthy controls (NC). There was a significant correlation between MT CBF and the BACS composite score in PSD (pBH=0.008).
Scatter plot in (B) showing partial Spearman correlations between scanner-adjusted FG4 CBF and BACS composite score in PSD and NC. There was
a significant correlation between FG4 CBF and the BACS composite score in PSD (pBH=0.001). Total GM CBF was used as covariate for perfusion in
all analyses.
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Another theory proposes that abnormal inflammatory responses in

the brain including infections or trauma damage vasculature and

disrupt CBF, which harms the BBB (89–91). A consequence could

be altered neural signal processing, resulting in the development of

SZ (89).

With respect to cognition, we found that higher perfusion in

MT was associated with lower BACS composite, digit sequencing

and verbal memory score. This finding is in line with a previous

ASL study, which found a similar association between perfusion in

the occipital cortex and the BACS composite score, the digit

sequencing and the verbal memory score in BD (33). Moreover,

our results demonstrate associations between higher perfusion in

FG4 and poorer BACS performance including the BACS composite,

verbal memory, symbol coding, digit sequencing and tower of

London score. This finding is supported by a previous functional

MRI study with PSD individuals, which found a significant

association between loading parameters of an independent

component analysis (ICA) element covering the FG with the

BACS composite score, tower of London and symbol coding

score (92). Despite FG2 having similar functions to FG4, it was

not significantly associated with cognition in this study. As FG4 is

likely involved in word processing (30), and verbal memory is one

of the domains being tested (48), a significant correlation between

perfusion in FG4 and verbal memory score adds evidence to the role

FG4 may play in word processing. The BACS symbol coding task

measures attention and speed of information processing (48).

Consequently, our findings suggest that greater perfusion in FG4

is associated with worse attention and lower speed of information

processing. In the past, deficits in attention and processing speed in

SZ (93, 94) were identified as one of the essential features of

cognitive impairment in SZ (95). Our findings emphasize the role

of the FG as one of the pathological sites in PSD. A relationship

between executive functions, measured by the tower of London task

(48), and activity in the FG is lesser known and requires

further study.

The translational potential of these findings is evidenced by a

recent study conducted by our group where we used lesion network

guided high-definition transcranial stimulation toMT and determined

that stimulation at this location was a safe, efficacious, and promising

approach for reducing general psychopathology via changes in

neuroplasticity (96, 97), as well as improving visual hallucinations

(98), working memory, verbal fluency and executive functioning (99).

Therefore, the perfusion abnormalities found in MT might be an

important neural correlate for visual motion and cognitive processing

capabilities in psychosis and could be further investigated as a

potential target for cognitive rehabilitation in psychosis.

A strength of this study is that significant scanner differences

were statistically minimized. Achieving a large sample size by

combining data from multiple sites comes at the cost of scanner-

dependent differences in the perfusion data. The ASL data in this

work has been carefully inspected as part of a thorough quality-

check (QC)-pipeline before controlling for scanner differences (see

Supplementary Material). ComBat successfully reduced scanner-

dependent differences while aiming at preserving biological

differences (56).
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However, there are several limitations to consider. Firstly, the ASL

sample being analyzed for this work was not matched for age and sex.

These limitations were controlled for by analyzing the interaction

effects with sex, regressing out the effect of age and sex as covariates in

model B, and comparing model A to B (addition/exclusion of

demographic variables). Moreover, all the measured effect sizes were

small, which indicates that there are only subtle perfusion differences

in the ventral visual stream in psychosis. Another limitation was that

mean motion could not be calculated as part of the QC-pipeline for all

scanners (see Supplementary Material). This was compensated for by

visually inspecting all scans. To account for scanner effects in a multi-

site study, we applied a scanner harmonization technique, which

comes at the cost of data becoming less clinically interpretable in terms

of measurement unit due to the normalization and adaptation process

of the data. Consequently, a perfect rescaling of the ComBat-adjusted

perfusion data to the original measurement unit is not feasible. We

implemented a simple rescaling of the data in the Supplementary

Material to provide more biological meaning to the results. One major

restriction of this work is the limited resolution of ASL. Because of the

limited resolution two of the original nine structures had to be

discarded from the analysis because it was not possible to reliably

extract mean CBF values for these small structures. Additionally, this

work did not distinguish between left and right hemisphere but rather

averaged over the left and right components. Due to this approach, it

was not possible to assess lateralized effects which cannot be ruled out

in this study. To account for overall perfusion alterations affecting the

whole brain, total GM CBF was considered as a covariate in the

analysis. Finally, data on visual acuity was not collected from the

participants. Future studies should evaluate the relationship between

CBF in the visual cortex and visual acuity.

In conclusion, in the largest ASL study to date analyzing

perfusion alterations in the ventral visual stream of individuals

with psychosis, we demonstrated significant perfusion alterations in

visual and fusiform cortex subregions of individuals with psychosis

and associations with cognitive impairment. These findings

contribute to the growing evidence of alterations manifested in

the ventral visual stream in psychosis, emphasizing the visual

system as one of the pathological sites in PSD. Significant

associations between CBF alterations and cognitive deficits in MT

and FG4 may provide specific location information for potential

future treatments, targeted at enhancing cognition in psychosis.
Data availability statement

The datasets presented in this article are not readily available

because the B-SNIP consortium PI’s have decided to hold off on

sharing ASL data for now. Requests to access the datasets should be

directed to PL, plizano@bidmc.harvard.edu.
Ethics statement

The studies involving humans were approved by UT

Southwestern Medical Center, Beth Israel Deaconess Medical
frontiersin.org

mailto:plizano@bidmc.harvard.edu
https://doi.org/10.3389/fpsyt.2025.1566184
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Sritharan et al. 10.3389/fpsyt.2025.1566184
Center, Yale University, The University of Chicago, and The

University of Georgia. The studies were conducted in accordance

with the local legislation and institutional requirements. The

participants provided their written informed consent to

participate in this study.
Author contributions

JS: Conceptualization, Formal analysis, Visualization, Writing –

original draft. VZ: Writing – review & editing, Data curation,

Methodology, Software, Visualization. JP: Methodology, Writing –

review & editing. H-JM: Methodology, Writing – review & editing.

DH: Methodology, Writing – review & editing. NB: Methodology,

Writing – review & editing. EI: Writing – review & editing,

Investigation. WD: Investigation, Writing – review & editing. EG:

Writing – review & editing, Funding acquisition. SK: Funding

acquisition, Writing – review & editing. DP: Writing – review &

editing, Investigation. RT: Investigation, Writing – review & editing.

JM: Investigation,Writing – review & editing. BC:Writing – review &

editing, Funding acquisition. CT: Funding acquisition, Writing –

review & editing. GP: Funding acquisition, Writing – review &

editing. MK: Funding acquisition, Writing – review & editing. PL:

Writing – review & editing, Conceptualization, Methodology, Project

administration, Supervision.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This manuscript was

published with data acquired from grants: United Stated Public

Health Service, National Institute of Health grants MH103366,

MH096900, MH103368, MH077851, MH096913, MH078113,

MH096942, MH077945, MH096957 EI: MH102656-03:

Moreover, the K23 grant 5K23MH122701. paid for PL’s career

development in vision science research in psychosis.
Acknowledgments

Jothini Sritharan received a fellowship of the German Academic

Exchange Service (DAAD). Paulo Lizano received a NIMH career
Frontiers in Psychiatry 09
development award (5K23MH122701). Henk-Jan Mutsaerts is

supported by the Dutch Heart Foundation (03-004-2020-T049),

by the Eurostars-2 joint programme with co-funding from the

European Union Horizon 2020 research and innovation

programme (ASPIRE E!113701), provided by the Netherlands

Enterprise Agency (RvO), and by the EU Joint Program for

Neurodegenerative Disease Research, provided by the Netherlands

Organisation for health Research and Development and Alzheimer

Nederland (DEBBIE JPND2020-568-106).
Conflict of interest

MK: consultant to Alkermes.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpsyt.2025.

1566184/full#supplementary-material
References
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