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Introduction: Schizophrenia is a psychiatric disorder hypothesized to result from

disturbed brain connectivity. Structural covariance networks (SCN) describe the

shared variation in morphological properties emerging from coordinated

neurodevelopmental processes, This study evaluates the potential of SCNs as

diagnostic biomarker for schizophrenia.

Methods: We compared the diagnostic value of two SCN computation methods

derived from regional gray matter volume (GMV) in 154 patients with a diagnosis

of first episode psychosis or recurrent schizophrenia (PAT) and 366 healthy

control individuals (HC). The first method (REF-SCN) quantifies the contribution

of an individual to a normative reference group’s SCN, and the second approach

(KLS-SCN) uses a symmetric version of Kulback-Leibler divergence. Their
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diagnostic value compared to regional GMV was assessed in a stepwise analysis

using a series of linear support vector machines within a nested cross-validation

framework and stacked generalization, all models were externally validated in an

independent sample (NPAT=71, NHC=74), SCN feature importance was assessed,

and the derived risk scores were analyzed for differential relationships with

clinical variables.

Results: We found that models trained on SCNs were able to classify patients

with schizophrenia and combining SCNs and regional GMV in a stacked model

improved training (balanced accuracy (BAC)=69.96%) and external validation

performance (BAC=67.10%). Among all unimodal models, the highest discovery

sample performance was achieved by a model trained on REF-SCN (balanced

accuracy (BAC=67.03%). All model decisions were driven by widespread

structural covariance alterations involving the somato-motor, default mode,

control, visual, and the ventral attention networks. Risk estimates derived from

KLS-SCNs and regional GMV, but not REF-SCNs, could be predicted from clinical

variables, especially driven by body mass index (BMI) and affect-related

negative symptoms.

Discussion: These patterns of results show that different SCN computation

approaches capture different aspects of the disease. While REF-SCNs contain

valuable information for discriminating schizophrenia from healthy control

individuals, KLS-SCNs may capture more nuanced symptom-level

characteristics similar to those captured by PCA of regional GMV.
KEYWORDS

precision psychiatry, schizophrenia, structural covariance, machine learning,
neuroimaging, brain connectivity
1 Introduction

Schizophrenia has been conceptualized as a neurodevelopmental

disorder that features structural deficits across numerous brain

regions (1–5), such as widespread gray matter loss and cortical

thinning (6–8), which are thought to reflect synaptic density

alterations (reviewed in e.g., Howes et al. (2023) (9)). Together with

evidence for disrupted neuronal communication underlying the

diverse phenotypes of the disorder, these findings have given rise to

the “dysconnectivity hypothesis” of schizophrenia, according to

which symptoms stem from impaired anatomical and functional

connectivity between brain regions rather than only region-specific

changes (10–13). Structural changes and altered structural and

functional connectivity may be interrelated and associated with

similar neurodevelopmental genetic, prenatal, and environmental

factors (6–8, 14, 15).

Systems-level alterations in brain organization can also be

observed in networks based on brain structure covariance, which

describe the shared variation in morphological properties, e.g., gray

matter volume (GMV), cortical thickness, surface area, and

gyrification of brain regions across a population (16–20).
02
Structural covariance networks (SCNs) emerge from coordinated

neurodevelopmental processes (20–23), which reflect anatomical

connectivity (24), mutually trophic influences (25), and common

experience-driven plasticity (26). SCNs demonstrate small-world

organization (27), a well-studied, graph-theoretical property of

brain networks, and are organized in modules overlapping with

functional domains (28). Structural covariance has been shown to

be highly heritable, to change significantly across the lifespan (21–

23, 29), and to be linked to IQ (23) and brain disorders, including

schizophrenia (30–35), autism (36), attention deficit hyperactivity

disorder (ADHD) (37), and Alzheimer’s disease (38).

Studies investigating the topology of structural covariance

networks (SCN) in schizophrenia with metrics from graph theory

(for an overview, see (39)) suggest qualitative and quantitative

differences between SCNs of schizophrenia patients and controls

(33). These differences may emerge from alterations of maturational

trajectories (40, 41) before the onset of the disorder during (pre-)

adolescence and aggravate with disease progression (42, 43). While

definitive results from graph theoretical analyses of SCN in

schizophrenia regarding implicated regions are still lacking,

patterns of structural covariance between fronto-temporal, fronto-
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parietal and fronto-thalamic covariation seem to be altered (for a

systematic review, see Prasad et al. (2022a) (32) and Prasad et al.

(2022b) (33)).

The heterogeneity of clinical phenotypes of schizophrenia, may

be reflected by variations in structural covariance, in line with the

dysconnectivity hypothesis of schizophrenia. While Spreng et al.

(34) found no relationship between positive and negative symptoms

of psychosis, others report supporting findings (44–46). For

example, structural covariance of the salience network has been

negatively correlated with symptom severity in first episode

psychosis patients (44). Further, dysconnectivity in the thalamus

(45) and dorsolateral prefrontal cortex has been linked to various

symptoms in schizophrenia patients (46). Additionally, treatment

response to antipsychotic medication is related to the

morphological reconfiguration of brain networks, i.e., structural

covariance (47, 48). Jiang et al. (2022) (47) provided evidence of

increased interregional covariance in antipsychotic medication

responders compared to non-responders among first-episode

schizophrenia patients suggesting that the reconfiguration of

morphological architecture, i.e., structural covariance, induced by

antipsychotic medication acts as a compensatory mechanism for

cortical abnormalities. The heterogeneity in brain structural

changes in schizophrenia may be explained by comorbidities and

cooccurring medical conditions, such as obesity (49, 50) which is

disproportionally frequent among schizophrenia patients (51).

Obesity, with body mass index (BMI) being an often employed

proxy measure, has been linked to changes in brain structure and

connectivity (52–54) and structural covariance alterations (55).

Further, both brain structure and structural covariance of the

perigenual anterior cingulate cortex has been found to be a

predictor of future weight gain (56).

SCNs are typically computed at the group-level by means of

correlations (not covariance) across participants (27), and can, thus,

only be used to identify group-level differences, making individual

diagnosis and prognosis and the discovery of connectivity-based

biomarkers impossible. Mapping individual SCN differences can

facilitate finding clinical and genetic correlates (35, 43, 57) as well as

neuroanatomical patient subtypes. In addition, relationships with

clinical and environmental factors may exhibit clearer associations.

To date, few methods have been proposed to estimate

individual-level SCNs, which differ with regard to the type and

number of morphological properties considered, and whether a

normative sample is used for computation (19, 57–65). Here, we

compare a normative and a single-image-based approaches that

both have frequently been reported. The first approach proposed by

Saggar et al. (2015) (62) uses a large reference group of healthy

control (HC) individuals to derive individual SCNs. This method

defines an individual’s SCN as the difference between a group SCN

computed across the reference group and the group SCN computed

across the reference group plus the respective individual. This

approach was also adopted by Drenthen et al. (2018, 2022) (66,

67). Similarly, Das et al. (2018) (57) proposed to compute an

individual’s SCN as the difference between the group SCN of the

diagnostic group of the participant and the SCN of the diagnostic

group excluding the given individual. The second approach was
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introduced by Kong et al. (2014) (59) and defines an individual’s

SCN computing the pairwise symmetric Kulback-Leibler

divergence (KLS) between the probability density functions (PDF)

of regional voxel-wise GMV. This method has since been adopted

by several studies (58, 64, 68, 69), and most recently extended to the

multimodal setting (63).

In this study, our primary objective was to assess the diagnostic

validity of two alternative individual SCN estimation methods

based on GMV in discriminating patients with schizophrenia

from HC individuals. We opted for a simplified binary

classification task and linear machine learning algorithms to

enable a direct comparison of different feature computation

techniques and direct model explainability, leveraging well-

established structural brain changes in schizophrenia. To the best

of our knowledge, no previous research has investigated the

differential and complementary diagnostic value of SCNs derived

using these two distinct approaches in comparison to region-of-

interest (ROI)-GMV.

We hypothesized that machine learning models trained on

individual SCNs would be superior in distinguishing patients with

schizophrenia from HC individuals compared to models trained on

ROI-GMV. Furthermore, we anticipated that integrating regional

GMV and SCN models through a stacking-based approach would

lead to enhanced performance, given that these modalities may

capture distinct aspects of the disorder. Additionally, we conducted

an analysis to identify the most influential regions and structural

covariance features driving the classification decisions in the top-

performing models.

To gain further insights into the clinical relevance of the feature

modalities, we investigated whether the decision scores generated

by the regional GMV and SCN models are sensitive to disease

phenotypes and thus could explain different aspects of the well-

known heterogeneity of schizophrenia. To achieve this, we

evaluated the extent to which machine learning could predict

decision/risk scores generated from our different SCN or GMV-

based models using clinical and demographic variables.
2 Methods

2.1 Datasets for model training and
validation

Model training and validation were performed using two

independent datasets. The training dataset comprised 366 HC

individuals and 154 patients with DSM-IV diagnosis of schizophrenia

(see (70) for details). All participants were recruited at the Department

of Psychiatry and Psychotherapy, Ludwig-Maximilian-University,

Munich, Germany. Henceforth, the sample will be referred to as the

MUC sample. The validation dataset was provided by the Mind

Research Networks Center for Biomedical Research Excellence

(COBRE; https://coins.trendscenter.org) and consisted of 71 patients

with chronic schizophrenia (SCZ) and 74 HC individuals. Patients

were diagnosed using the Structured Clinical Interview for DSM-IV

(SCID (71)). For more information on study procedures, see http://
frontiersin.org
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fcon_1000.projects.nitrc.org/indi/retro/cobre.html). The COBRE

dataset is distributed under the Creative Commons License, and

all participants provided written informed consent according to the

ethics review board protocols of the University of New Mexico

(UNM) (72). We evaluated demographic differences between

diagnostic groups within the two samples using Fisher’s exact test

or the Wilcoxon rank sum test with continuity correction. These

tests were chosen since not all variables were normally distributed.

Additionally, differences between discovery and validation samples

were analyzed using the same methods. See Table 1 for detailed

sociodemographic and clinical characteristics of both samples.
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2.2 Reference sample characteristics for
individual reference group-based SCNs
(REF-SCN) construction

For the construction of the SCNs, 489 HC individuals drawn

from the PRONIA study (Personalized Prognostic Tools for Early

Psychosis Management; http://proniapredictors.eu/pronia/

index.html) and 138 HC individuals from the OASIS-3 release

(Online Access Series of Imaging Studies; https://www.oasis-

brains.org) served as the reference sample. For the demographic

information of the reference sample, see Supplementary Table S2.
TABLE 1 Sociodemographic and clinical characteristics of the Munich (MUC) sample (N=520) and COBRE sample (N=145).

Variable MUC sample COBRE sample

HC
indiv. N=366

Patients
N=154

P (t/
W, df)

HC
indiv. N=74

Patients
N=71

P (t/ W, df) P (t/ W, df)

Mean age in years (SD) 33.6 (11.2) 30.8 (10.0) .006a

(2.77, 518)
35.8 (11.6) 38.1 (14.0) .278a

(-1.09, 143)
<.001a

(-3.57, 206)

N sex female (%) 184 (50.3) 41 (26.6) <.001b 23 (31.1) 14 (19.7) .131b <.001b

N left handedness (%) 47 (12.8) N/A 3 (4.1) 12 (16.9) .014b N/A

Mean years in
education (SD)

12.1(1.3) N/A 14.4 (3.3) 13.0 (1.9) .003c

(3.08, 103.36)
N/A

Mean IQ (WASI) (SD) N/A 108.4 (22.2) 100.4 (16.9) .020a

(2.35, 123.31)
N/A

N first-episode SCZ (%) 66 (42.9) N/A N/A

N recurrent SCZ (%) 88 (57.1) 71 (100)

Mean N
Hospitalizations (SD)

2.0 (2.1) 5.3 (5.5) <.001g

Mean age at illness
onset (SD)

25.4 (8.1) 21.1 (7.5) <.001h

Mean illness duration in
years(SD)

4.5 (7.1) 16.8 (13.0) <.001i

Mean PANSS total
score (SD)

51.6 (28.2) 58.7 (13.8) .014 j

Mean PANSS positive
score (SD)

11.6 (7.7) 14.8 (4.8) <.001k

Mean PANSS negative
score (SD)

15.0 (9.7) 14.6 (4.8) .692l

Mean PANSS general
score (SD)

25.0 (15.5) 29.2 (8.5) .010a

(-2.59, 213)

Mean dose CPZ equiv. (SD) 341.8 (373.8) 369.2 (306.0) .575a

(-.56, 163)

Mean dose OLZ equiv. (SD) N/A 15.2 (11.1) N/A
aStudent’s t-test.
bFisher’s exact test.
cWelch’s test; HC, healthy control; df, degrees of freedom; SD, standard deviation; IQ, intelligence quotient, WASI, Wechsler Abbreviated Scale Intelligence; PANSS, Positive And Negative
Syndrome Scale; SANS, Scale for the Assessment of Negative Symptoms; CPZ, clozapine, OLZ, olanzapine.
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2.3 Processing of structural MRI data

High-resolution three-dimensional T1-weighted images were

acquired for all participants. MRI data acquisition parameters are

detailed in S1.1. All T1-weighted images were processed using the

open-source CAT12 toolbox (version r1207 (73), an extension of

SPM12 (74). For more information on the preprocessing pipeline

see S1.2. From the processed T1-weighted images, regional GMV

was computed by summing the voxel-wise GMV values within each

region-of-interest (ROI) of two cortical parcellation schemes based

on the Schaefer atlas, which divided the cortex in 100 and 200

parcels, respectively (75). The derived regional GMV were used as

input features (d=100 and d=200) to the ROI GMV-based

ML models.
2.4 Structural covariance networks

We derived two types of SCNs following (1), reference group-

based SCNs (REF-SCN) and (2) symmetric KL-divergence based

SCNs (KLS-SCN) for the two brain parcellations with 100 and 200

parcels (75). A REF-SCN represented the contribution of an

individual to the group SCN of the reference group (62), for details

on the network computation see S1.3. Before deriving the REF-SCNs,

we accounted for systematic differences between the images across

the different sites of the PRONIA sample and the OASIS-3 cohort

(see Supplementary Methods). In the KLS-SCNs, an edge is

quantified as the symmetric KL-divergence between the probability

density functions of voxel-wise GMV. The workflow is described in

S1.4. From each SCN modality, we derived two different feature sets

which served as input to the ML models, (a) the vectorized upper

triangle of the individual connectivity matrices (i.e., edges, E), and (b)

network metrics (M), specifically global efficiency, transitivity,

eigenvector centrality, strength, and local efficiency (see S1.5).

Taken together, our multi-atlas approach resulted in two ROI-

based feature sets and eight SCN-based feature sets for the

subsequent multimodal machine learning (ML) classification

models: ROI-GMV 100, ROI-GMV 200, REF-SCN-E 100, REF-

SCN-E 200, REF-SCN-M 100, REF-SCN-M 200, KLS-SCN-E 100,

KLS-SCN-E 200, KLS-SCN-M 100, KLS-SCN-M 200.
2.5 Machine learning classification
pipelines: schizophrenia patients vs.
healthy control individuals

To assess the diagnostic value of ROI GMV and SCNs for

individual classification of schizophrenia patients, we trained a total

of 20 unimodal models (for an overview, see Supplementary Figure

S3). The models differed with respect to the type of input features

(ROI GMV vs. REF-SCN-E vs. KLS-SCN-E vs. REF-SCN-M vs.

KLS-SCN-M), the cortical parcellation used (100 vs. 200 parcels),

and the type of dimensionality reduction employed in the ML

pipeline and algorithm employed (feature selection using LASSO

regularization vs. principal component analysis, PCA). While
Frontiers in Psychiatry 05
LASSO (L1) regularization and PCA both reduce the

dimensionality of the feature set, the resulting low-dimensional

features differ significantly in their interpretation. While LASSO

regularization acts as a feature selection technique by removing

redundant and irrelevant features, PCA extracts information across

all features into new orthogonal variance components.

Additional preprocessing steps included in the ML model

pipelines differed depending on the dimensionality reduction

method used. In the LASSO condition, minimal preprocessing

was used for all modalities including adjusting for age and sex

effects by partial correlation analysis, followed by feature-wise

standardization. The classification algorithm used was a L1-

regularized hinge-loss support vector classifier with a dual solver

(L1-SVC) implemented in LIBLINEAR (76). In the PCA condition,

processing involved adjusting for age and sex effects, PCA with the

number of principal components being optimized in the range of

nPC ∈ [5, 10, 15, 20, 25], followed by standardization. The

classification algorithm used in this condition was a L2-

regularized hinge-loss support vector classifier with a dual solver

(L2-SVC) implemented in LIBLINEAR. SVC was chosen based on

recent findings related to the superior scalability of linear vs. non-

linear models in neuroimaging datasets considering the limited

available sample sizes (77). To mitigate the effects of class imbalance

during training, we adjusted the hyperplane coefficients of our

model by giving higher importance to the minority class by

multiplying class weights calculated as the inverse of

class frequencies.

For each separate dimensionality reduction condition, the trained

unimodal models were then combined by using their standardized

prediction scores as input to L2-SVCs to create ROI-based, REF-SCN-

based, KLS-SCN-based ‘meta-classifiers’ through stacked

generalization. Stacked generalization is an ensemble learning

approach, where the multi-source, second-level model uses the

prediction outputs of the single-source, first-level models to predict

the output labels (78). In the SCN-stacked models, edge and metric-

based model scores were combined to create unifying SCNmodels for

each of the SCN computation approaches. Finally, the standardized

prediction scores of the four resulting meta-learners (again, for each

dimensionality reduction condition separately) were used as input for

a 3rd-level ROI&SCN-based L2-SVCs multimodal stacked classifier.

This resulted in in total six 2nd and two 3rd-level stacked

generalization models (for an overview, see Supplementary Figure S3).

The ML pipelines, including preprocessing, were implemented

in NeuroMiner (version 1.2, https://github.com/neurominer-git/

NeuroMiner_1.2). A repeated nested pooled cross-validation (CV)

design was used with 10 outer (CV2) folds, 10 CV2 permutations

and 10 inner (CV1) folds without permutations. Nesting was done

to completely isolate model performance evaluation which was

performed at the CV2 level from hyperparameter optimization

conducted at CV1 cycle. All preprocessing steps and the stacked

generalization analyses without exception were also conducted

within the identical cross-validation structure to avoid overfitting

through double-dipping (79).

Balanced accuracy (BAC) was used as the criterion for

hyperparameter optimization. To produce a final prediction for
frontiersin.org
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the CV2 test data, all models in each CV2 training partition were

retrained at the optimal hyperparameter combination using the

entire CV2 training data, where optimal performance was defined

by the maximum average BAC across the CV1 test data. The

retrained models were applied to the CV2 test data of the given

CV2 partition, and their decision scores were averaged into an

ensemble prediction. Finally, the ensembles were identified across

the CV2 permutations in which the given test data was not in the

CV2 training fold and their predictions were integrated into a grand

mean average decision score and a final class membership

prediction. For all models, the slack parameter C of the L1-SVC

and L2-SVC was optimized across the values C={2x ∈ Z:-6<=x<=4}.
The statistical significance of the models was tested using 1000

random label permutations (80). The training performance in terms of

BAC, sensitivity, specificity and AUC of the 28 models was compared

using the Quade test followed by post hoc pairwise two-sample t-tests,

which were corrected for multiple comparisons using the false-

discovery rate (81). Generalization was assessed in terms of BAC,

sensitivity, specificity, and AUC when the model was applied to the

COBRE dataset for external validation. Prior to external validation, the

COBRE data was adjusted to the training dataset by subtracting the

difference in regional mean GMV values between the samples.

Global explainability analyses were conducted for the best

model in each modality for both feature extraction conditions.

The contribution of features to a models’ decisions were measured

by means of the cross-validation ratio, a measure of pattern element

stability which computes the mean and standard error of all weight

vectors across the entire nested cross-validation structure and is

inspired by bootstrap ratio (82), and signed-based consistency, a

measure of pattern element relevance and significance (83). For the

SCN-E models, estimates of regional involvement scores were

defined by how often a region was involved in a significantly

contributing edge (equal to degree centrality (84) of regions in a

feature importance network).

The degree of shared or complementary neuroanatomical

information captured by the different modalities was quantified

using pairwise Pearson correlations among the decision scores of

the models (significance was determined at an FDR-corrected

threshold of P=0.05). Additionally, we evaluated the similarity of

relevant information within in the feature sets prior to model

training (i.e., after the preprocessing steps of the model pipelines

were performed outside of the CV framework), specifically focusing

on the relationship of ROI-GMV-PCA and the SCN-E models.

Mean Pearson correlations of the processed SCN-E features with

the first ROI-GMV principal component (PC) were chosen as a

measure for this analysis.

Finally, cohort effects on decision scores were tested using t-

tests and simple linear regression models including age and sex as

additional effects.
2.6 Clinical prediction models

To explore the unique clinical and demographic associations of

SCN vs. GMV-based model’s decision scores, we employed linear
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support vector regressors (SVR) within a repeated nested CV

framework, as described above. Models were built with

NeuroMiner (version 1.2, https://github.com/neurominer-git/

NeuroMiner_1.2). The full model pipelines and training setup are

detailed in S1.7. The SVRs were trained to predict the imaging-

based decision scores using the patients’ clinical and demographic

features such as age, sex, handedness, body mass index (BMI), years

of education, information about the illness course (duration, onset,

hospitalizations, first-generation antipsychotic medication,

duration of untreated psychosis), symptoms assessed using the

Positive And Negative Syndrome Scale (PANSS (85) and the

Scale for the Assessment of Negative Symptoms (SANS (86), drug

usage (for a full list, see S1.7)) within the patient sample of the MUC

sample. Similarity of feature importance between the models was

assessed using Pearson correlations.
3 Results

3.1 Sociodemographic, clinical, and global
anatomical results

In the MUC sample (used for training), patients and HC

individuals differed significantly regarding age (NHC=366,

NPAT=154, tStudent’s (518)=2.771, P=.006) and sex (Fisher’s exact

test, P<.001; see Table 2 for an overview of all sociodemographic

data and significance tests). In the COBRE sample (used for external

validation), patients exhibited decreased years of education (tWelch’s

(103.36)=3.08, P=.003) and IQ (tStudent’s(123.31)=2.35, P=.020) and

increased left-handedness (Fisher’s exact test, P=.014; see Table 1)

compared to HC individuals. Participants of the COBRE sample

were significantly older than those of the MUC sample, and the

participants of the samples additionally exhibited a significant

difference in sex (%-femalesMUC=43.27, %-femalesCOBRE=25.52,

Fisher’s exact test, P<.001). When comparing only the patients of

the respective samples, significant differences were found in disease

status since the MUC sample, in contrast to the COBRE sample,

includes not only patients with a recurrent SCZ but also patients

with a diagnosis of first-episode SCZ (42.90%), their number of

hospitalizations (W (75)=-4794, P<.001), age at illness onset (W

(145)=3859, P<.001), illness duration (W (89)=-7416, P<.001), total

(W (216)=-2485, P=.014), positive symptom (W (203)=-3836,

P<.001), and general PANSS score (W (213)=-2585, P=.01; see

Table 1). The sociodemographic characteristics of the reference

sample are depicted in Supplementary Table S1.
3.2 Results: classification models

Of all unimodal models trained on the MUC dataset, the

LASSO-regularized classifier trained on REF-SCN-E 200 achieved

the highest diagnostic performance, with a BAC of 67.03%

(sensitivity=59.74%, specificity=74.32%, P<.001; Table 2).

However, its external validity in the COBRE sample was limited,

showing a BAC of 56.32% (sensitivity=45.07%, specificity=67.56%,
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P=.035; Table 2). This model significantly outperformed the other

unimodal models, except for the ROI-GMV models, as determined

by the Quade’s test (W (27, 2673)=29.49, P<.001) and post-hoc

pairwise comparisons. All ROI-GMV based models demonstrated

similar training performance without statistically significant

differences and maintained their performance on the external

validation set (see Table 2). When comparing the training

performance of unimodal models and multimodal stacked

models, the second-level multimodal classifier based on the

LASSO-regularized models, performed significantly better than

any other models (BAC=69.96%, sens i t iv i ty=67.53%,

specificity=72.40%, P<.001). However, this classifier exhibited no
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significantly better-than-change generalizability when validated on

the COBRE sample (BAC=59.30%, sensit ivity=25.35%,

specificity=93.24%, P=.283). The corresponding ROC curves for

the unimodal 200-parcellation models are shown in Supplementary

Figure S4.

For the ROI-GMV-200-LASSO model, sign-based consistency

mapping (thresholded at -log10-p>1.3) showed that the GMV of 13

out of the 200 regions in the somatomotor network contributed

significantly to the model’s decision function (Figure 1). In contrast,

137 out of the 200 regions contributed to the ROI-GMV-200-PCA

model’s decision function, mostly including regions in the default

mode, frontoparietal, visual, limbic and somatomotor networks
TABLE 2 Classification model performances.

Training on MUC sample Validation on COBRE sample

Model BAC (%) Sens. (%) Spec. (%) AUC BAC (%) Sens. (%) Spec. (%) AUC

ROI-GMV 100 LASSO 64.50 62.34 66.67 .68 65.92 52.11 79.73 .69

ROI-GMV 200 LASSO 65.54 61.69 69.40 .69 61.61 39.44 83.78 .65

ROI-GMV stacker LASSO 63.82 62.34 65.30 .69 64.54 50.70 78.38 .68

ROI-GMV 100 PCA 62.33 59.09 65.57 .68 65.89 50.70 81.08 .71

ROI-GMV 200 PCA 64.67 61.04 68.31 .70 65.19 49.30 81.08 .69

ROI-GMV stacker PCA 64.04 61.70 66.39 .70 66.60 52.11 81.08 .71

REF-SCN-E 100 LASSO 61.51 59.09 63.93 .65 53.72 16.90 90.54 .48

REF-SCN-E 200 LASSO 67.03 59.74 74.32 .72 56.32 45.07 67.57 .57

REF-SCN-M 100 LASSO 60.73 62.99 58.47 .61 52.09 36.62 67.57 .47

REF-SCN-M 200 LASSO 60.14 48.70 71.58 .64 55.89 23.94 87.84 .59

REF-SCN stacker LASSO 68.11 62.99 73.22 .73 50.60 29.58 71.62 .57

REF-SCN-E 100 PCA 53.69 50.00 57.38 .57 47.84 26.76 68.92 .47

REF-SCN-E 200 PCA 64.74 53.25 76.23 .69 57.38 30.99 83.78 .61

REF-SCN-M 100 PCA 51.93 62.34 41.53 .53 44.07 40.85 47.30 .41

REF-SCN-M 200 PCA 63.17 50.65 75.68 .67 61.55 36.62 86.49 .60

REF-SCN stacker PCA 63.78 53.25 74.32 .68 56.74 32.39 81.08 .63

KLS-SCN-E 100 LASSO 56.88 35.06 78.69 .61 52.87 8.45 97.30 .50

KLS-SCN-E 200 LASSO 64.34 44.81 83.88 .70 55.66 12.68 98.65 .54

KLS-SCN-M 100 LASSO 56.44 46.75 66.12 .58 49.16 25.35 72.97 .50

KLS-SCN-M 200 LASSO 60.55 53.90 67.21 .62 60.26 39.44 81.08 .58

KLS-SCN stacker LASSO 61.70 59.74 63.66 .67 47.95 32.39 63.51 .54

KLS-SCN-E 100 PCA 57.12 57.14 57.10 .59 64.63 54.93 74.32 .46

KLS-SCN-E 200 PCA 60.01 59.09 60.93 .63 50.89 43.66 58.11 .65

KLS-SCN-M 100 PCA 56.15 55.19 57.10 .58 64.07 60.56 67.57 .49

KLS-SCN-M 200 PCA 54.63 53.25 56.01 .61 63.28 54.93 71.62 .64

KLS-SCN stacker PCA 59.24 59.74 58.74 .61 57.24 23.94 90.54 .64

ROI SCN stacker LASSO 69.97 67.53 72.40 .75 59.30 25.35 93.24 .65

ROI SCN stacker PCA 64.43 59.74 69.13 .71 67.10 43.66 90.54 .71
BAC, balanced accuracy; AUC, area under the curve.
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(Figure 1). Post-hoc pairwise comparisons revealed that patients

with schizophrenia showed reduced GMV in all these regions

compared to HC. For the REF-SCN-E-200-LASSO model and

respective PCA-based model, 0.56% and 80.17% of edge weights

contributed significantly to the model’s decision function (as

determined by sign-based consistency mapping, -log10-p>1.3). In

the LASSO model, regions most often connected by edge weight

features mapped to the retrosplenial, occipital, and temporal

cortices (Figure 2). The corresponding PCA model showed lateral

and ventrolateral PFC regions to be most important for prediction,

as well as some areas of the occipital lobe (Figure 2). In the KLS-

SCN-E-200-LASSO model and respective PCA-based model, 3.29%

and 70.54% of edge weights contributed to models’ predictions. The

involved regions were in the PFC, precuneus and the occipital and

temporal lobe.

Significant Pearson correlations (FDR-corrected) were observed

among the mean decision scores of the unimodal 200-parcellation-

based models, as detailed in Supplementary Table S3. Notably,

looking at the relationship between ROI and SCN models

respectively, there was a strong correlation observed between the

decision scores of the KLS-SCN-E-200-LASSO and ROI-GMV-200-

PCA models (r (518)=.94, P<.0001). This high association was

driven by high associations in the feature sets before model training;

specifically, the first PC of the age and sex-corrected, standardized
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ROI-GMV-200-PCA features exhibited strong correlations with the

respective edges which served as input features in the KLS-SCN-E-

200 model (mean r[range]=.69 [.31-.90]) but not those of the REF-

SCN-E-200 model (mean r[range]=.04 [-.15-.21]).

Decision scores of the MUC sample were significantly (FDR-

corrected P<.05) higher than those in the COBRE sample for 22 of

the 28 models (see Supplementary Table S4). The cohort effect on

decision scores as tested in simple linear regression models whilst

controlling for sex and age was significant for 14 of the 28 models

(FDR-corrected, see Supplementary Table S5).
3.3 Results: clinical prediction models

Linear SVR models trained on clinical and sociodemographic

data showed the ability to predict the decision scores of the KLS-

SCN-E-200 LASSO-regularized model and the ROI-GMV-200 PCA

model, but not any of the REF-SCN-based models. The best model

performance in terms of R2 was observed for the model predicting

the decision scores of the KLS-SCN-E 200 LASSO-regularized

model (R2 = 11.01, MSE=0.10), and those of the ROI-GMV-200

PCA model (R2 = 9.01, MSE=0.10). For the KLS-SCN-E LASSO

decision score model, 54 of the clinical features contributed

significantly to the prediction (sign-based consistency mapping),
FIGURE 1

Reliable brain regions for classifying schizophrenia versus controls using two multivariate approaches applied to 200-parcel gray matter volume
(GMV) features: (A) LASSO-regularized logistic regression with embedded feature selection; (B) Principal Component Analysis (PCA). Significant
regions are defined using sign-based consistency mapping with FDR-corrected p-values (< 0.05). Colors indicate the median feature weight across
cross-validation folds, with blue representing negative weights and yellow representing positive weights.
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with BMI, and affective negative symptoms assessed with the SANS

(precisely, “unchanging facial expression”, “inappropriate affect”,

“paucity of expressive gestures”, as well as the summary scores for

Affective Flattening or Blunting and Alogia) and the PANSS

(precisely, “excitement”, “tension”), and first-generation

antipsychotic medication (yes/no, and dosage) contributing most

strongly (as defined by cross-validation ratio based on the median).

The prediction of the ROI-GMV PCA decision score model was

significantly driven by 46 out of the 87 clinical features. The features

with the highest cross-validation ratios (median) were the same as

those of the KLS-SCN-E-200 LASSO decision score model. The

Pearson correlation of the cross-validation ratio (median) feature

scores of the two models was r=.99 (P<.001).
4 Discussion

In this study, we assessed the shared and complementary

predictive value of cortical structural covariance for the diagnostic

classification of patients with schizophrenia. The prediction model

trained on the edges of the individual SCNs defined in terms of the

contribution to a healthy reference group, achieved the highest

classification performance during training and external validation.

This model outperformed those trained on individual SCN defined
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in terms of KL divergence between regional voxel probability

density functions. However, it did not show significant

improvements over models trained on ROI-GMV. Although a

multimodal stacked model performed better during training, it

did not generalize to the external validation set.

In line with our expectations, ROI-GMV was informative in

diagnosing patients with schizophrenia with a discovery-sample

performance of BAC=62.33 – 65.54%. This was consistent across

different brain parcellations and dimensionality reduction

techniques. The finding that schizophrenia can be detected at the

level of the individual from regional morphological information has

frequently been reported with models reaching performance

accuracies between 60 and 80% (87, 88). Likewise, models trained

on individual SCNs were able to classify patients with schizophrenia

from HC individuals, consistently across cortical parcellations and

dimensionality reduction technique with BAC=60.14 – 68.11% for

REF-SCNs and BAC=56.16 – 64.34% for KLS-SCNs. The

performance of our KLS-SCN-E models were comparable to those

reported by (89) who classified patients with schizophrenia and HC

individuals employing edge weights derived from KLS-SCNs in

several samples, amongst others, the COBRE sample used as the

independent validation set here. They observed highly varying

accuracies ranging from 56% to 81.50% (89). One possible

explanation for our lower training performance of both ROI-
FIGURE 2

Regional involvement in reliable structural covariance connections predictive of schizophrenia versus controls, based on REF-SCN edge weights
derived from a 200-parcel atlas: (A) LASSO-regularized feature selection; (B) Principal Component Analysis (PCA). Significant connections were
identified using sign-based consistency mapping with FDR-corrected p-values (< 0.05). Regional involvement is defined as the absolute number of
significant connections per region (nodal degree) and reflected by the color gradient, with brighter shades indicating higher
connectivity participation.
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GMV and SCN models might be our focus on cortical regions only.

Subcortical regions and their connectivity have previously been

shown to be of great importance in the pathophysiology of

schizophrenia with studies reporting especially the thalamus and

caudate, but also the hippocampus as well as various subcortical

areas to have significantly altered connectivity properties (2, 90–95).

Additionally, subcortical areas have been proposed to drive fronto-

striato-thalamic dysconnectivity in schizophrenia since first episode

psychosis patients displayed no significant differences but with

ongoing disease thalamic dysconnectivity may become more

pronounced (96). Lei et al. (2020) (89) constructed their SCNs

based on the automated anatomical labeling (AAL) parcellation

atlas, which spans the whole brain. Computing the pairwise

similarity between these regions might capture different

information compared to our networks defined solely based on

the cortical regions of the Schaefer atlases. Here, we focused solely

on cortical regions and cortical SCNs because analyses of scanner

and scanning protocol differences between the MUC and COBRE

samples revealed pronounced effects predominantly in subcortical

regions. However, the inclusion of subcortical brain regions and the

use of different parcellation schemes or atlases should be assessed in

the future (87, 97). Finally, with respect to the SCN models, the

choice of engineered features, i.e., edge weights and network

metrics, may have caused loss of diagnostic information. The

edge-weight-based models may have missed valuable spatial

information regarding network topology. Likewise, the network

metric computation step involved the selection of network metrics

applicable for the properties of brain networks, thereby introducing

the possibility of missing valuable information. Our results show

that network metrics produce less reliable results than the SCN

modalities and are in line with previous reports on graph metrics

being less informative than connectome-wide functional

connectivity in such classification tasks (2). In this study, we

focused on linear ML models, yet, state-of-the-art graph learning

methods include kernel-based methods and graph neural networks

(GNNs) (98, 99) and might be more suitable for network structured

data. While GNNs are increasingly gaining popularity and are

increasingly employed to study functional and anatomical

connectivity (100–103), there is still limited consensus on how to

best apply them to the unique characteristics of brain networks.

Considering that training a neural network requires large samples

GNNs might in future be especially interesting for individual SCN

analysis since sMRI images are typically more easily and efficiently

acquired than fMRI and DTI. Here, we opted for linear models due

to our limited sample size as well as for straight-forward

model explainability.

Our global model explainability results give insights into what

regions drove the decisions in our predictive tasks. The identified

regions lie in functional networks (104) which have been previously

found altered in schizophrenia. Structural alterations in the

somatomotor network, the default mode, frontoparietal control,

visual and limbic networks informed the decision of the ROI-GMV

models. For SCN-based models, the predictive regions mapped to

the ventral attention, default mode, frontoparietal control, visual,

and somatomotor networks. For REF-SCN, the dorsal attention
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network was specifically predictive, while for the KLS-SCN,

additionally orbital frontal-temporopolar (“limbic” in YEO’s

terminology) networks were identified. These findings are in line

with findings of widespread GMV loss (105) and disrupted

structural covariance (34, 106, 107) and functional connectivity in

schizophrenia (92, 94, 96, 108–111). For example (106), found

alterations in cortical SCNs especially in PFC regions, while (34)

and (107) found reductions in structural integrity of both the

frontoparietal and the salience networks but no differences in the

dorsal attention, motor and sensory networks. Studies investigating

functional connectivity in schizophrenia reported alterations in

overall connectivity (110) with regional disruptions being most

prominent in the default mode network (reduced and increased

connectivity reported) (92, 108, 111), between the dorsal medial

PFC and the medial temporal lobe (111), in the frontoparietal

network (108), in the sensorimotor cortex, right lateral prefrontal

cortex, left insula, and right lingual gyrus (110). Recently, the visual

and sensorimotor network have also been implicated in

schizophrenia with findings of connector hubs in these regions, as

well as in the insula and calcarine (94). While altered connectivity in

the frontoparietal network in schizophrenia is consistent across

studies, findings are not as clear for the default mode and other

networks. Generally, the use of PCA as a dimensionality reduction

method resulted in models that were less spatially specific compared

to LASSO-regularized models. Additionally, the models based on

the same modality (i.e., ROI-GMV, REF-SCN, and KLS-SCN)

showed more similarities in significant regions compared to

models based on the other modalities.

Our finding that the multimodal stacked generalization model

incorporating information from ROI-GMV, REF-SCN, and KLS-

SCN outperformed the models trained on one of the modalities

alone in terms of discovery performance highlights their

complementary diagnostic value. Especially the REF-SCNs seem

to capture differential aspects compared to KLS-SCN (E-LASSO)

and ROI-GMV (PCA) which resulted in highly associated risk

estimates. Further, our findings revealed stronger associations

between clinical variables and the derived risk scores of KLS-

SCN-E-LASSO and ROI-GMV compared to REF-SCN based

models. Taken together, this suggests that KLS-SCN and ROI-

GMV features may capture similar disease related information,

while deriving REF-SCNs ‘solely’ quantifies whether an individual is

similar to the reference group (i.e., has a low deviation) or not (i.e.,

deviates strongly) whilst discounting information about differential

clinical aspects across patients. The role of the reference group’s

composition and characteristics should be investigated in the future;

capturing the deviation of structural covariance of individuals from

reference groups consisting of individuals with different clinical or

demographic profiles (instead of healthy individuals) might prove

more useful, e.g., in terms of deriving ‘closeness’ scores to different

diagnostic brain states (or ‘closeness to younger/older brains’).

Our clinical prediction models revealed that BMI was the

strongest predictor of KLS-SCN and ROI-GMV based risk scores

for schizophrenia. BMI, an indicator of body fat, has frequently

been linked to schizophrenia and both conditions are associated

with brain structural changes in many of the same regions. The
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effects of obesity and schizophrenia appear to be additive, with

patients with schizophrenia who have a higher BMI showing more

pronounced alterations in brain structure (50). Further, a recent

study found disturbed structural covariance between regions in

reward and control networks associated with obesity status (112). In

general, the ability of SCNs to map individual differences, besides a

schizophrenia diagnosis, was investigated by a few studies in various

individual prediction tasks. The results mainly suggest limited

gained value, e.g., when predicting brain age in adolescents with

ADHD and HC individuals (113), or cognitive functioning in

patients with Alzheimer’s (114). Increasing efforts are being made

with regard to multi-view SCNs combining different morphological

modalities when computing the individual SCNs (19, 63) producing

promising results, e.g., establishing a link between schizophrenia-

related genes and abnormal structural covariance, for brain age

prediction (115), and, recently, showing disturbed structural

covariance among obese people (112).

We must note a few limitations of our study. First, the patients in

the training and validation data exhibited different clinical profiles. The

MUC sample included not only patients with chronic schizophrenia

but also those at earlier stages of the disorder. This variability could

have confounded the algorithm’s decisions, as alterations in brain

structure might be less pronounced in patients experiencing a first

episode of psychosis. Second, as previously mentioned, our choice of

cortical brain parcellations could have led to discarding valuable

information. Repeating the analysis with different brain parcellations

would further enhance robustness of the findings. Third, we lacked

detailed information regarding medication intake beyond whether

antipsychotics or antidepressants were used. Including specific

substances, duration, and cumulative dosage would have provided

more nuanced insights into their (differential) impact on regional brain

structure and structural covariance. Additionally, information on

patients’ drug consumption was limited to whether they smoked

cigarettes and drank alcohol and took any other drugs (yes/no).

Including data on which specific other drugs, e.g., cannabis, they

used would have been valuable.

In conclusion, despite some open questions and the limitations

mentioned above, our study demonstrates that individual SCNs

estimated by means of deviation from a healthy reference sample or

KL-divergence contain information for the classification of

schizophrenia, beyond information contained in ROI-GMV.

Whilst only performing modest in terms of classification

accuracy, KLS-SCNs effectively captured clinical differences in

patients with schizophrenia, primarily driven by BMI and

negative symptoms, similar to information extracted by PCA on

ROI-GMV features. Therefore, individual SCNs, as a proxy for

brain dysconnectivity, may advance the search for biomarkers

of schizophrenia.
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