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Deciphering transcriptomic
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bipolar disorder, and major
depressive disorder
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and Sandeep Singh Rana1*

1Department of Applied Psychology, Guru Jambheshwar University of Science & Technology,
Hisar, India, 2CSIR - Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, India, 3Skill
Vishawkarma University, Palwal, India
Schizophrenia (SCZ), Bipolar Disorder (BD), and Major Depressive Disorder (MDD)

are severe psychiatric conditions that share overlapping clinical symptoms, yet

they differ in their underlyingmolecular mechanisms. Despite extensive research,

the biological foundations of these disorders remain incompletely understood. In

this study, we performed a large-scale transcriptomic analysis by integrating 557

publicly available RNA-seq datasets from post-mortem brain tissues, spanning

multiple regions, to better understand the shared and distinct molecular features

of these disorders. Using systematic bioinformatic approaches, we identified

differentially expressed genes (DEGs) and investigated associated biological

pathways, regulatory transcription factors, and drug-gene interactions. Our

analysis revealed notable overlap in gene expression profiles, particularly

between SCZ and BD, suggesting common molecular pathways underlying

these disorders. At the same time, each disorder also demonstrated unique

transcriptional patterns, supporting the existence of disorder-specific

mechanisms. Brain region-specific analyses further highlighted spatial

heterogeneity in gene expression, with significant differences observed in

regions such as the hippocampus and dorsolateral prefrontal cortex (DLPFC).

The transcription factor enrichment analysis revealed distinct regulatory

programs driving each disorder: MDD pathology appears regulated by ASCL3,

MYOG, HNF1B, RUNX3, FOXA1 and STAT4; BD exhibited predominant control by

immune-regulatory factors including FOSL1, FOSL2, PLSCR1, RELB, BATF3, IRF

and NFKB1; while SCZ demonstrated unique regulation through ATF5, CREB3L3,

SNAI1, NFIL3, CEBPB, RELB and IRF transcription factors. Moreover, our drug-

gene interaction analysis uncovered promising therapeutic targets, with several

differentially expressed genes showing potential for drug repurposing,

particularly in relation to antipsychotics and immunomodulatory agents. Our

comprehensive transcriptomic analysis reveals both shared molecular

mechanisms and distinct immune signatures across schizophrenia, bipolar

disorder, and major depressive disorder, advancing our understanding of
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psychiatric pathophysiology while highlighting the heterogeneous nature of

these conditions. These findings establish a critical foundation for developing

targeted, patient-specific therapeutic interventions that address the underlying

biological complexity of major psychiatric disorders.
KEYWORDS

bipolar disorder, major depressive disorder, schizophrenia, transcriptomics,
mental health
Introduction

Psychiatric disorders represent a significant global health

burden, affecting millions worldwide and posing substantial

challenges to healthcare systems, social structures, and economic

frameworks (1). Among these, Schizophrenia (SCZ), Bipolar

Disorder (BD), and Major Depressive Disorder (MDD) stand as

particularly impactful conditions, characterized by complex

symptomatology and often devastating effects on individual

functioning and quality of life (2). Despite their clinical

significance, the underlying molecular mechanisms driving these

disorders remain incompletely understood, hindering the

development of more effective therapeutic strategies. The global

burden of these disorders is substantial, with approximately 1% of

the population affected by SCZ, 2.4% by BD, and 3.8% by MDD (1,

3). These conditions account for a significant proportion of

disability-adjusted life years (DALYs) worldwide.

The overlapping symptomatology and high comorbidity rates

among these disorders suggest shared biological underpinnings, yet

each condition also exhibits unique clinical features that point to

distinct pathophysiological mechanisms (4). Recent advances in

high-throughput sequencing technologies and bioinformatics have

provided unprecedented opportunities to explore these biological

foundations at the molecular level (5). Transcriptomic analysis, in

particular, has emerged as a powerful tool for understanding the

complex interplay of genetic and environmental factors in

psychiatric disorders (5).

The complexity of psychiatric disorders is further compounded

by the involvement of multiple brain regions and neural circuits.

The dorsolateral prefrontal cortex (DLPFC) and hippocampus have

been consistently implicated in the pathophysiology of SCZ, BD,

and MDD, yet their relative contributions to each disorder remain

debated (6). Understanding region-specific transcriptional changes
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is crucial for developing targeted therapeutic approaches and

identifying biomarkers for early diagnosis and intervention.

Previous studies have typically focused on individual disorders

or specific brain regions, limiting our understanding of the broader

biological landscape across psychiatric conditions (5, 7–9). The

integration of data from multiple studies and brain regions offers a

unique opportunity to identify both shared and unique molecular

signatures, potentially revealing novel therapeutic targets and

biological pathways (10). This comprehensive approach is

particularly relevant given the growing recognition of psychiatric

disorders as existing along a biological continuum rather than as

discrete entities.

Recent technological advances have enabled more sophisticated

analyses of gene expression patterns and pathway dysregulation,

providing new insights into the molecular basis of psychiatric

disorders (5). The application of advanced bioinformatic

approaches to large-scale transcriptomic data has revealed

complex patterns of gene expression changes and pathway

perturbations that may underlie the development and progression

of these conditions. The integration of machine learning

approaches with transcriptomic analysis has further enhanced our

ability to identify complex patterns and relationships within large-

scale genomic data (11). These computational advances have

enabled more robust identification of disease-specific signatures

and pathway interactions.

In this study, we analyze transcriptomic data from SCZ, BD,

and MDD across multiple brain regions to address the specific

questions of - (i) identifying shared and unique genomic signatures

across disorders, (ii) characterizing brain region-specific

transcriptional patterns, (iii) elucidating distinct molecular

mechanisms through pathway analysis, and (iv) exploring the

implications of these findings for therapeutic development.

Methodology

Dataset collection

We selected and searched the publicly available dataset on BD,

SCZ, and MDD, with considerations of the Preferred reporting

items for systematic reviews and meta-analysis (PRISMA)

guidelines, ensuring a systematic and thorough review of the
frontiersin.org
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available data (12). The selection criteria include - i) Study should

involve human subjects (“Homo sapiens”), ii) Study should contain

a minimum of 12 samples to ensure statistical robustness in

downstream analysis, iii) data should be publicly available. The

following exclusion criteria was used - i) Study should include the

strict patient vs control analysis, ii) Should contain experimental

samples other than post-mortem brain samples, iii) experimental

data excluding cellular populations. Following these data guidelines

and criteria, we have been left with 5 RNA-Sequencing datasets -

GSE138082, GSE174407, GSE80655, GSE78936, and GSE379666.

However, for the GSE174407 study, the raw sequence read files were

not publicly accessible and consequently, we had to exclude this

dataset from our further analysis.
Transcriptomic dataset processing

We downloaded the raw FASTQ files for the selected datasets

using the NCBI SRA Toolkit via a custom Bash script, which is now

provided as a Supplementary File. The sequencing data were

processed using the nf-core/rnaseq pipeline (version 3.14.0)

(https://nf-co.re/rnaseq/3.14.0/), with default parameters. This

pipeline incorporates a comprehensive suite of tools for quality

control, read preprocessing, alignment, and quantification. Initial

processing steps included quality assessment using FastQC and

adapter trimming with Trim Galore, which removes low-quality

bases (Phred score < 20) and sequencing adapters. Trimmed reads

were aligned to the human reference genome (GRCh38, release 113)

using STAR, and transcript quantification was performed using

Salmon at both gene and transcript levels. To further evaluate data

quality, we utilized additional metrics and tools integrated in the

pipeline: Qualimap for gene body coverage analysis, RSeQC for read

distribution assessment, Picard Tools for alignment quality

statistics, and TIN score computation to assess RNA integrity.

Normalized bigWig files were also generated for downstream

visualization. While the pipeline does not automatically filter out

low-quality samples, we carefully reviewed all quality control

reports (aggregated using MultiQC) and excluded any samples

that failed to meet acceptable quality standards based on metrics

such as low mapping percentage, poor read quality, or abnormal

coverage profiles. All analysis steps were executed using nextflow,

enabling reproducibility, traceability, and scalable execution across

datasets and computing environments.
Batch correction and visualization

The limma R package (version 3.20) was used to remove any

potential batch effects in the dataset. The batch effect correction for

each study was done by using the known variable such as sequencing

library preparations (13). Unknown batch effects were further

estimated using the checking of the surrogate variables by the limma

R package. For plotting and visualization of the batch effect, the first

two principal components are considered. Further downstream

analysis has been done with a batch-corrected data matrix which
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consists of 19447 human protein-coding genes. To represent the latent

projection of all the samples in a 2-dimensional space we have also

performed the Uniform manifold approximation projection (UMAP)

projection on a batch corrected data matrix. UMAP analysis was

performed on each tissue and the disease class which the sample

belongs to. In addition, we also performed the UMAP analysis for each

distinct brain region, examining samples across disease conditions.
Differential expression analysis and
identification of key genes and
pathways

To investigate transcriptional changes across different brain

regions and disease conditions, we performed comprehensive

differential expression analysis using DESeq2 (14). This robust

analytical approach enabled us to identify genes that showed

significant alterations in expression patterns when compared to

control samples. For statistical stringency and biological relevance,

we established dual filtering criteria: an absolute log2 fold change

threshold exceeding 1 (corresponding to a minimum two-fold change

in expression) and a statistical significance threshold of padj < 0.05.

This balanced approach helped us identify genes that showed both

substantial magnitude of change and statistical reliability. The

differentially expressed genes were then examined for their

functional implications through Gene Set Enrichment Analysis

(GSEA) (15). We incorporated pathway information from two

complementary databases: the Reactome database, which provides

detailed molecular pathway annotations, and the Molecular

Signatures Database (MSigDB), offering a broader spectrum of

functional gene sets (15). This dual-database approach enabled us

to capture both specific molecular mechanisms and broader

biological processes affected in each disease condition. By analyzing

each disease group separately, we could identify both unique pathway

perturbations specific to individual conditions and common pathway

alterations shared across multiple disease states.
Transcription factor enrichment

To elucidate the regulatory mechanisms underlying the identified

pathways, we performed transcription factor (TF) enrichment analysis

using ChIP-X Enrichment Analysis 3 (ChEA3), a database which

integrated experimental evidence of the identified TF (12). This

analysis was crucial for understanding the upstream regulators that

orchestrate the observed pathway-specific gene expression patterns. By

analyzing the leading genes derived from MSigDB and Reactome

pathway analyses, we sought to identify both unique and shared

transcriptional regulators across different pathways. ChEA3’s

integrative approach, which combines multiple lines of evidence

including RNA-seq-based TF-gene co-expression data, ChIP-seq-

derived TF-target associations, and TF-gene co-occurrence patterns

from crowd-sourced gene lists, provided a comprehensive view of the

regulatory landscape. The composite ranking system of ChEA3
frontiersin.org
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enhanced the reliability of our TF predictions by synthesizing evidence

from these diverse data sources, offering insights into the hierarchical

organization of the transcriptional networks governing these

pathways. This approach enabled us to identify key regulatory nodes

that could explain the observed pathwayspecific gene expression

patterns and potential crosstalk between different biological processes.
Identification of key drugs for
therapeutics

We have utilized the Drug-gene interaction database (DGIdb)

resource (16) (https://www.dgidb.org/search_interactions) for the

purpose of studying the therapeutic potentials of the identified

leading genes governing each pathway and thus sheds light upon a

unique treatment-targeted approach. This database maintains the

latest information on drug-gene interactions identified from

experimental studies. We have searched our signature genes in

the database and identified their association, in order to search for

disease specific therapeutic interventions.
Results

Dataset characteristics and study overview

Brain regions including the cortex, amygdala, and hippocampus

were selected based on extensive prior evidence highlighting their

key roles in cognition, emotional regulation, and memory, all of

which are critically affected in major psychiatric disorders.

Following PRISMA guidelines (17), we left with four studies, to

be included in our analysis. The study PRJNA314463 (GSE78936)

consists of samples from 24 controls, 30 BD and 28 SCZ, whereas

Study PRJNA319583 (GSE80655) have 87 control, 87 BD, 94 MDD,

and 83 SCZ patients, study PRJNA379666 (GSE379666) consisted

of 24 control and 22 SCZ samples, and study PRJNA574470

(GSE138082) was made up of 39 control and 39 SCZ

(Supplementary Table S1; Table 1). The complete dataset was

accessed and process in October 2023. The complete description
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of the dataset used in the present study has been added to

Supplementary Table S2.

Collectively, the present study consists of a cohort of 557 public

RNA-seq dataset of BD, SCZ and MDD from different regions of

the brain and accessed their genomic expression profile for the

identification of unique and shared features. All samples were

processed using standardized RNAseq protocols on the Illumina

HiSeq 2000 platform, ensuring technical consistency across studies.

The brain regions analyzed represent key areas implicated in

psychiatric disorders: the orbitofrontal cortex, involved in

decision-making and emotional processing; the anterior cingulate

and dorsolateral prefrontal cortex, crucial for executive function

and emotional regulation; the amygdala, central to fear and

emotional responses; and the hippocampus, essential for memory

formation and emotional processing. This diverse regional

sampling allows for a comprehensive analysis of disease-specific

molecular signatures across different functional brain areas.

Figure 1 provides the complete architecture of the study performed.
Dimensionality reduction uncovers
disease specific features across
psychological conditions

The raw FASTQ files were processed using a uniform

bioinformatics pipeline to minimize technical variability in the

analysis workflow. The raw count matrix of 557 cases and control

dataset were used for the batch correction to mitigate technical

variations across the datasets. Before batch correction, distinct

clustering was observed across study groups and conditions,

reflecting potential batch effects. However, after batch correction, the

samples from all groups intermingled, indicating the removal of these

batch-specific variations (Supplementary Figure 1). Following batch

correction, the Principal Component Analysis (PCA) revealed distinct

patterns across psychiatric conditions, brain regions, and study groups.

The study group specific PCA clustering, validates our batch correction

approach, as samples from all studies (PRJNA314463, PRJNA319583,

PRJNA379666, and PRJNA574470) showed uniform distribution

without distinct study-specific clustering, confirming successful
TABLE 1 Summary of the dataset used in the present study.

ID Disease Brain areas Platform File type Reference

GSE78936 Bipolar and Schizophrenia Orbitofrontal Cortex Illumina
HiSeq 2000
(Homo sapiens)

Raw
Fastq

(17)

GSE80655 Bipolar, Schizophrenia and Major
Depressive
Disorder

Anterior Cingulate
Cortex, Dorsolateral
Prefrontal Cortex

Illumina
HiSeq 2000
(Homo sapiens)

Raw
Fastq

(18)

GSE379666 Schizophrenia Amygdala Illumina
HiSeq 2000
(Homo sapiens)

Raw
Fastq

(19)

GSE138082 Schizophrenia Hippocampus Illumina
HiSeq 2000
(Homo sapiens)

Raw
Fastq

(20)
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removal of batch effects (Figure 2A, top). Since the dataset consists of

different psychological conditions and across several brain regions, we

extend the PCA analysis across conditions and different brain regions.

PCA clustering based on the disease status (Figure 2A, middle),

we observed partial overlapping between psychiatric conditions,

with SCZ and BD samples showing closer molecular signatures
Frontiers in Psychiatry 05
compared to MDD, suggesting a molecular continuum among these

disorders. Control samples showed a more diffuse distribution,

indicating natural biological variability in healthy brain tissue

(21). The brain region-specific analysis (bottom panel A) revealed

interesting biological clustering, particularly in the hippocampus

and DLPFC regions, which formed more distinct clusters compared
FIGURE 1

Schematic representation of the overall integrative bioinformatics pipeline used in the study. Computational pipeline overview for analyzing RNA-seq
data from healthy and diseased samples (N = 558, Supplementary Table S1). Raw transcriptomic data from the Database of Genotypes and
Phenotypes (dbGAP) underwent quality control and preprocessing using nf-core/rnaseq pipeline with human genome reference hg38 alignment.
Data processing steps included batch effect correction, gene expression quantification, and normalization. Dimensionality reduction was performed
using Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP), where UMAP1 and UMAP2 represent the two
primary embedding dimensions capturing non-linear data structure. Differential gene expression analysis identified significantly dysregulated genes
(DEGs) using DESeq2 Wald test with statistical thresholds: log2fold-change ≥ 1.0 and padj-value < 0.05. Functional enrichment analysis employed
Gene Set Enrichment Analysis (GSEA) and transcription factor (TF) enrichment to identify perturbed biological pathways and regulatory networks.
Drug target identification and validation utilized the Drug-Gene Interaction database (DGIdb) to identify therapeutic candidates and immune-related
targets for potential clinical translation. PCA, Principal Component Analysis; UMAP, Uniform Manifold Approximation Projection; DEG, Differentially
Expressed Genes; GSEA, Gene Set Enrichment Analysis; TF, Transcription Factor.
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FIGURE 2

Dimensionality reduction validates disease specific pattern across conditions. (A) Principal Component Analysis (PCA) of transcriptomic data stratified
by study type. PC1 and PC2 capture 37.8% and 10.9% of total variance, respectively (N = 557 samples, Supplementary Table S1). Sample distribution
by study cohort (PRJNA314463 (N = 83), PRJNA319583 (N = 352), PRJNA379666 (N = 46), PRJNA574470 (N = 78)) demonstrates effective batch
correction with no study-specific clustering (PERMANOVA p > 0.05). Each dot represents a patient sample colored by study cohort. All the sample
cluster together showing batch correction has been successful. (B) Principal Component Analysis (PCA) of transcriptomic data stratified by disease
category. Disease classification shows molecular convergence between neuropsychiatric disorders, indicating successful batch effect removal:
Bipolar Disorder (BD), Major Depression (MDD), Schizophrenia (SCZ), and healthy controls. Each dot represents a patient sample colored by Disease.
All the sample cluster together showing batch correction has been successful. (C) Principal Component Analysis (PCA) of transcriptomic data
stratified by site of biopsy in brain. Brain region-specific analysis across eight anatomical regions: Anterior Cingulate Cortex (AnCg), Brodmann Areas
11, 24, and 9, Dorsolateral Prefrontal Cortex (DLPFC), amygdala, hippocampus, and Nucleus Accumbens (nAcc). Each dot represents a patient
sample colored by brain region. All the sample cluster together showing batch correction has been successful. (D) UMAP projection of
transcriptomic stratified by disease category and Site of biopsy UMAP1 and UMAP2 represent primary embedding dimensions preserving local and
global data structure. UMAP projection colored by disease type shows clear clustering of samples by pathological condition, indicating successful
removal of technical batch effects while preserving biological signal. Each point represents an individual sample, with point size corresponding to
brain region type. (E) UMAP projection of transcriptomic stratified by study type and tissue type. Brain tissue region-stratified analysis confirms
successful integration of samples across different brain anatomical regions, with point shapes representing regional identity and colors indicating
disease status. Statistical significance assessed using Wilcoxon rank-sum test with Benjamini-Hochberg correction (adjusted p < 0.05).
Frontiers in Psychiatry frontiersin.org06
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to other brain areas, suggesting strong region-specific

transcriptional signatures (Figure 2A, bottom). However, the

limited variance explained by the first two principal components

(PC1: 27.6%, PC2: 10.9%) indicated additional complexity in the

data structure not captured by linear dimensional technique. To

further uncover the more biological variations in the dataset, we
Frontiers in Psychiatry 07
extended our analysis with non-linear dimensionality reduction

techniques. UMAP analysis reveals more nuanced biological

patterns, particularly in disease-specific manner (Figure 2B). The

UMAP projection shows that while there is partial overlap between

SCZ and BD, MDD forms a distinct cluster with partial or no

overlap with SCZ. These complementary analyses suggest that while
FIGURE 3

Transcriptomic analysis identify shared and unique genomic vulnerability across psychosis disorders. (A) Venn diagram analysis of differentially expressed
genes (DEGs) across psychiatric conditions. Post-mortem brain tissue transcriptome analysis comparing Bipolar Disorder (BD) (N=117), Major Depression
(MDD) (N=94), and Schizophrenia (SCZ) (N=173) versus healthy controls (N = 174). Differentially expressed genes (DGE) identified using DESeq2 with
statistical thresholds: log2fold-change ≥ 1.0 and pdj-value < 0.05. Disease-specific DEGs: BD (436 unique genes), MDD (7 unique genes), SCZ (219
unique genes). Shared molecular signatures: 12 hub genes dysregulated across all three conditions, 373 genes shared between BD and SCZ, 3 genes
shared between BD and MDD, and 1 gene shared between MDD and SCZ, indicating common pathobiological mechanisms underlying psychotic
spectrum disorders. (B) UpSet plot visualization of brain region-specific transcriptomic patterns. Intersection analysis across eight brain regions: Anterior
Cingulate Cortex (AnCg), Brodmann Areas 11, 24, and 9, Dorsolateral Prefrontal Cortex (DLPFC), amygdala, hippocampus, and Nucleus Accumbens
(nAcc). Horizontal bars indicate total DEGs per region-disease combination; vertical bars show intersection sizes with connected dots representing
shared gene sets. Statistical significance of overlaps assessed using hypergeometric distribution test (p < 0.05).
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these psychiatric disorders share common molecular features, they

also possess unique transcriptional programs particularly for major

depressive disorder, as evidenced by both PCA and UMAP.
Shared and unique genomic
signatures across psychiatric disorders
Our transcriptomic analysis revealed both unique and overlapping

genomic signatures across psychiatric disorders (Supplementary Table

S3). BD exhibited the largest number of unique DEG’s, followed by

SCZ and MDD. Notably, BD and SCZ shared substantial molecular

overlap with 373 common DEGs, suggesting significant biological

convergence between these conditions (Figure 3A). We also

identified 12 common hub genes across all the three disorders. The

brain region-specific analysis demonstrated distinct patterns of

transcriptional dysregulation. The amygdala and hippocampus

demonstrated unique transcriptional signatures, especially in SCZ,

highlighting the region-specific nature of psychiatric pathology

(Figure 3B). This comprehensive analysis suggests a complex

interplay between shared and unique genomic vulnerabilities across

psychiatric disorders, with substantial overlap between BD and SCZ,

while MDD shows more distinct molecular patterns.
Pathway analysis reveals distinct molecular
mechanisms in psychiatric disorders

The pathway enrichment analysis uncovered distinct biological

mechanisms underlying each psychiatric disorder. MDD showed

predominant dysregulation in stress response and metabolic

pathways, with significant enrichment in KRAS signaling,

unfolded protein response, and glycolysis, suggesting cellular

stress as a key pathogenic mechanism. BD demonstrated the most

robust immune system activation, characterized by strong

enrichment in interferon response pathways and JAK-STAT

signaling cascades, alongside significant involvement of the PI3K-

AKTmTOR pathway, indicating a complex interplay between

immune regulation and cellular growth signaling. SCZ exhibited a

unique combination of immune dysregulation, oxidative stress, and

metabolic perturbations, with notable enrichment in interferon

responses and reactive oxygen species pathways (Figure 4). Thus,

the pathway enrichment analysis distinct molecular signatures with

both convergent and divergent patterns across psychiatric

disorders. While BD and SCZ showed striking similarities in

immune system activation, with significant upregulation of

interferon gamma and alpha response pathways, suggesting

shared inflammatory mechanisms in their pathophysiology. In

contrast, MDD exhibited a distinct pattern with downregulation

of inflammatory responses and TNFa signaling, indicating that

while immune system dysregulation is common across these

disorders, the directional changes are disorder specific. Similar to

the immune system the metabolic pathways show disease specific

patterns. MDD demonstrated upregulation of fundamental
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metabolic processes including glycolysis, hypoxia response, and

estrogen signaling, suggesting cellular stress and altered energy

metabolism as key features. BD uniquely showed strong

activation of PI3K-AKT-mTOR and JAK-STAT signaling

cascades, alongside upregulated cholesterol homeostasis and

epithelial-mesenchymal transition pathways, indicating disrupted

cellular signaling and plasticity. SCZ exhibited a distinct profile with

upregulation of xenobiotic metabolism and reactive oxygen species

pathways, suggesting oxidative stress as a central mechanism, along

with altered cholesterol and androgen responses. Furthermore,

Gene Ontology (GO) analysis confirms the same molecular

convergence as observed with the MsigDb hallmark analysis.

These findings suggest shared inflammatory and signaling

pathway disruptions across these psychiatric conditions, while

also revealing disorder-specific molecular signatures that could

inform targeted therapeutic approaches.

These molecular signatures correlate remarkably with clinical

presentations: the dysregulated stress response and metabolic

pathways in MD align with observed neurovegetative symptoms

and stress sensitivity (22); the oscillating cellular signaling patterns

in BD mirror the cyclic nature of mood states (23); and the

combination of immune activation and oxidative stress in

Schizophrenia may underlie the progressive nature of cognitive

symptoms (24). Of therapeutic relevance, these findings suggest that

while immune-modulating strategies might benefit BD and SCZ

patients, alternative approaches targeting metabolic and stress

response pathways might be more effective for MDD.

Furthermore, the identification of disorder-specific pathway

dysregulation provides potential novel therapeutic targets: mTOR

pathway modulators for BD, antioxidant strategies for SCZ, and

metabolic pathway interventions for MDD.
Immune cell composition analysis
across psychological disorder

Since pathway analysis results in varied expression of immune

signature across the disorder. In order to better deconvolute the

immune cell governing each disorder, we sought to perform the

immune cell deconvolution using CIBERSORT algorithm (25) with

LM22 gene signature. CIBERSORT immune cell deconvolution

reveals distinct immune cell compositional differences between

BD, MDD, and Schizophrenia. Macrophages M0 exhibited

significantly higher proportions in Bipolar Disorder compared to

Controls (p=0.008408421), in Major Depression compared to

Controls (p=0.007015745), and were also significantly different

when comparing Schizophrenia to both Bipolar Disorder

(p=0.007015745) and Major Depression (p=0.007015745). This

suggests an overall elevated presence of M0 macrophages in these

disorders, particularly pronounced in Schizophrenia. Macrophages

M1 showed a significantly higher proportion in Major Depression

compared to Controls (p=0.023905212). Furthermore,

Macrophages M2 demonstrated significantly altered proportions

in Bipolar Disorder compared to Controls (p=0.005258366), in
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1574458
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Priyanka et al. 10.3389/fpsyt.2025.1574458
Major Depression compared to Controls (p=001229292), and were

significantly different when comparing Schizophrenia to Major

Depression (p=0.040085284). Regarding T cell populations, T

cells CD4 naive showed significantly reduced proportions in

Major Depression compared to Controls (p=0.039030542), and

were also significantly lower when comparing Schizophrenia to

Major Depression (p=0.039030542). (Figure 5; Supplementary

Table S4; Supplementary Figure 2). The consistent presence but

varying proportions of Macrophages (M0, M1, M2) across

disorders indicates potential differential polarization of myeloid

cells that may contribute to disorder-specific inflammatory

environments. These findings align with emerging evidence of

immune dysregulation in psychiatric disorders.
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Transcription factor enrichment
analysis uncovers distinctive
regulatory programs

To investigate the observed disease-specific gene expression and

pathway alterations, we performed transcription factor (TF)

enrichment analysis to prioritize regulatory elements governing

these behaviors. Using ChIP-X Enrichment Analysis 3 (ChEA3)

on leading-edge genes from MSigDB pathway analysis, we

identified unique TF regulatory signatures across all three

psychiatric conditions. This approach systematically evaluates

which transcription factors are most likely to regulate the disease
FIGURE 4

Pathway analysis uncovers the shared and unique biological pathway across psychosis disorders. (A) Hallmark pathway enrichment analysis across
psychiatric disorders. Gene Set Enrichment Analysis (GSEA) comparing Major Depressive Disorder, Bipolar Disorder, and Schizophrenia against
neurotypical controls using MSigDB Hallmark gene sets. Analysis performed with 1000 gene set permutations and DESeq2 normalized count. Red
bars indicate significantly upregulated pathways (NES > 0, p < 0.05, FDR < 0.25), gray bars represent nonsignificant enrichment. Asterisks (*) denote
statistical significance after Benjamini-Hochberg multiple testing correction. (B) Differential gene expression profiles in psychiatric disorders. Volcano
plots displaying log2 fold change (x-axis) versus -log10 p-value (y-axis) for differentially expressed genes in each disorder compared to controls. Red
dots represent significantly upregulated genes (log2FC > 0.5, p < 0.05), blue dots represent significantly downregulated genes (log2FC < -0.5, p <
0.05), and gray dots represent non-significant genes. Statistical analysis performed using DESeq2 with Wald test and Benjamini-Hochberg
correction. Gene symbols for the most significantly altered genes are labeled for biological interpretation. (C) Gene Ontology enrichment analysis of
immune system pathways. Pre-ranked GSEA enrichment plots for immune-related Gene Ontology Biological Process terms across psychiatric
disorders. Green line shows running enrichment score along ranked gene list, with peak representing final Normalized Enrichment Score (NES).
Vertical black lines indicate positions of genes within each immune gene set. Middle barcode plot displays gene rankings with red-to-blue gradient
representing expression correlation with phenotype. Positive NES indicates pathway upregulation; negative NES indicates downregulation. Statistical
significance determined by permutation testing (1000 permutations, p < 0.05, FDR < 0.25). Only top 5 pathway based on highest NES score and p-
value are shown. GSEA, Gene Set Enrichment Analysis; NES, Normalized Enrichment Score; DEG, Differentially Expressed Gene; FC, Fold Change;
FDR, False Discovery Rate; GO, Gene Ontology.
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specific behavior comparing them against curated libraries of

known TF-target relationships derived from diverse genomic

datasets. The ChEA3 employs Fisher’s exact test with a reference

background of 20,000 genes to statistically assess the overlap

between our disease-associated gene signatures and established TF

regulatory networks, enabling identification of transcriptional

drivers that may orchestrate the observed pathological gene

expression programs in each psychiatric condition.

Our comprehensive analysis revealed the top 20 transcription

factors for each condition based on composite ranking scores that

integrate multiple evidence sources, with notable disease-specific

patterns. For major depressive disorder (MDD), the most

significantly enriched TFs were ASCL3, MYOG, DPRX, RBPJL,

HNF1B, RUNX3, TBX21, EGR2, NR5A2, FOXA1, EOMES,

CENPA, IRF8, XBP1, STAT4, CSRNP1, MYBL1, FOXM1, CDX2,

TFAP2C representing the highestranking factors with strongest

statistical support. These top-ranked TFs primarily function in

neurodevelopmental processes, neuronal differentiation, regulating

muscle development and neuroplasticity, controlling developmental

gene programs as shown by literature evidence. In bipolar disorder

(BD), the transcription factor landscape was dominated by immune

and inflammatory regulatory elements. The top-ranked TFs were

PLSCR1, SNAI1, CSRNP1, FOSL1, FOSL2, RELB, and BATF3,

NFIL3, ARID5A, STAT3, CEBPB, ATF3, IRF1, NFKB2, BATF2,

BCL6B, HLX, JUNB, TRAFD1, and ELK3 which collectively

orchestrate immune-related gene expression changes.

Schizophrenia (SCZ) exhibited a unique regulatory profile

characterized by transcription factors involved in both immune

function and neurodevelopmental processes. The most significantly

enriched factors were SNAI1, PLSCR1, ATF5, CREB3L3, NFIL3,

CEBPB, and STAT3, HLX, PRRX2, BATF3, RELB, MSC, IRF1,

NFKB2, NR1H4, FOSL2, BCL6B, EPAS1, FOSL1, ARID5A
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(Figure 6). This collectively demonstrate the dual immune-

neurodevelopmental signature, suggesting convergent dysregulation

of these pathways in SCZ etiology.
Literature validation of the key genes
and identification of drug targets

To further explore the key biological difference observed at the

disease level, we sought to validate our findings with literature

search. Using the DGE list, we searched the genes across the web for

their involvement in pathophysiology across the disease status. In

BD, several of our identified genes such as SERPINA3 (26), CCL2

(27), SOCS3 (27), S100A3 (28), FOSL1 (29) (Figure 4, volcano plot)

have been previously implicated in pathophysiology observed

bipolar patients. Notably, in SCZ, genes such as SERPINA3 (30),

CHI3L1 (31), SOCS3 (32), CASP1 (32), IL1RL1 (33), IL6 (33),

HBG2 (34), GRIN2A (35) and GRIA3 (36) have established

associations with inflammation, synaptic plasticity and disease

severity. For MDD, our key genes, including CHI3L1 (37),

SERPINA3 (38), CP, which involved in metabolism (https://

psychiatrypsychopharmacology.com/en/ceruloplasmin-levels-

before-and-after-treatment-in-patients-withdepression-a-case-

control-study-132758) align with published studies demonstrating

their roles in stress and mood regulation. Next, to explore the

therapeutic potential of our DGE gene list in a disease-specific

manner, we utilized the DGIdb resource (https://www.dgidb.org/

search_interactions), which catalogs the experimentally validated

druggene interaction. Our drug-gene interaction analysis using

DGIdb uncovered several promising therapeutic implications

across psychiatric disorders. Notably, SERPINA3, a key

dysregulated gene in our analysis, showed interactions with
FIGURE 5

Immune Cell Composition Across Major Psychiatric Disorders Based on CIBERSORT Deconvolution. Brain tissue samples from controls and patients
with Bipolar Disorder, Major Depression, and Schizophrenia analyzed for 22 immune cell subtypes using LM22 signature matrix (1000 permutations,
p < 0.05). Each vertical bar represents an individual sample with colored segments showing relative proportions (0-1.0 scale) of immune cell
populations. Only cell types which shows significant difference in proportion compared to the control (pval < 0.05) shown in bright color, the cell
type which are not significant are shown in grey color.
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multiple established antipsychotic agents including risperidone,

olanzapine, and clozapine, validating its relevance in psychiatric

pathophysiology. The inflammatory mediators identified in our

study, particularly IL6 and CCL2, demonstrated interactions with

various therapeutic agents, including immunomodulators and

antipsychotics, CP with antidepressants etc. The DGIdb analysis

uncovered several promising drug-gene interactions beyond our

curated psychiatric gene set. For example - SLC22A12
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demonstrated interactions with multiple therapeutic agents,

including losartan and antineoplastics, suggesting potential

metabolic pathway interventions. PTGIR showed significant

associations with cardiovascular agents like selexipag and

epoprostenol, highlighting possible vascular-related therapeutic

approaches. The CALCA pathway revealed interactions with

novel therapeutic antibodies (galcanezumab, fremanezumab) and

traditional medications, suggesting its potential role in pain and
FIGURE 6

Transcription factor uncovers the unique biology of disease. Comprehensive transcription factor (TF) enrichment analysis identifying regulatory
drivers of disease-specific gene expression programs in schizophrenia disorder (SCZ). Analysis performed using ChIP-X Enrichment Analysis 3
(ChEA3) database on leading-edge genes derived from MSigDB pathway enrichment analysis. ChEA3 integrates multiple evidence sources including:
(1) ARCHS4 Coexpression data (purple), (2) ENCODE ChIP-seq binding data (dark blue), (3) Enrichr Queries database (teal), (4) GTEx Coexpression
data (green), (5) Literature ChIP-seq studies (light green), and (6) ReMap ChIP-seq database (yellow), generating composite ranking scores for
statistical significance. The horizontal stacked bar chart displays the top 20 transcription factors for each disease category, ranked by weighted mean
rank percentages across all evidence classes. Each colored segment represents the contribution of different evidence sources to the overall TF
ranking, with the total bar length indicating the combined weighted mean rank percentage. TFs are ordered by overall composite ranking
significance.
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neurotransmitter modulation. CHRNG’s interactions with multiple

neuromuscular blocking agents point to possible therapeutic

implications for motor symptoms. PLA2G2A’s connections to

antiinflammatory agents and corticosteroids, along with CXCR1/

2’s interaction profile with antiinflammatory compounds, suggest

additional inflammatory pathway intervention possibilities.

Notably, NPC1L1’s interaction with lipid-modulating drugs like

ezetimibe indicates potential metabolic therapeutic approaches.

These previously unexplored drug-gene interactions reveal

additional therapeutic opportunities and potential drug

repurposing strategies for psychiatric disorders, particularly

through modulation of inflammatory, metabolic , and

neurotransmitter pathways. The summarized list of drug-gene

interaction has been added into the Supplementary Table S5.
Key highlights of the present study

The present study comprehensive transcriptomic analysis of

557 RNA-seq datasets across Schizophrenia (SCZ), Bipolar

Disorder (BD), and Major Depressive Disorder (MDD) provides

novel insights into psychiatric disorder molecular mechanisms. The

study reveals: (1) significant molecular convergence between SCZ

and BD with 373 shared differentially expressed genes,

substantiating their clinical similarities; (2) distinct disorder-

specific transcriptional profiles, particularly BD’s complex

molecular landscape; (3) brain region-specific molecular

alterations, especially in hippocampus and dorsolateral prefrontal

cortex, highlighting spatial heterogeneity in psychiatric disorders;

(4) disorder-specific pathway disruptions including stress response

and metabolic dysregulation in MDD, immune activation in BD,

and immune-oxidative stress interactions in SCZ; (5) identification

of key transcription factors as major regulators of each psychiatric

disorder; and (6) promising therapeutic strategies through drug-

gene interaction analysis, including SERPINA3’s interaction with

antipsychotics and IL6/CCL2 with immunomodulators. These

findings advance precision psychiatry by elucidating the

molecular complexity underlying these disorders and offer a

foundation for developing targeted treatment approaches. In

conclusion, the present study offers a multi-disorder, multi-region

transcriptomic perspective on psychiatric disorders, identifying key

molecular pathways, transcription factors, and drug-gene

interactions that could inform precision medicine strategies.
Discussion

Our comprehensive transcriptomic analysis reveals both shared

and unique molecular signatures across SCZ, BD, and MDD,

providing crucial insights into the biological foundations of these

psychiatric conditions. The identification of 373 common

differentially expressed genes (DEGs) between SCZ and BD and

12 common hub genes across all three disorders, supports the

hypothesis of shared pathophysiological mechanisms, while distinct

transcriptional patterns highlight disorder-specific molecular
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pathways. This substantial molecular overlap between BD and

SCZ provides a molecular basis for the clinical similarities often

observed between these disorders and may explain the challenges

clinicians face in differential diagnosis.

The observation that BD exhibited the largest number of unique

DEGs suggests a particularly complex molecular landscape, potentially

reflecting the disorder’s characteristic oscillation between manic and

depressive states. This finding aligns with the robust immune system

activation and cellular growth signaling perturbations observed in BD

patients, suggesting potential therapeutic targets specific to this

condition. Brain region-specific transcriptional patterns, particularly

in the hippocampus and DLPFC, underscore the spatial heterogeneity

of gene expression changes in psychiatric disorders. These findings

suggest that therapeutic approaches may need to consider both

disorder-specific and region-specific molecular alterations. Our

analysis of pathway disruption reveals complex interactions between

different biological systems, particularly notable in the immune

system’s involvement across all three disorders, albeit with varying

patterns and intensity. The distinct pathway dysregulation patterns

observed for each disorder – stress response andmetabolic pathways in

MDD, immune system activation in BD, and a combination of

immune dysregulation and oxidative stress in SCZ – provide

potential targets for tailored therapeutic interventions. This finding

suggests that immune modulation might represent a promising

therapeutic avenue, though the approach would need to be carefully

tailored to each disorder’s specific immune signature. The disorder-

specific molecular signatures could guide the development of novel

therapeutic agents, potentially leading to more precise treatment

strategies that address the unique pathophysiological mechanisms of

each condition.

Several limitations of this study warrant consideration. First, the

use of publicly available datasets introduces potential heterogeneity

in sample collection and processing methods. Second,

transcriptomic analysis of post-mortem tissue provides only a

terminal snapshot of gene expression, potentially missing the

dynamic molecular changes that occur throughout disease

progression. Future longitudinal studies could help address this

limitation. The lack of available data regarding the medication

history of the subjects in the datasets used is further limitation of

the study, as the potential effects of psychiatric medications on gene

expression could not be accounted in the analysis. Additionally, the

focus on specific brain regions, while providing detailed insights,

may not capture the full complexity of brain-wide network

disruptions in psychiatric disorders.

Future research directions should address these limitations

through multiple approaches. Validation of key molecular

signatures could be pursued through complementary methods such

as single-cell RNA sequencing of post-mortem tissue (39, 40), which

might better account for cellular heterogeneity and provide higher

resolution of cell-type-specific changes. The development of

improved methods for handling post-mortem tissue and

standardizing collection procedures across brain banks would

enhance data quality and reproducibility (41, 42). Integration of

these findings with other molecular data types especially proteomic

(43), metabolomic (44), and epigenetic data (44) could provide a
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more comprehensive understanding of the biological mechanisms

underlying psychiatric disorders. Additionally, future studies should

consider alternative approaches such as patient-derived induced

pluripotent stem cells (iPSCs) (45, 46) and brain organoids (47),

which could help overcome some limitations of post-mortem studies

by enabling longitudinal analysis and investigation of developmental

aspects of these disorders. These models, while having their own

limitations, could complement post-mortem studies and provide

insights into the temporal dynamics of disease progression.

In conclusion, our study provides valuable insights into the

molecular landscape of major psychiatric disorders, revealing a

complex interplay of shared biological mechanisms and

disorderspecific pathways. Our findings reinforce the idea of a

biological continuum across major psychiatric disorders, with shared

molecular alterations suggesting overlapping pathophysiological

mechanisms despite clinical differences. The identification of distinct

transcriptional signatures and key regulatory networks contributes

significantly to our understanding of the biological continuum across

psychiatric conditions. These findings not only suggest potential targets

for therapeutic intervention but also emphasize the importance of

considering both common and unique molecular features in treatment

development. These findings offer valuable guidance for the

development of more personalized treatment strategies in psychiatry

by identifying potential therapeutic targets and drug repurposing

opportunities. The study also underscores the importance of tailoring

interventions based on disorder-specific and brain region-specific

molecular profiles. As we move forward, validating these

transcriptomic signatures in independent and longitudinal cohorts

will be essential to strengthen their clinical relevance. Integrating

these molecular insights with patient phenotypes and treatment

responses could pave the way for biomarker discovery and more

personalized therapeutic strategies. Furthermore, the incorporation of

multi-omics data and functional studies, such as gene editing or single-

cell analyses, may refine our understanding of disease mechanisms and

advance precision medicine approaches in psychiatric care.
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