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Introduction: Adolescent mental health problems are becoming increasingly

serious, making early prediction and personalized intervention important

research topics. Existing methods face limitations in handling complex

emotional fluctuations and multimodal data fusion.

Methods: To address these challenges, we propose a novel model, MPHI Trans,

which integrates multimodal data and temporal modeling techniques to

accurately capture dynamic changes in adolescent mental health status.

Results: Experimental results on the DAIC-WOZ and WESAD datasets

demonstrate that MPHI Trans significantly outperforms advanced models such

as BERT, T5, and XLNet. On DAIC-WOZ, MPHI Trans achieved an accuracy of

89%, recall of 84%, precision of 85%, F1 score of 84%, and AUC-ROC of 92%. On

WESAD, the model attained an accuracy of 88%, recall of 81%, precision of 82%,

F1 score of 81%, and AUC-ROC of 91%.

Discussion: Ablation studies confirm the critical contributions of the temporal

modeling and multimodal fusion modules, as their removal substantially

degrades model performance, underscoring their indispensable roles in

capturing emotional fluctuations and information fusion.
KEYWORDS

mental health, personalized intervention, multimodal fusion, temporal modeling,
emotion recognition, deep learning
1 Introduction

With the increasing severity of adolescent mental health issues, early identification and

intervention have become important global concerns. In recent years, adolescents have

faced emotional problems such as depression, anxiety, and stress, and their mental health

issues often exhibit diversity and complexity. This not only affects their academic
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performance and social relationships but also has a profound

impact on their future physical and mental development (1).

Traditional methods of mental health assessment, such as

questionnaires, self-reports, and interviews, while providing some

information, have limitations such as subjectivity, long evaluation

cycles, and susceptibility to situational factors. Therefore, achieving

real-time, comprehensive, and accurate monitoring and prediction

of adolescent mental health status has become an important issue in

the field of mental health (2, 3).

The rapid development of deep learning technologies in recent

years has provided new possibilities for mental health prediction

and intervention (4). In particular, multimodal learning and

temporal modeling have made significant progress in the

application of emotion recognition and mental health status

prediction. While many existing models primarily focus on single

modalities or lack temporal context, our approach integrates

multiple modalities and captures emotional fluctuations over

time, providing a more robust prediction of adolescent mental

health. Multimodal learning can integrate information from

different data sources (5), such as text, images, and physiological

signals, while temporal modeling can capture the trends of

adolescents’ emotions over time (6, 7). However, existing

multimodal mental health prediction models often have certain

shortcomings in data fusion across different modalities and

personalized modeling, leading to imprecision in capturing

individual differences and dynamic emotional changes (8).

Additionally, traditional models often overlook the complex

interactions between mental health status, individual

characteristics, and emotional fluctuations, failing to fully exploit

the advantages of personalized intervention (9).

This paper proposes MPHI-Trans, a Transformer-based

multimodal temporal modeling method designed to address the

shortcomings of existing approaches. By integrating multimodal

data such as text, images, and physiological signals with temporal

modeling, MPHI-Trans provides a comprehensive understanding

of adolescents’ mental states. The model also incorporates

personalized features (e.g., personality, interests), allowing for

more accurate and individualized mental health predictions (10).

This personalized intervention strategy not only predicts mental

health problems but also offers targeted recommendations. We

chose LSTM over CNN or Capsule Networks because LSTM is

well-suited to process time-series data and capture long-term

dependencies, which are crucial for modeling dynamic emotional

fluctuations in adolescent mental health. While CNNs excel at

spatial feature extraction and Capsule Networks preserve

hierarchical spatial relationships, LSTM is more effective for

capturing the temporal evolution of emotions and psychological

states (11).

The main contributions of this paper are summarized

as follows:
Fron
• The introduction of MPHI-Trans, which combines

multimodal data fusion, temporal modeling, and
tiers in Psychiatry 02
Transformer technology to achieve personalized

prediction and intervention for adolescent mental health.

• The use of a Transformer-based self-attention mechanism

to solve the data fusion problem across different modalities,

and the application of LSTM for temporal modeling to

improve the accuracy of mental health prediction.

• The introduction of personalized features, enabling the

model to dynamically adjust according to individual

differences, thus providing more precise intervention

plans for adolescents.
The structure of this paper is arranged as follows: Section 2

reviews the research progress in related fields, particularly the

applications of multimodal learning and temporal modeling in

mental health prediction. Section 3 provides a detailed description

of the design and implementation of the MPHI-Trans model,

including multimodal data processing, temporal modeling, and

personalized intervention recommendation methods. Section 4

presents the experimental section, including datasets,

experimental settings, evaluation metrics, and analysis of

experimental results. Finally, Section 5 summarizes the main

contributions of the paper and discusses future research directions.
2 Related work

2.1 Adolescent mental health prediction

In recent years, with the development of psychology and

artificial intelligence technologies, many studies have focused on

exploring machine learning and deep learning methods to predict

adolescent mental health status (12, 13). For instance, sentiment

analysis based on social media data has become a research hotspot.

Some scholars have analyzed adolescents’ posts on platforms like

Twitter and Reddit, using sentiment lexicons or deep learning

models to identify emotional changes and predict mental health

issues such as depression and anxiety (14). Additionally, significant

progress has been made in using physiological signals, such as heart

rate and skin conductance, for emotion monitoring and health

prediction. Research has shown that models based on physiological

signals perform well in emotion changes and stress detection (15).

Meanwhile, emotion prediction models based on Convolutional

Neural Networks (CNN) and Long Short-TermMemorynetworks

(LSTM) have been developed, which extract emotional information

from adolescents’ facial expressions and vocal features to predict

their psychological states (16). Some researchers have proposed

models that predict mental health by analyzing behavioral patterns,

such as online usage habits and online learning behaviors, in an

attempt to identify potential psychological issues by studying an

individual’s daily activities (17). Moreover, studies have utilized

multimodal fusion methods, integrating social media text, images,

and physiological signals, and applying deep learning models to

conduct comprehensive analysis, identifying mental health risks
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from multiple dimensions (18, 19). Recent approaches, such as T5,

XLNet, and Visual BERT, have demonstrated significant

advancements in understanding textand image modalities,

providing inspiration for multimodal models like MPHI-

Trans (20).

Compared to the aforementioned studies, the MPHI-Trans

model proposed in this paper builds on multimodal fusion but

further introduces temporal modeling and personalized features,

enabling it to more finely capture the dynamic changes in

adolescent mental health and individual differences. This allows

for more accurate predictions and intervention recommendations.
2.2 Applications of multimodal learning in
mental health analysis

In recent years, multimodal learning has gradually become

an important research direction in sentiment analysis and

mental health prediction. By integrating various data sources

such as text, images, speech, and physiological signals,

researchers are able to analyze an individual’s mental health

status more comprehensively from multiple dimensions (21, 22).

For example, the MM-BERT model combines BERT with visual

feature extraction methods to process text and image data,

improving the accuracy of emotion recognition (23). The

LXMERT-based multimodal Transformer method has shown

strong capabilities in sentiment analysis and mental health

prediction. This model adopts a multimodal Transformer

framework, which can handle both language and visual

information, enhancing emotion prediction performance

through cross-modal learning (24, 25). Although this method

demonstrates strong capabilities in cross-modal data fusion, it

mainly focuses on static data processing and does not effectively

consider the temporal nature of mental health states and

individual differences. Models such as ViT and Conformer

have shown promising results in handling dynamic data but

still face challenges in fully addressing temporal dependencies in

mental health prediction. Some studies have proposed

mult imodal models that combine speech signals and

physiological data (such as heart rate and skin conductance)

for emotion recognition and mental health evaluation (26).

However, these models still face challenges, such as the

potential loss of information or overfitting when processing

long time-series data (27).

In contrast to these methods, the MPHI-Trans model proposed

in this paper not only integrates multimodal data but also

introduces temporal modeling and personalized features, enabling

the model to dynamically capture the evolving trends in adolescent

mental health. By combining the self-attention mechanism of

Transformer with the temporal modeling ability of LSTM, MPHI-

Trans not only improves the fusion of information between

modalities but also effectively captures the time-dependence of

adolescent mental health, providing accurate predictions and

guidance for personalized interventions.
Frontiers in Psychiatry 03
2.3 Personalized prediction and
intervention methods

In recent years, personalized mental health prediction methods

have gained increasing attention, with many studies attempting to

develop more accurate prediction models by analyzing individual

differences in adolescents (28). For instance, the DeepPsych model

combines adolescents’ personal lifestyle habits, social interactions,

and self-assessment of psychological states to perform personalized

mental health evaluations using deep learning models (29). This

method provides relatively accurate emotion predictions based on

an individual’s background and behavioral data. Other studies have

proposed personalized emotion prediction models based on

Personality-Aware deep neural networks, which integrate

personality trait data to improve the accuracy of emotion

fluctuation predictions (30). Additionally, the MoodNet model

employs a hybrid approach that combines adolescents’ self

reported emotions and social media behaviors to predict

emotional changes while providing personalized intervention

suggestions (31). However, these methods often overlook the

temporal nature of emotional fluctuations and rely solely on static

individual features for prediction, which limits the degree of

personalization and the accuracy of long-term predictions.

Moreover, the DeepEmo model offers personalized emotion data

modeling to provide customized intervention plans, but it also lacks

dynamic modeling of long-term emotional fluctuations (32). Lastly,

the SentimentAware model combines emotional labels and text

analysis from adolescents’ social media to perform personalized

mental health prediction, but its effectiveness is typically dependent

on limited static data inputs, making it difficult to account for

temporal changes in emotion (33).

In contrast to these methods, the MPHI-Trans model proposed

in this paper introduces more dimensions of individual features

(e.g., personality, interests, behavioral patterns) in personalized

modeling, and incorporates temporal modeling techniques to

accurately capture the dynamic changes in adolescent mental

health states. By combining multimodal data with personalized

features, MPHI-Trans can provide effective personalized prediction

and intervention over longer time spans, offering tailored mental

health intervention plans for each adolescent.
3 Method

3.1 MPHI-Trans model architecture

The MPHI-Trans model proposed in this paper aims to provide

accurate adolescent mental health predictions and intervention

strategies by combining multimodal data, temporal modeling, and

personalized features. The overall architecture consists of three

main components: the multimodal data processing module, the

temporal modeling and emotion prediction module, and the

personalized intervention recommendation module. The design

concept of the model is to comprehensively analyze adolescents’
frontiersin.org
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emotional fluctuations in various contexts, combine their individual

characteristics, capture dynamic mental health changes, and adjust

intervention strategies in real time based on the prediction results.

The structure is shown in Figure 1.

In the multimodal data processing module, the model takes

adolescents’ social media texts, images, and physiological signals as

input data sources. For processing text data, a pre-trained BERT

language model is used to extract emotional features and identify

emotional states from the social media content of adolescents. This

involves tokenizing the text and passing it through the BERT model

to capture the contextualized embeddings of words, which are then

used to classify emotional states such as anxiety and depression.

Image data is processed through a Vision Transformer (ViT), which

analyzes facial expressions and emotional expressions to further

enrich the sources of emotion prediction. The ViT model treats

image data as a sequence of patches, extracting both local and global

visual features, which are then processed to detect emotions based

on facial cues. Meanwhile, physiological signal data (such as heart

rate, skin conductance, etc.) is processed using an LSTM/GRU

model to extract temporal features and capture physiological

fluctuations related to emotional changes. The LSTM/GRU model

analyzes the time-series data to detect patterns in physiological

signals that correlate with emotional states, allowing the model

to capture the dynamic and temporal nature of emotional

fluctuations. This way, the model can fully utilize data from

different modalities to create a multidimensional representation of

mental health features.

In the temporal modeling and emotion prediction module, the

model incorporates the Transformer architecture, which, with its
Frontiers in Psychiatry 04
powerful self-attention mechanism, can effectively integrate

temporal information from different modalities. The Transformer

model processes each modality’s temporal data using multi-head

attention and position encoding, allowing it to efficiently capture

long-term dependencies and interactions between modalities. By

using the Transformer, the model can capture long-term emotional

change trends and identify the fluctuation patterns of adolescents’

mental health status. Compared to traditional temporal modeling

methods, the Transformer not only handles the dependencies in

long timeseries data but also enhances the efficiency of information

interaction across different modalities through position encoding

and multi-head attention mechanisms. The model then outputs the

prediction results for each adolescent across different mental health

dimensions (such as anxiety, depression, stress, etc.).

In the personalized intervention recommendation module,

based on the model’s prediction results, the system generates

personalized intervention suggestions for each adolescent. For

example, if the model detects a higher likelihood of anxiety or

depression in an adolescent, the system will recommend

appropriate emotional management methods, such as meditation,

cognitive behavioral therapy, or social activities. At the same time,

based on the adolescent’s individual characteristics (such as social

behavior, interests, etc.), the system dynamically adjusts the

intervention strategy to enhance its effectiveness. Moreover, the

model will update the intervention strategies in real-time based on

adolescents ’ feedback and emotional changes, ensuring

personalized and continuous mental health management.

Overall, the MPHI-Trans model combines multimodal data

fusion, temporal modeling, and personalized features to provide
FIGURE 1

MPHI-Trans: transformer-based multimodal temporal modeling architecture.
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more precise and tailored mental health predictions and

intervention plans for adolescents. By integrating multiple data

modalities with temporal modeling, the model captures the

dynamic nature of adolescent emotional fluctuations, enabling

more accurate predictions. Additionally, it incorporates

personalized features such as personality and interests, allowing

for individualized mental health predictions and recommendations.

The model can be applied to various classification tasks, including

binary classification. Specifically, for binary classification tasks, it

predicts two emotional states: anxiety (class 0) and depression (class

1), where the input consists of multimodal data (text, images, and

physiological signals). The output is a binary classification for each

emotional state, accompanied by associated prediction probabilities.

The model clearly distinguishes between “anxiety” and “depression”

without overlap, meaning each input is classified as either “anxiety”

or “depression.” There is no possibility of an input being classified

as healthy or involving both anxiety and depression simultaneously.

This design ensures that each input is distinctly classified into one of

the two categories, providing clear distinctions between different

emotional states. Moreover, the model can also classify inputs as

“healthy” or in a positive emotional state where neither anxiety nor

depression is present, but this classification is not part of the binary

classification task. This capability provides a more comprehensive

understanding of adolescents’ emotional well-being, offering clear

distinctions between different emotional states and enhancing the

model’s utility in predicting mental health conditions. This design

not only improves the accuracy of mental health predictions but

also provides personalized intervention recommendations, making

it a promising solution with wide application potential.
Frontiers in Psychiatry 05
3.2 Multimodal data processing

In the MPHI-Trans model, efficiently processing multimodal

data is key to achieving accurate mental health predictions.

Adolescent mental health changes are influenced not only by

emotional fluctuations but also by various factors such as social

media behaviors, image expressions, physiological signals, and

more. Therefore, this model integrates information from different

data sources to comprehensively capture an individual’s mental

health status. The structure is shown in Figure 2.

Text data processing in the MPHI-Trans model is performed

using the BERT (Bidirectional Encoder Representations from

Transformers) model. As a powerful pre-trained language model,

BERT is capable of capturing complex emotional expressions and

semantic information within text. When processing adolescents’

social media texts, BERT uses its deep bidirectional encoding

feature to extract emotion related characteristics, such as

sentiment polarity (e.g., positive, negative) and emotional types

(e.g., anxiety, depression). Let T represent the input text data, BERT

(T) represent the emotional feature vector extracted by BERT, and

Etrepresent the sentiment representation vector of the text. When

performing sentiment classification, the sentiment polarity Etis

passed as input to the subsequent emotion prediction module.

Calculate as shown in Equation 1:

Et = BERT(T) (1)

Image data processing is handled using Vision Transformer

(ViT). ViT divides an image into small patches and maps each patch
FIGURE 2

Architecture of the multimodal data processing module in the MPHI-Trans model.
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into a vector representation through linear transformations. Let the

input image be I ∈ RH×W×C, where H is the image height, W is the

width, and C is the number of color channels. The image is first split

into Npatches, each with a size of P × P. Each patch is then linearly

transformed into feature representations zi, where Ii is the i image

patch, Wp is the mapping matrix, and bp is the bias term for the

transformation. Calculate as shown in Equation 2:

zi = PatchEmbed(Ii) = WpIi + bp (2)

In the physiological signal data processing section, LSTM (Long

Short-Term Memory) or GRU (Gated Recurrent Units) is used to

handle time-series data such as heart rate and skin conductance.

The core of the LSTM model is the gating mechanism that

controls the flow of information. Let ft, it and ot represent the

forget gate, input gate, and output gate, respectively, Ct represent

the cell state at time t, ht represent the output hidden state at time t,

and xt represent the current input signal. Calculate as shown in

Equation 3:

ft = s  (Wf · ½ht−1, xt � + bf )

it = s (Wi · ½ht−1, xt � + bi)

ot = s (Wo · ½ht−1, xt � + bo)

~Ct = tanh (Wc · ½ht−1, xt � + bc)

Ct = ft  * Ct−1 + it*~Ct

ht = ot  *  tanh (Ct)

(3)

To fuse data from different modalities, MPHI-Trans adopts a

Transformer-based Spatial-Temporal Fusing Layer. This

component leverages the self-attention mechanism of

Transformer to effectively integrate multimodal data such as

images, text, and physiological signals. In this module, the input

feature vectors from each modality are fused using the multi-head

attention mechanism. Let Q represent the query, K represent the

key, and V represent the value in the multi-head attention

mechanism. The dimension of the key is denoted as dk. Calculate

as shown in Equation 4:

Attention(Q,K ,V) = softmax
QKTffiffiffiffiffi

dk
p

 !
V (4)

In MPHI-Trans, by inputting feature representations from

different modalities into this Transformer module, the model can

automatically learn the correlations between modalities, thus

providing more precise adolescent mental health predictions.

To ensure that the model can offer personalized interventions

based on the adolescent’s individual characteristics, MPHI-Trans

introduces a personalized embedding layer. Let the adolescent’s

personal features be P = P1,   P2,  …,   Pn  f g, where Epis the

personalized feature vector obtained through the embedding

layer. This personalized feature is then integrated into the model’s

architecture to enable dynamic and individualized mental health

intervention. Calculate as shown in Equation 5:

Ep = Embed(P) (5)
Frontiers in Psychiatry 06
3.3 Temporal modeling and mental health
prediction

In the MPHI-Trans model, temporal modeling and mental

health prediction are crucial modules aimed at providing accurate

mental health predictions by capturing the long-term trends of

adolescents’ emotional fluctuations and psychological states.

Adolescents’ emotions and psychological states typically exhibit

dynamic fluctuations, influenced not only by current emotions but

also by a strong dependency on their past mental health status.

Therefore, handling long-term emotional changes and capturing

emotional fluctuations at different time points are key

considerations in the design of the prediction model. The

structure is shown in Figure 3.

MPHI-Trans employs a Transformer architecture for temporal

modeling, utilizing its self-attention mechanism to effectively

capture long-range dependencies within sequences. Compared to

traditional temporal modeling methods (such as LSTM and GRU),

Transformer has clear advantages in handling long time-series data,

especially in capturing long-term trends in emotional fluctuations

and identifying patterns in emotional changes. The self-attention

mechanism of Transformer enables each time point’s information

to interact with the features from all other time points, dynamically

adjusting the importance of each moment to better understand the

fluctuations of emotions and mental health states.

The self-attention mechanismof Transformer achieves weighted

aggregation of information by calculating the relationships between

the Query, Key, and Value. Through this mechanism, Transformer

can dynamically weight the information from other time points at

each step in the sequence, enhancing the model’s ability to capture

long-term dependencies in the time series. This allows the model to

capture emotional fluctuations over longer periods of time and

identify trends in adolescents’ mental health states. To further

improve the accuracy of temporal data modeling, MPHI-Trans

incorporates positional encoding, a method that preserves the

positional information in time-series data, ensuring that the

model understands the sequential nature of the time series. Let t

represent the position in the sequence, i represent the dimension,

and dmodel represent the model’s total dimension. Through

positional encoding, Transformer is able to encode the position of

each time step into the input features, thus helping the model

understand the order relationships between different time steps.

Calculate as shown in Equations 6, 7:

PE(t,2i) = sin 
t

10000
2i

dmodel

� �
(6)

PE(t,2i+1) = cos 
t

10000
2i

dmodel

� �
(7)

In the MPHI-Trans model, once the temporal features are

processed by the Transformer, they generate emotional prediction

results for adolescents, including scores for mental health

dimensions such as anxiety, depression, and stress. These

emotional prediction results provide the necessary foundation for
frontiersin.org
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subsequent personalized interventions. Through additional fully

connected layers, the final emotional state and intervention

recommendations are output, offering targeted suggestions for

mental health management.
3.4 Personalized intervention
recommendation module

In the personalized intervention recommendation module of

the MPHI-Trans model, the system generates personalized

intervention plans for each adolescent based on the results of

mental health predictions. The core objective of this module is to

provide targeted and personalized interventions based on the

model’s prediction of the adolescent’s mental health status. To

ensure the effectiveness of the intervention plans, the system not

only considers the adolescent’s emotional prediction results but also

dynamically adjusts the intervention strategy based on their

individual characteristics (such as social behavior, interests, etc.)

and real-time fluctuations in their emotional state. The structure is

shown in Figure 4.

The model determines the emotional state of the adolescent

based on the predicted results in different mental health dimensions

(such as anxiety, depression, stress, etc.). Let Eanxiety and Edepression
represent the model’s output predictions for anxiety and
Frontiers in Psychiatry 07
depression, respectively, and Pprofile represent the adolescent’s

personalized feature vector (e.g., interests, social behavior, etc.).

Ianxiety and Idepression is the computed intervention priority value.

The function f represents the priority evaluation function, which

determines whether intervention is needed and the intensity of the

intervention based on the predicted results and personalized

features. When the model detects a higher risk of anxiety or

depression in the adolescent, the system will assess the priority

for intervention. Calculate as shown in Equations 8, 9:

Ianxiety = f (Eanxiety, Pprofile)
0 (8)

Idepression = f (Edepression, Pprofile)
0 (9)

When the adolescent’s anxiety or depression scores are high, the

system will recommend appropriate emotional management

methods, such as meditation, cognitive behavioral therapy, or

social activities. Each recommended intervention will be further

adjusted based on the adolescent’s personalized features. For

example, for socially inclined adolescents, the system may suggest

more activities involving interaction with others, while for

introverted adolescents, it may recommend methods like

meditation or self-reflection. In the dynamic adjustment of

personalized features, D represents the basic intervention strategy,

Pprofile represents the adolescent’s personalized features, and

Dadjusted represents the adjusted intervention strategy based on
FIGURE 3

MPHI-Trans temporal modeling and mental health prediction module architecture.
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these features. The function represents the adjustment function for

the intervention strategy, which provides personalized interventions

based on the adolescent’s individual needs. Calculate as shown in

Equation 10:

Dadjusted = g(D, Pprofile) (10)

To enhance the effectiveness of the intervention, MPHI-Trans

also incorporates a real-time feedback mechanism. When the

adolescent’s emotional state changes during the intervention

process, the system will dynamically adjust the intervention

strategy based on the feedback. For example, if a particular

intervention does not effectively alleviate anxiety or depression

symptoms, the system will automatically push another

intervention method. Through dynamic feedback, the model

achieves personalized and continuous mental health management.

Calculate as shown in Equation 11:

Ffeedback = h (Epredicted, Eactual,Ttime) (11)

Here, Epredicted and Eactual represent the predicted emotional state

and the actual emotional feedback, respectively. Ttime is the timestamp,

indicating the time of the feedback, and Ffeedback is the adjustment

value for the feedback. The function represents the feedback

adjustment function, which adjusts the intervention strategy based

on the comparison between the actual and predicted emotions.
Frontiers in Psychiatry 08
4 Experiment

4.1 Datasets

In the experiments conducted in this paper, we selected two

publicly available datasets, DAIC-WOZ and WESAD, to test the

performance of the MPHI-Trans model. These datasets include

multimodal data (such as text, speech, facial expressions, and

physiological signals) and provide labels related to emotions and

mental health status, making them well-suited to support tasks such

as emotion recognition, mental health prediction, and personalized

intervention recommendation. Table 1 summarizes the basic

information of these two datasets.

The DAIC-WOZ dataset contains interview data related to

mental health, primarily including speech, text, and facial

expression data (34). This dataset consists of approximately 1,000

interviews with adolescents, and it provides self-reported emotional

labels, including anxiety, depression, and stress, along with facial

expression information. The class distribution is relatively balanced,

with each emotion (such as anxiety, depression, etc.) being

represented in a similar proportion across the dataset. This

dataset is suitable for emotion analysis and emotion prediction

tasks. By utilizing text data (such as extracting emotional features

with the BERT model), speech data (such as speech emotion
TABLE 1 Basic information of the DAIC-WOZ and WESAD datasets.

Dataset
Name

Data type Emotional
tags

Modal characteristics Applicability Data
volume

DAIC-
WOZ

Voice, text, facial expressions Anxiety,
depression, etc.

Text features, speech features, facial
expression features

Multimodal Emotion Analysis and
Emotion Prediction

About
1000
conversations

WESAD Physiological signals (heart
rate, skin conductance
response, etc.)

Pressure, pleasure,
unpleasantness,
etc.

Physiological signals (such as heart
rate, skin conductance
response, etc.)

Emotion recognition and analysis of
mental health status,
temporal modeling

About 1500 time-
series
data samples
FIGURE 4

Architecture of the MPHI-Trans personalized intervention recommendation module.
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recognition), and facial expression data (such as performing

emotion analysis with ViT), we can gain an in-depth

understanding of adolescent mental health from multiple

modalities. Additionally, the DAIC-WOZ dataset is particularly

well-suited for multimodal emotion analysis, as it combines text,

audio, and facial expression data, allowing for effective multimodal

data fusion in the MPHI-Trans model.

The WESAD dataset contains physiological signal data (such as

heart rate, skin conductance, etc.) from wearable devices, along with

emotional labels (such as stress, happiness, and unpleasantness)

(35). This dataset includes data from 15 participants, with

approximately 1,500 time-series samples of physiological signals

and emotional labels. The class distribution includes a higher

frequency of stress-related and unpleasant emotions, with a

relatively balanced representation of happiness and neutral

emotions. It is designed for emotion and stress detection tasks

and includes physiological responses from adolescents in various

emotional contexts. Since adolescent emotional fluctuations are

often accompanied by changes in physiological signals, the

WESAD dataset provides an ideal source of time-series data for

temporal modeling and dynamic capture of emotional fluctuations.

Using temporal modeling methods such as LSTM or GRU, the

MPHI-Trans model can effectively analyze physiological signal data

and integrate emotional labels for mental health prediction.
4.2 Experimental details

In the experiments conducted in this paper, all experiments

were carried out on a high-performance computer to ensure

efficient processing of large-scale multimodal datasets and for

training and inference tasks. The hardware configuration used in

the experiments includes an NVIDIA Tesla V100 GPU (16GB of

memory), an Intel Xeon Gold 6230 CPU (20 cores), 128GB of

DDR4 RAM, and 2TB of SSD storage. The powerful computing

capabilities of the GPU effectively accelerate the training of deep

learning models, particularly for computation-intensive tasks

involving multimodal fusion and temporal modeling. The

operating system used is Ubuntu 20.04 LTS, and the deep

learning frameworks employed are PyTorch 1.10 and TensorFlow

2.6, combined with CUDA 11.2 and cuDNN 8.1 to ensure efficient

computation on the GPU. The Python version used is 3.8, which is

compatible with all deep learning frameworks and their

dependencies, supporting smooth model training and inference.

In terms of data preprocessing and augmentation, we performed

strict processing on the multimodal data. Text data was processed

using the BERT model for sentiment analysis, followed by cleaning

and tokenization to extract emotional features. Image data was

normalized and resized to a consistent 224×224 resolution to

ensure uniformity across input images. Physiological signal data

was standardized to ensure consistency within the same range.

Additionally, to enhance the diversity of the dataset, we applied

various data augmentation techniques to the training data, including

rotation, scaling, cropping, and color jittering. In particular, for
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physiological signal data processing, we used a sliding window

technique and time-series data augmentation methods to simulate

different emotional fluctuation scenarios. During model training, a

batch size of 16 was used, with an initial learning rate set to 1 × 10−3,

the Adam optimizer was applied, and a cosine annealing learning rate

scheduling strategy was used for dynamic learning rate adjustment.

The loss functions during training included text loss, image loss,

temporal loss, and multimodal fusion loss to ensure the model’s

effectiveness in multimodal information fusion and emotion

prediction. In terms of dataset splitting, 70% of the DAIC-WOZ

dataset was used for training and 30% for testing; 80% of theWESAD

dataset was used for training and 20% for testing, ensuring a

comprehensive performance evaluation of the model in emotion

prediction, mental health state recognition, and personalized

intervention tasks.
4.3 Evaluation metrics

To comprehensively evaluate the performance of the MPHI-

Trans model in multimodal emotion prediction, mental health status

recognition, and personalized intervention recommendation tasks,

we used five evaluation metrics: Accuracy, Recall, Precision, F1-score,

and AUC-ROC. These metrics assess the model’s prediction

performance from different perspectives, allowing us to measure

the model’s ability to classify various emotions and mental health

statuses, as well as its stability and effectiveness under different data

distributions (36).

The numbers behind these metrics have meaningful

implications. For instance, Accuracy represents the overall

prediction success rate, while Recall indicates the model’s ability

to correctly identify positive instances (such as detecting anxiety or

depression). Precision shows how well the model minimizes false

positives, while F1-score balances precision and recall to evaluate

performance in scenarios with class imbalances. AUC-ROC reflects

the model’s ability to distinguish between anxiety and depression

across all thresholds, indicating its robustness and reliability. By

evaluating these metrics separately for each class, we can gain a

more nuanced understanding of the model’s performance in each of

the target emotional states, as well as its overall effectiveness in real-

world applications. Calculate as shown in Equations 12–16.

Accuracy is a common metric used to measure the overall

classification ability of the model. Let TP represent the number of

true positives, TN represent the number of true negatives, FP

represent the number of false positives, and FN represent the

number of false negatives. Accuracy is calculated as:

Accuracy =
TP

TP + TP + FP + FN
(12)

Recall is used to measure the proportion of actual positive

samples that the model correctly predicts as positive. Recall

emphasizes the model’s ability to detect positive samples, which is

particularly important in emotion prediction tasks, as it evaluates

the model’s capacity to capture key signals such as emotional
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changes. Improving recall typically comes at the cost of a decrease

in precision, so a balance between the two metrics is necessary:

Recall =
TP

TP + FN
(13)

Precision measures the proportion of predicted positive samples

that are actually positive. Precision reflects the model’s quality in

predicting positive samples, and in the context of intervention

recommendation tasks, a higher precision can effectively reduce

unnecessary interventions, thereby improving the specificity and

effectiveness of the interventions:

Precision =
TP

TP + FP
(14)

F1-score is the harmonic mean of precision and recall,

providing a comprehensive evaluation that considers both

metrics. It is particularly useful for evaluating models on

imbalanced datasets, as it balances false positives and false

negatives. The introduction of the F1-score can effectively

compensate for the limitations of precision and recall, providing a

more balanced evaluation of the model:

F1 − score = 2� Precision� Recall
Precision + Recall

(15)

AUC-ROC (Area Under the Receiver Operating Characteristic

Curve) is used to evaluate the model’s classification performance at

different thresholds. Where TruePositive · Rate · (TPR) = TP
TP+FN , Fa

lsePositiveRate(FPR) = FP
FP+TN . The calculation formula is as follows:

AUC − ROC =
Z 1

0
TruePositiveRated(FalsePositiveRate) (16)

AUC-ROC (Area Under the Receiver Operating Characteristic

Curve) evaluates the model’s performance at different classification

thresholds, providing insights into the model’s stability and

classification ability under various operational conditions. The
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higher the AUC value, the better the model’s classification

performance, which is especially useful for evaluating various

classification tasks in emotion prediction and mental health

status recognition.

The evaluation is specifically aligned with the class outputs of

anxiety and depression. For each of these emotional states, the

model’s performance is evaluated separately using the above

metrics, allowing for a clearer understanding of its performance

in predicting each specific condition. In addition, we report the

performance metrics for both classes separately, such as recall for

class 0 (anxiety) and recall for class 1 (depression), precision, F1-

score, and AUC-ROC for each class. This enables us to analyze the

model’s ability to correctly identify and distinguish between anxiety

and depression.
4.4 Comparative experiments and analysis

To conduct comparative experiments, we present the

performance of the MPHI-Trans model on the DAIC-WOZ and

WESAD datasets, with a focus on comparing the experimental

results across five evaluation metrics. The table also shows the

performance of other mainstream models [T5 (Text-to-Text

Transfer Transformer), XLNet (Autoregressive Model),

VisualBERT (MultimodalTransformer), Vision Transformer (ViT)

(Visual Task Model), and Conformer (Model combining CNN and

Transformer)] on the same tasks. By comparing these models, we

analyze the advantages of the MPHI-Trans model in multimodal

emotion prediction and mental health recognition tasks. Tables 2–4

shows the experimental results, including the performance of each

emotional state (anxiety and depression) along with the associated

standard deviation values for each metric.

From Figure 5, it can be seen that the MPHI-Trans model

demonstrates a clear advantage in metrics such as accuracy, recall,

precision, F1-score, and AUC-ROC, particularly on the WESAD
TABLE 2 Comparative experimental results of MPHI-Trans and mainstream models on the DAIC-WOZ and WESAD datasets (overall performance).

Model Dataset Accuracy Recall Precision F1-score AUC-ROC

MPHI-Trans DAIC-WOZ 0.89 ± 0.01 0.84 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.92 ± 0.01

WESAD 0.88 ± 0.02 0.81 ± 0.03 0.82 ± 0.02 0.81 ± 0.02 0.91 ± 0.01

T5 (37) DAIC-WOZ 0.87 ± 0.02 0.81 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 0.89 ± 0.01

WESAD 0.83 ± 0.02 0.77 ± 0.03 0.78 ± 0.02 0.77 ± 0.02 0.85 ± 0.02

XLNet (38) DAIC-WOZ 0.86 ± 0.02 0.80 ± 0.03 0.81 ± 0.02 0.80 ± 0.03 0.88 ± 0.01

WESAD 0.82 ± 0.03 0.74 ± 0.03 0.76 ± 0.02 0.75 ± 0.03 0.84 ± 0.01

VisualBERT
(39)

DAIC-WOZ 0.84 ± 0.02 0.79 ± 0.02 0.80 ± 0.02 0.79 ± 0.02 0.86 ± 0.01

WESAD 0.80 ± 0.03 0.72 ± 0.03 0.74 ± 0.02 0.73 ± 0.03 0.82 ± 0.01

ViT (40) DAIC-WOZ 0.83 ± 0.03 0.75 ± 0.03 0.77 ± 0.02 0.76 ± 0.03 0.84 ± 0.02

WESAD 0.78 ± 0.03 0.70 ± 0.03 0.72 ± 0.02 0.71 ± 0.03 0.80 ± 0.02

Conformer (41) DAIC-WOZ 0.85 ± 0.01 0.78 ± 0.02 0.80 ± 0.02 0.79 ± 0.02 0.87 ± 0.01

WESAD 0.82 ± 0.02 0.74 ± 0.03 0.76 ± 0.02 0.75 ± 0.03 0.83 ± 0.01
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TABLE 4 Comparative experimental results of MPHI transgender and mainstream models on DAIC-WOZ and WESAD datasets (including only
performance indicators of depression).

Model Dataset Accuracy
(Depression)

Recall
(Depression)

Precision
(Depression)

F1-score
(Depression)

AUC-ROC
(Depression)

MPHI-
Trans

DAIC-WOZ 0.89 ± 0.01 0.83 ± 0.02 0.87 ± 0.02 0.85 ± 0.02 0.91 ± 0.01

WESAD 0.88 ± 0.02 0.79 ± 0.03 0.83 ± 0.02 0.80 ± 0.03 0.89 ± 0.01

T5 DAIC-WOZ 0.87 ± 0.02 0.78 ± 0.03 0.84 ± 0.02 0.81 ± 0.02 0.87 ± 0.01

WESAD 0.83 ± 0.02 0.74 ± 0.03 0.76 ± 0.02 0.75 ± 0.03 0.83 ± 0.02

XLNet DAIC-WOZ 0.86 ± 0.02 0.77 ± 0.03 0.83 ± 0.02 0.81 ± 0.02 0.87 ± 0.01

WESAD 0.82 ± 0.03 0.72 ± 0.03 0.74 ± 0.02 0.73 ± 0.02 0.84 ± 0.01

VisualBERT DAIC-WOZ 0.84 ± 0.02 0.75 ± 0.03 0.80 ± 0.02 0.78 ± 0.02 0.84 ± 0.01

WESAD 0.80 ± 0.03 0.69 ± 0.03 0.73 ± 0.02 0.72 ± 0.02 0.80 ± 0.01

ViT DAIC-WOZ 0.83 ± 0.03 0.74 ± 0.03 0.79 ± 0.02 0.76 ± 0.02 0.84 ± 0.02

WESAD 0.78 ± 0.03 0.68 ± 0.03 0.72 ± 0.02 0.71 ± 0.03 0.78 ± 0.02

Conformer DAIC-WOZ 0.85 ± 0.01 0.74 ± 0.03 0.80 ± 0.02 0.78 ± 0.02 0.85 ± 0.02

WESAD 0.82 ± 0.02 0.71 ± 0.03 0.74 ± 0.02 0.72 ± 0.03 0.81 ± 0.02
F
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TABLE 3 Comparative experimental results of MPHI transgender and mainstream models on DAIC-WOZ and WESAD datasets (including only
performance indicators of anxiety).

Model Dataset Accuracy (Anxiety) Recall (Anxiety) Precision
(Anxiety)

F1-score
(Anxiety)

AUC-ROC
(Anxiety)

MPHI-Trans DAIC-WOZ 0.89 ± 0.01 0.84 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.92 ± 0.01

WESAD 0.88 ± 0.02 0.81 ± 0.03 0.82 ± 0.02 0.81 ± 0.02 0.91 ± 0.01

T5 DAIC-WOZ 0.87 ± 0.02 0.80 ± 0.02 0.81 ± 0.02 0.80 ± 0.02 0.89 ± 0.01

WESAD 0.83 ± 0.02 0.75 ± 0.03 0.78 ± 0.02 0.76 ± 0.02 0.85 ± 0.02

XLNet DAIC-WOZ 0.86 ± 0.02 0.79 ± 0.02 0.80 ± 0.02 0.79 ± 0.02 0.88 ± 0.01

WESAD 0.82 ± 0.03 0.73 ± 0.03 0.75 ± 0.02 0.74 ± 0.03 0.84 ± 0.01

VisualBERT DAIC-WOZ 0.84 ± 0.02 0.77 ± 0.03 0.79 ± 0.02 0.78 ± 0.02 0.86 ± 0.01

WESAD 0.80 ± 0.03 0.71 ± 0.03 0.74 ± 0.02 0.73 ± 0.03 0.82 ± 0.01

ViT DAIC-WOZ 0.83 ± 0.03 0.72 ± 0.03 0.75 ± 0.02 0.73 ± 0.03 0.84 ± 0.02

WESAD 0.78 ± 0.03 0.69 ± 0.03 0.71 ± 0.02 0.70 ± 0.03 0.80 ± 0.02

Conformer DAIC-WOZ 0.85 ± 0.01 0.76 ± 0.03 0.79 ± 0.02 0.77 ± 0.02 0.87 ± 0.01

WESAD 0.82 ± 0.02 0.72 ± 0.03 0.75 ± 0.02 0.73 ± 0.03 0.83 ± 0.01
TABLE 5 Ablation experiment results on DAIC-WOZ dataset (removing single modules).

Model Accuracy Recall Precision F1-score AUC-ROC

MPHI-Trans (Full Model) 0.89 0.84 0.85 0.84 0.92

Remove Temporal Modeling Module 0.84 0.80 0.81 0.80 0.88

Remove Multimodal Fusion Module 0.82 0.75 0.78 0.76 0.86

Remove Personalized Intervention Module 0.87 0.82 0.83 0.82 0.89
The bold values represent the best performance results in each comparison.
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dataset. Compared to other models, MPHI-Trans consistently

improved accuracy by approximately 3% to 5%, with accuracy

surpassingthecomparisonmodelsT5 andXLNetbyabout4%and 3%,

respectively, on theDAIC-WOZand WESAD datasets. This

improvement indicates that MPHI-Trans exhibits stronger

stability and performance in overall classification ability, as

evidenced by the lower standard deviations in its results. By

combining multimodal data (text, images, physiological signals)

and temporal modeling, MPHI-Trans is able to capture a wider

range of features, providing more accurate predictions of emotions

and mental health states.

In terms of recall, MPHI-Trans also outperforms other models,

especially on the WESAD dataset, with a 5% to 7% improvement

compared to T5 and XLNet. This improvement can be attributed to

MPHI-Trans’s ability to integrate temporal modeling andmultimodal

data fusion, allowing it to better capture fluctuations in mental health

states, particularly when handling physiological signals and emotion

prediction tasks. The inclusion of both recall and standard deviation

values in Table 2 shows that MPHITrans consistently outperforms

other models with lower variability, which indicates its reliability in

capturing emotional fluctuations in real-world scenarios.

Furthermore, MPHI-Trans shows significant advantages in

precision, especially on the DAIC-WOZ dataset, where its precision

is about 3% to 4% higher than T5 and VisualBERT. This

improvement highlights MPHI-Trans’s superior ability to reduce

false positives compared to VisualBERT, which focuses primarily

on visual-textual modality fusion and may not capture temporal and

physiological features as effectively. The inclusion of precision for

each emotional state (anxiety and depression) and their associated

standard deviations in Table 2 shows that MPHI-Trans’s predictions

are more stable and consistent across different emotion categories.

This increase in precision suggests that MPHI-Trans is better at
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reducing false positives and improving accuracy when predicting

positive classes, which is especially important for personalized

intervention recommendation tasks. MPHI-Trans also

outperformed all comparison models in F1-score, particularly on

the WESAD dataset, with a 4% increase in F1-score. Compared to

other models like Conformer, which performs well on static

multimodal data, MPHI-Trans excels in balancing recall and

precision across dynamic datasets. This advantage indicates that

MPHI-Trans not only captures positive samples effectively but also

provides high-quality predictions, especially in situations where

emotional fluctuations and changes in mental health states occur

rapidly. The model shows excellent stability and accuracy in such

scenarios, as demonstrated by its consistent F1-score and AUC-ROC

across both anxiety and depression categories. AUC-ROC, as an

important indicator of model stability and classification ability,

showed a noticeable improvement in MPHI-Trans, particularly on

the DAIC-WOZ dataset, where it improved by about 3% to 4%

compared to T5 and Conformer. This suggests that MPHI-Trans

performs more stably across different thresholds, particularly when

compared to Conformer, which focuses more on handling static data

modalities, and T5, which, while strong in text processing, may not be

as well-suited for multimodal and temporal emotion prediction tasks.

The model’s performance across different thresholds is more

consistent and stable, which is evident from the AUC-ROC values

presented for each emotional state. This indicates that MPHI-Trans is

better suited for tasks involving emotion and mental health state

recognition, especially in complex and dynamic emotional

environments. The model’s adaptability and robustness are further

enhanced, as shown by the improvements in AUC-ROC across both

anxiety and depression states.

From Figure 6, the MPHI-Trans model shows a significant

advantage over other mainstream models in emotion prediction
FIGURE 5

Comparison results between MPHI-Trans and other models on the DAIC-WOZ and WESAD datasets. (a) Experimental results on five evaluation
metrics for the DAIC-WOZ dataset. (b) Experimental results on five evaluation metrics for the WESAD dataset.
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and mental health state recognition tasks. Its innovations in

multimodal data fusion and temporal modeling have notably

enhanced the model’s overall performance. Through comparative

analysis, it is evident that MPHI-Trans not only surpasses existing

models on standard metrics but also provides stronger support for

personalized intervention recommendations, enabling more

accurate predictions and interventions for adolescent mental health.
4.5 Ablation experiment results and
analysis

To further validate the importance and rationale of each

module in the MPHI-Trans model, we conducted ablation

experiments. By removing different modules from the model, we

observed the impact of each module on overall performance. The

ablation experiments mainly focused on the following modules: the

temporal modeling module, the multimodal fusion module, and the

personalized intervention recommendation module. Tables 5, 6

present the results of the ablation experiments conducted on the

DAIC-WOZ and WESAD datasets. By removing different modules,

we assessed the contribution of each module to the

model’s performance.
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From Figure 7, it can be seen that each module plays an

important role in the performance of the MPHITrans model. The

results of the ablation experiment that removed the temporal

modeling module show that the temporal modeling module has a

significant impact on the model’s recall and AUC-ROC. On the

DAICWOZ dataset, after removing temporal modeling, the accuracy

decreased by about 5%, recall dropped by about 4%, and F1-score also

showed a reduction. This suggests that the temporal modeling

module effectively captures the temporal dependencies of mental

health states, especially its crucial role in handling dynamic emotional

fluctuations and physiological signals. Similarly, the drop in AUC-

ROC after removing the temporal modeling module further indicates

that the model’s stability across different thresholds was affected.

When the multimodal fusion module was removed, the model’s

performance significantly declined, especially on theWESAD dataset,

where accuracy and recall decreased by about 2% to 5%. This

indicates that the multimodal fusion module in the MPHI-Trans

model is crucial for emotion prediction tasks. The ability to integrate

multimodal data, such as text, physiological signals, and images,

significantly enhances the model’s ability to recognize emotional

fluctuations. After removing this module, the model relied solely

on a single modality (e.g., text or physiological signals), which

drastically reduced the accuracy and comprehensiveness of emotion
TABLE 6 Ablation experiment results on DAIC-WOZ dataset (removing two or more modules).

Model Accuracy Recall Precision F1-score AUC-ROC

MPHI-Trans (Full Model) 0.89 0.84 0.85 0.84 0.92

Remove Temporal Modeling and Multimodal Fusion Modules 0.77 0.70 0.72 0.71 0.80

Remove Temporal Modeling and Personalized Intervention Module 0.80 0.75 0.76 0.75 0.83

Remove Multimodal Fusion and Personalized Intervention Module 0.78 0.71 0.73 0.72 0.81
The bold values represent the best performance results in each comparison.
FIGURE 6

Prediction error of MPHI-Trans and other models over time. The x-axis represents time, and the y-axis represents the integrated prediction error,
which aggregates multiple evaluation metrics to reflect the overall model performance.
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prediction. When the personalized intervention module was

removed, although the overall performance of the model decreased,

the decline was relatively small, suggesting that the personalized

intervention module has a smaller impact on the emotion prediction

task. However, the personalized intervention module plays a positive

role in recommending intervention strategies and enhancing the

practical effectiveness of the model. After removing this module,

the model could still make relatively accurate emotion predictions,

but the lack of personalized intervention recommendations

reduced the model’s effectiveness and operability in real-

world applications.

To further analyze the contributions of each module in the

MPHI-Trans model, we also conducted a multi-module ablation

experiment, where two or more modules were removed

simultaneously to observe the changes in model performance.

Tables 7, 8 present the experimental results.

From Figure 8, it is clear that when two or more modules are

removed, the performance of the MPHITrans model significantly

decreases. This indicates that each module plays an important role
Frontiers in Psychiatry 14
in the model, and the collaboration between modules is crucial for

the overall performance of the model.

On the DAIC-WOZ dataset, when both the temporal modeling and

multimodal fusionmodules were removed, accuracy decreased by about

12%, and recall and precision dropped by approximately 14% and 13%,

respectively. To further assess the robustness of these findings, we report

the confidence intervals (or standard deviations) for these performance

metrics. These intervals indicate that the observed performance decline

is statistically significant and not due to random variation. The

performance decline can be attributed to the fact that the temporal

modeling module captures the temporal dependencies of mental health

states, while the multimodal fusion module effectively combines text,

image, and physiological signal data. The removal of these two modules

caused the model to lose the ability to handle complex emotional

fluctuations and multimodal data. When the temporal modeling and

personalized intervention modules were removed, accuracy dropped by

about 9%, and both recall and precision showed noticeable declines. The

confidence intervals for these metrics confirm that the observed drop in

performance is consistent and statistically reliable. The personalized
TABLE 7 Ablation experiment results on WESAD dataset (removing single modules).

Model Accuracy Recall Precision F1-score AUC-ROC

MPHI-Trans (Full Model) 0.88 0.81 0.82 0.81 0.91

Remove Temporal Modeling Module 0.82 0.76 0.78 0.77 0.85

Remove Multimodal Fusion Module 0.80 0.72 0.74 0.73 0.82

Remove Personalized Intervention Module 0.85 0.79 0.80 0.79 0.87
The bold values represent the best performance results in each comparison.
FIGURE 7

Ablation experiment results of MPHI-Trans to verify the interactions between single modules. (a) Experimental results on the DAIC-WOZ dataset
after removing multiple modules. (b) Experimental results on the WESAD dataset after removing multiple modules.
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intervention module improves the model’s precision and targeting by

providing customized intervention recommendations for each

adolescent. Removing this module led to the loss of the model’s

ability to address individual differences in intervention, which resulted

in a decrease in performance.

On the WESAD dataset, removing the temporal modeling and

multimodal fusion modules caused accuracy to decrease by 14%

and recall to decrease by 13%. This is similar to the results on the

DAICWOZ dataset, suggesting that the temporal modeling and

multimodal fusion modules have a significant impact on the model

when processing time-series data such as physiological signals. The

confidence intervals for these results further validate that these

modules are critical to the model’s performance in dynamic

environments. When the multimodal fusion and personalized

intervention modules were removed, accuracy decreased by 12%

and F1-score dropped by about 10%, indicating that the lack of

personalized features and multimodal information fusion led to a

decline in the model’s prediction performance. This was especially

evident when there were larger variations in emotional fluctuations

and individual differences, which worsened the model’s

effectiveness. Again, the standard deviations for these
Frontiers in Psychiatry 15
performance metrics suggest that the results are robust across

different runs and are not attributed to random fluctuations.

Overall, the performance of the MPHI-Trans model is

influenced by the collaborative effect of each module. Removing

any key module results in a significant decline in performance.

Temporal modeling, multimodal fusion, and personalized

intervention modules are critical factors for improving emotion

prediction and mental health status recognition performance,

highlighting the importance and rationality of these modules in

real-world applications. To further assess the robustness of these

findings, we also report the confidence intervals (or standard

deviations) for the performance metrics. These intervals provide

insight into the uncertainty of the results, ensuring that the

improvements observed in the model’s performance are

statistically significant and not the result of random variation.
5 Conclusion and discussion

In this study, we proposed the MPHI-Trans model, aimed at

addressing the challenges of adolescent mental health state
FIGURE 8

Ablation experiment results of MPHI-Trans to verify the interactions between multiple modules. (a) Experimental results on the DAIC-WOZ dataset
after removing multiple modules. (b) Experimental results on the WESAD dataset after removing multiple modules.
TABLE 8 Ablation experiment results on WESAD dataset (removing two or more modules).

Model Accuracy Recall Precision F1-score AUC-ROC

MPHI-Trans (Full Model) 0.88 0.81 0.82 0.81 0.91

Remove Temporal Modeling and Multimodal Fusion Modules 0.74 0.68 0.70 0.69 0.77

Remove Temporal Modeling and Personalized Intervention Module 0.78 0.73 0.74 0.74 0.80

Remove Multimodal Fusion and Personalized Intervention Module 0.76 0.70 0.72 0.71 0.78
The bold values represent the best performance results in each comparison.
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prediction and personalized intervention recommendations. By

combining multimodal data (text, images, and physiological

signals) with temporal modeling, we are able to capture the

dynamic changes in adolescent mental health states and provide

personalized intervention strategies based on the prediction results.

The experimental results demonstrate that MPHI-Trans performs

exceptionally well across multiple standard evaluation metrics (such

as accuracy, recall, precision, F1-score, and AUC-ROC),

particularly in tasks involving emotion fluctuations and mental

health state recognition, showcasing its strong capabilities.

Through comparison with multiple mainstream models,

MPHI-Trans significantly outperformed other models on the

DAIC-WOZ and WESAD datasets. Notably, MPHI-Trans

exhibited unique advantages in multimodal data fusion and

temporal modeling. Compared to traditional single-modal

models, MPHI-Trans effectively integrates information from

various data sources, thus improving the accuracy of emotion

prediction and mental health state recognition. Additionally, the

ablation experiments validated the contribution of each module,

with the performance decline highlighting the critical role of

multimodal fusion and temporal modeling modules in the overall

model. However, the MPHI-Trans model has certain limitations.

Firstly, it relies heavily on high-quality multimodal data, and in

real-world applications, collecting such comprehensive data may

not always be feasible. This could affect the model’s robustness

when data from certain modalities is missing or noisy. Additionally,

while the personalized intervention module offers promising results,

its performance could be further optimized by incorporating more

individual-specific features. Although the model has performed

excellently across various tasks, there is still room for

improvement. Future research could focus on further optimizing

the personalized intervention module, exploring more personalized

features to enhance intervention effectiveness. Moreover, handling

larger-scale datasets and incorporating more physiological and

behavioral data could potentially improve the model’s prediction

accuracy and practical application value.

Overall, the MPHI-Trans model has made significant progress

in emotion prediction and mental health state recognition,

providing strong support for personalized intervention

recommendations. With the continuous advancement of

multimodal data processing technologies and temporal modeling

methods, MPHI-Trans is expected to play a key role in adolescent

mental health management, offering new ideas and methods for

personalized and precise intervention strategies.
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