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Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition

characterized by intrusive thoughts and repetitive behaviors, with significant

barriers to timely diagnosis and effective treatment. Deep learning, a subset of

machine learning, offers promising tools to address these challenges by

leveraging large, complex datasets to identify OCD, classify symptoms, and

predict treatment outcomes. This narrative review synthesizes findings from 10

studies that applied deep learning to OCD research. Results demonstrate high

accuracy in diagnostic classification (80–98%) using neuroimaging, EEG, and

clinical data, as well as promising applications in symptom classification and

treatment response prediction. However, current models are limited by small

sample sizes, lack of comparative treatment predictions, and minimal focus on

early response detection or scalable monitoring solutions. Emerging

opportunities include leveraging passively collected data, such as wearable

sensors or electronic medical records, to enhance early detection and

continuous symptom tracking. Future research should prioritize multimodal

datasets, prospective study designs, and clinically implementable models to

translate deep learning advancements into precision psychiatry for OCD.
KEYWORDS

obsessive-compulsive disorder, precision psychiatry, machine learning, deep learning,
neuroimaging, treatment prediction, diagnostic prediction
Introduction

Two to three percent of individuals in the United States are diagnosed with obsessive-

compulsive disorder (OCD), a debilitating psychiatric illness characterized by the presence

of unwanted or intrusive thoughts (obsessions) that provoke distress and by behaviors

(compulsions) performed to reduce that distress (1–3). OCD is frequently misdiagnosed,

increasing patient concerns about receiving high-quality care (4, 5). For individuals seeking

treatment, the two primary recommendations are exposure and response prevention

(ERP), a specialized form of cognitive-behavioral therapy, and pharmacotherapy with
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selective serotonin reuptake inhibitors (SSRIs). ERP is an evidence-

based therapy that involves gradually exposing patients to feared

stimuli while providing them the therapeutic skills needed to resist

compulsive behaviors (6). ERP is highly efficacious in randomized

clinical trials and in routine clinical care, with large to very large

effect sizes (g = 0.74 to 2.30; 7, 8). SSRIs are also standard-of-care for

individuals with OCD, contributing to meaningful clinical

improvement (e.g., an average decrease of 4 points on the Yale-

Brown Obsessive-Compulsive Scale [YBOCS]; 9, 10). Nevertheless,

up to 50% of patients do not respond to ERP (7, 11–13), and the

high SSRI doses used for optimal OCD treatment increases risk of

side-effects and drop-out (9).

Within this context, it is of paramount importance for

researchers and clinicians to understand how to develop accurate

models for identifying OCD and its symptoms, and to predict who

will benefit from treatment. One challenge to achieving this has

been that the volume and types of data in modern research pose

novel analytic challenges. As an example, in a study on the NOCD

mobile app, 25,369 individuals across 108 countries contributed

lexical descriptions of obsessions, triggers, exposures, and

compulsions (14). Relatedly, the ENIGMA OCD Consortium

collection of neuroimaging data continues to grow, with 47

datasets from 34 institutes in 15 countries on 5 continents, with a

total sample of 4,648 participants. Of these participants, 2,323 have

OCD and 2,325 are healthy controls, with the majority being adults,

followed by adolescents and children. Data types span various MRI

machines with different field strengths and scan sequences, as well

as information on clinical phenotypes. Although such datasets can

answer novel and exciting questions, new analytic methods are

required to manage their size and heterogeneity, generate

hypotheses, and account for the nonlinear relationships

between variables.

Machine learning has been used as one approach to this

problem (15). Machine learning encompasses algorithms that

learn patterns from data and make predictions or decisions based

on those patterns (16). Machine learning accounts for multivariate,

nonlinear relationships that more traditional, linear analyses

overlook (17). Additionally, it increases confidence that models

will generalize to unseen data, allowing researchers to predict what

will happen for individuals outside of their research samples (18).

Researchers can also use it to combine multiple types of input data,

like clinical scales, therapy session recordings, images, and

psychological assessment scores, into the same model.

Deep learning, a subset of machine learning, has been rapidly

gaining popularity (19, 20), boasting several comparative

advantages. First, machine learning typically relies on domain

experts pre-identifying the most relevant data features for the

model. For example, to predict OCD treatment outcomes,

researchers might pre-select theoretically related variables,

including scores on the Yale-Brown Obsessive Compulsive Scale

(Y-BOCS), frequency of intrusive thoughts, or levels of impairment

caused by compulsive behaviors. By contrast, deep learning

automatically identifies patterns in data without predefined

feature selection, saving researchers time and reducing bias for

complex data tasks like image recognition, natural language
Frontiers in Psychiatry 02
processing, and speech analysis. Of note, deep learning can be

computationally expensive, require large amounts of data, and can

be challenging to interpret. Despite these drawbacks, improved

computing power and more advanced techniques have driven its

use in schizophrenia (21), attention-deficit/hyperactivity disorder

(22), autism (23), depression (24), and OCD (25).

While reviews surveying the application of deep learning across

psychiatry provide valuable broad context (24, 26–28), OCD

presents a unique constellation of diagnostic, neurobiological, and

treatment-related challenges (see 29) that warrants a dedicated

examination of how deep learning is being applied. OCD is

characterized by a profound heterogeneity spanning distinct

symptom dimensions (e.g., contamination/washing, symmetry/

ordering, hoarding, taboo thoughts) and highly ritualized

compulsive behaviors (30). This complexity makes traditional

statistical and even basic machine learning approaches potentially

insufficient for capturing the nuanced patterns needed for accurate

diagnosis, subtyping, and outcome prediction.

Furthermore, OCD research is heavily driven by specific neural

circuits, particularly the cortico-striato-thalamo-cortical (CSTC) loops

encompassing regions like the frontal cortex, striatum, and thalamus.

Within this circuit, a proposedmechanism is an imbalance between the

excitatory direct and inhibitory indirect pathways, leading to excess

excitation and thought to underlie OCD symptoms. Accumulating

evidence also points to OCD being mediated bymultiple parallel CSTC

circuits involved in sensorimotor, cognitive, and affective processes.

Furthermore, significant evidence indicates a heritable component to

OCD, with studies searching for specific risk genes and variants (31).

These insights offer a unique opportunity for deep learning models

applied to neuroimaging data to test and refine these biologically-

groundedmodels in ways less defined in other disorders. Moreover, the

prominent behavioral component of OCD—the compulsions—

presents both a challenge for traditional, often subjective, assessment

and a unique opportunity for deep learning-powered objective

monitoring using sensor data (32, 33), a focus potentially less

applicable or developed for conditions primarily defined by

internal states.

Therefore, this review fills a crucial knowledge gap by

synthesizing how deep learning is being tailored to address the

unique symptomatic heterogeneity, neurobiological targets,

objective behavioral monitoring needs, and treatment prediction

challenges inherent to OCD potentially missed by broader

psychiatric reviews. In this manuscript, we focus on studies

examining classification of symptoms and diagnostic status, as

well as prediction of treatment outcomes. We discuss the results

and conceptual takeaways of these models and their clinical

applications. We end on a note of optimism for deep learning’s

future as a tool for diagnostics and treatment prediction in

OCD research.
Methods

Although this was a narrative review, and so not all PRISMA

guidelines applied (e.g., extracting effect measures or synthesizing
frontiersin.org
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data), we followed the PRISMA checklist (34) as closely as possible

to increase transparency and to ensure that we located all studies

meeting inclusion criteria. To cast a comprehensive search net, we

utilized PubMed, Google Scholar, as well as searched references by

hand. PubMed and Google Scholar were chosen to provide broad

coverage across biomedical and general scientific literature,

including conference proceedings often captured by Google

Scholar, balancing comprehensiveness with feasibility. To be

included, studies were required to use at least one deep learning

technique (e.g., convolutional neural networks, recurrent neural

networks, autoencoders, generative adversarial neural networks) for

symptom classification, diagnostic classification, or treatment

prediction. The article must have been from a peer-reviewed

journal in English. Studies using only machine learning, not deep

learning, were excluded. Studies synthesizing empirical data, such as

reviews/meta-analyses, and data simulations, were also excluded.

There was no exclusion criteria for year of publication.

Search terms included “obsessive-compulsive disorder (OCD)”

along with the “AND” operator and the following terms: “Deep

Learning,” “Neural Network,” “Neural Networks,” “CNN,”

“Convolutional Neural network,” “Recurrent Neural network,”

“LSTM,” “GRU,” “Auto Encoders,” “Deep Belief Networks,”

“Generative Adversarial Network,” “Ensemble Neural Network,”

“Artificial Neural Network,” “Deep Neural Network.” To minimize

bias, two independent reviewers (KA and LB) assessed each study to

ensure that it met inclusion/exclusion criteria. A third reviewer (BZ)

resolved conflicts between the two reviewers.

Our process is illustrated in the flow diagram in Figure 1.

To determine the effectiveness of the models in each study,

accuracy, F1 score, and area under the curve (AUC; 35, 36) were

extracted when possible. Model accuracy represents the total
Frontiers in Psychiatry 03
number of correct predictions divided by the total number of

predictions, expressed as a percentage. While easily interpretable,

accuracy alone can be misleading, especially with imbalanced

datasets. To mitigate this shortcoming, we also used the F1 score,

which provides a more balanced evaluation by combining precision

(accuracy of positive predictions) and recall (ability to find all

positive cases) into a single metric (36). For papers that did not

include an F1 score, we calculated it from the confusion matrix

provided by the study with the following formula (36):

F1   =
2   *   precision   *   recall
precision    +    recall

Lastly, we considered AUC, a comprehensive performance

metric that measures a model’s ability to discriminate between

classes. This is the probability that a model will rank a randomly

chosen positive instance higher than a randomly chosen negative

instance (35).

Study characteristics were further organized into descriptive

categories including the country of the corresponding author,

research design, and prediction outcome. We collected details on

the model architectures the researchers used, input data for the

models, training sample/strategy, and primary model results. Lastly,

we included conceptual take-aways for each paper to

summarize findings.
Results

All results are displayed in Tables 1–3.

In total, k = 10 studies met inclusion criteria. Studies were

published from 2009 to 2024, though we did find two early

exceptions not meeting inclusion criteria. One older study using

neural networks in OCD (45) was excluded as it did not classify

OCD diagnoses or predict OCD treatment outcomes. Another

study was excluded for using only simulated data in a neural

network to assess pathophysiological theories of OCD (46). We

eliminated one study that met inclusion criteria because we could

not ascertain key characteristics of the sample (e.g., sample size; 47).

Of the included studies, corresponding authors were from

Switzerland (k = 1), Turkey (k = 3), the Netherlands (k = 1),

Canada (k = 1), Denmark (k = 1), Italy (k = 1), Pakistan (k = 1), and

China (k = 1). The most common research design was a

retrospective analysis (k = 5). Quasi-experimental designs were

the second most frequent (k = 3). The remaining studies were

distributed across other designs, one a mixed (survey, RCT)

approach and another feasibility study. This distribution suggests

a predominance of observational and retrospective approaches,

with fewer studies employing experimental or prospective designs.
Symptom classification studies

Three studies examined the ability of deep learning to classify

symptom types in OCD; all used physiological data. Wahl et al. (33)

used machine learning and deep learning models, including
FIGURE 1

Identification of Studies Via Databases and Registers. k refers to the
number of studies.
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TABLE 1 OCD symptom classification studies.

Study Characteristics Aim Technical Results and Performance Outcomes and Implications

Outcomes Implications

Patient-specific models
outperformed population
models for symptom states
with LFPs.
Deep learning models with
raw data outperformed
models with engineered
frequency bands.
Compulsions were the easiest
states to detect.

Neural signatures of OCD symptoms
are highly individualized.
Obsession detection was best using
gray matter signals from the nucleus
accumbens. Compulsion detection
best from white matter. This may
imply distinct neural sources for
these symptoms.
There may be important information
in raw signals.

The most influential features
in predicting OCD events
were related to the slope,
frequency content, and
variation of the blood volume
pulse (BVP) signal.
Generalized temporal models
trained on multiple patients
outperformed personalized
models trained on a
single patient.

It is feasible to detect OCD episodes
in adolescents' lives through
physiological signals, a wearable
biosensor, and ML models
OCD measurement can be more
comprehensive and objective,
revealing prodromal symptoms,
treatment progress, and risk
of relapse.

Deep learning outperformed
ML
Deep Conv LSTM w/o
attention performed best:
identified 84% of compulsive
hand washers; low false alarm
rate (21.1%).

Some participants had distinct
activity styles; personalized ML
models could improve the detection
of repetitive behaviors.

(Continued)
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Article N Country Design Architecture Input
Data

Validation Model

Fridgeirsson
et al. (37)

11
OCD

Netherlands Quasi-
experimental

Predict
symptom
states

Boosted
trees,
InceptionTime

Boosted trees:
frequency
bands power
from LFP
recordings
during
symptom
states b, c.
Deep learning:
Raw time-
series
LFP
recordings.

Hold-out approach. Data
split into training,
validation, and test sets.
Twenty percent of the
training set was used as a
validation set.

Patient identification
accuracy:
Boosted (18.9%);
deep learning
(32.6%).
Symptom
classification
accuracy:
Boosted (30%); deep
learning (31%).
Symptom state
accuracy:
Boosted (32.5%);
deep
learning (38.8%).

Lønfeld et
al. (32)

9 OCD Denmark Feasibility Predict
OCD
events vs
non-
OCD
event

Logistic
Regression,
RF, FFNN,
Mixed-Effect RF

Biosensor data
(Empatica E4)
worn by
adolescents
daily for up to
8 weeks.
66 features d

from 5-
minute
windows
registered by
button
presses.

Random 10-fold cross-
validation done on 1,639
OCD events and 2,739
non-events. 75% for
training, 12.5% validation,
and 12.5% test sets.
Two participants served as
validation and test sets.

Best accuracy (70%)
and precision (66%)
for RF and Mixed-
Effect RF.
F1-score under 60%
due to high false
positive rate.
Personalized models
yielded high
false positives.

Wahl et
al. (33)

82
OCD
44
controla

Switzerland Survey, RCT Predict
hand
washing
vs.
other
activities

RF, naive Bayes,
Deep Conv
LSTM, and Deep
Conv LSTM
with attention

Smartwatch
data in 3-
second
windows
ML features
calculated
from
smartwatch
windows.
Deep learning:
Raw
sensor data.

15% of sample data for
validation; leave one out
cross validation.

Naive Bayes:
precision (0.566),
sensitivity (0.847),
specificity (0.349),
F1 Score (0.678),
Accuracy (0.598).
RF: precision
(0.716), sensitivity
(0.687), specificity
(0.727), F1 Score
(0.701), Accuracy
(0.707).
LSTM Attention:

https://doi.org/10.3389/fpsyt.2025.1581297
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zaboski et al. 10.3389/fpsyt.2025.1581297

Frontiers in Psychiatry 05
random forests and deep convolutional long short-term memory

networks (LSTMs), to distinguish compulsive hand washing from

other repetitive activities using smartwatch sensor data. Participants

(n = 82 with OCD, n = 44 without OCD) wore a smartwatch while

hand washing, brushing teeth, cleaning a cup, and peeling a carrot.

Sensor data were collected in 3-second sliding windows. The models

correctly identified 84% of compulsive hand washing episodes. This

showcased the capability of analyzing and distinguishing OCD-

related vs non-OCD related behaviors in daily life. Moreover, the

analysis revealed distinct activity styles among participants,

suggesting the need for personalized models.

Fridgeirsson et al. (37) applied machine and deep learning to

classify OCD symptom states from local field potential recordings

in patients who underwent deep brain stimulation. They collected

data from 11 OCD patients with electrodes implanted in the ventral

anterior limb of the internal capsule. Recordings were made during

different symptom states (baseline, obsessions, compulsions, and

relief) induced by a symptom provocation task. The researchers

found that patient-specific models outperformed population-level

models, suggesting neural signatures of OCD symptoms are highly

individualized. Deep learning models using raw time series data

performed better than using frequency band features. The models

distinguished obsessive and compulsive states with moderate

accuracy in some patients, with compulsions being easier to

detect overall. Obsession detection was best using signals from

gray matter areas like the nucleus accumbens, while compulsion

detection was most successful with signals from nearby

white matter.

Lastly, machine and deep learning models were used to classify

OCD events using physiological data collected from wearable

biosensors in 9 adolescents for up to 8 weeks (32). Participants

manually tagged OCD events by pressing a button when bothered

by symptoms. The researchers then extracted 66 features from 5-

minute windows of physiological data, including pulse, heart rate,

electrodermal activity, and skin temperature. They used 1,639 OCD

events and 2,739 non-events for model training. Tree-based models

like random forests performed best, reaching 70% accuracy in

detecting OCD events. Features related to pulse were most

predictive. In contrast to Wahl et al. (33), generalized temporal

models trained on multiple patients outperformed personalized

models trained on a single patient. These differences may be due

to the data types used, model architectures, or sample sizes.
Diagnostic classification studies

Five studies applied deep learning techniques to distinguish

OCD patients from healthy controls, two using functional magnetic

resonance imaging (fMRI) data, two using electroencephalography

(EEG), and one using clinical data (Table 2). In one investigation,

convolutional and recurrent neural networks differentiated between

groups based on resting-state EEG data from 86 OCD patients and

52 healthy controls (39). Using input data from a 19-channel EEG

system and a 3-minute eyes-closed resting state condition, models

achieved over 93% accuracy, with 97% precision, 97% accuracy, and
T
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TABLE 2 Diagnostic classification.

Study Characteristics Aim Technical Implementation Results and Performan Outcomes and Implications

Outcomes Implications
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Relevant features: Beta frequency
(Left temporal, right temporal,
left frontal, right frontal); Theta
(Left temporal, left parietal,
midline); Delta (Prefrontal,
central, left temporal, right
temporal, left parietal, occipital).

OCD abnormalities: fronto-
striatal circuitry, especially OFC,
ACC, and basal ganglia. Trich
abnormalities: less consistent
volumetric decreases in frontal
regions, putamen, and
cerebellum.
Both disorders show impulsivity
deficits related to
motor inhibition.
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Consistent importance of
electrodes in inferior frontal,
temporal, and right occipital
regions
Suggests involvement of frontal
and limbic areas and primary
sensory areas.
Suggests including
somatosensory areas for
further study.

Accurate classification of OCD
with EEG and deep learning
could advance clinical decision-
making by highlighting
diagnostic markers and
disentangling symptom overlap.
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Neurobiology informed feature
design outperformed neural
network models.
Reliable features were associated
with the CSTC circuit, including
the OFC, ACC, PFC, and VS.
The model was less successful at
predicting symptom severity
than diagnostics.

The high accuracy (80.3%) of the
EMPaSchiz model in predicting
OCD suggests that this approach
could lead to earlier and more
accurate diagnoses.
The application of transfer
learning, where a schizophrenia
prediction model was applied to
OCD, suggests the potential for
developing models that can
diagnose a range of
psychiatric conditions.
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validation; for the
final support vector
machine with feature
selection, a 6-fold
cross validation
was used.

Before featu
selection: N
network (63
support vec
machines (6
k-nearest n
(56.96%), n
Bayes (56.9
After featur
selection: T
positives ra
(82.05%) O
(80%).
Accuracy: 8

Farhad et
al. (39)

86 OCD
52 control
Ext valid:
10 OCD;
10 control

Turkey Retrospective Predict
OCD vs.
healthy
controls

1-dimensional
CNN with either
an LSTM RNN or
a GRU RNN

EEG data recorded
with 19 channels
3-minutes, eyes-
closed, resting
state. b

5-fold cross-
validation on sample
External validation.

1D CNN w
RNN:
Precision (0
sensitivity (
specificity (
F1 score (0.
With GRU:
(0.9395),
accuracy (0
sensitivity (
F1 score (0.

Kalmady
et al. (40)

188 OCD
200
control
81 schz

Canada Retrospective Predict
OCD vs.
Healthy
Controls

EMPaSchiz (an
ML framework for
differentiating
drug-naive
schizophrenia
patients from
healthy controls
with rs-fMRI)
Three
hybrid CNNs

EMPaSchiz:
6 rs-fMRI features,
3 regional features
c, 3 connectivity
features. d.

Features projected
onto 14 brain
parcellation
schemes
resulting in 84
feature sets.
Neural Network 1:
Preprocessed 4D
fMRI images.
Neural Network 2:

5-fold balanced
cross-validation with
study sample and
supplemental data in
shuffled iterations
(80-20% train-test
split).
For transfer learning,
leave one out
cross-validation.

EMPaSchiz
(80.3%), sen
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(77.8%).
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Study Characteristics Aim Technical Implementation Results and Performance Outcomes and Implications

ance Outcomes Implications

.3%),
5.4%),
5.3%),
5.1%).

.7%
ifications
98.3%
uring

%

r

ic curve
cated
cy in
g
D
s.

Most important predictive
factors:
Contamination and cleaning
(100%),
symmetry and perfection
(72.5%),
worth of an individual in the
family (71.1%)
Aggressive, religious, and sexual
obsession (50.5%),
high-risk assessment (46.0%),
somatic obsessions and
checking (24.0%).

Family dynamics and an
individual's perceived worth
within the family play a
significant role in OCD
development.
Cultural and social factors
influence the relative importance
of different OCD symptom
dimensions.
Considering multiple symptom
factors is important for OCD
assessment and
treatment planning.

ntrol:
8.73%),
%),
93.33%),
5.82%).
rst
ives vs.

87.51%),
%),
6.57%),
0.95%).
affected
relatives:
1.70%),
%),

Findings are aligned with
abnormalities in frontal-striatal
circuits, cingulate cortex, and
temporal regions.
OCD vs. controls, discriminative
regions:
frontal, temporal, insula,
cingulate.
UFDR vs. NCg: frontal,
cingulate, occipital, temporal
areas.
OCD vs. UFDRh: Frontal,
cingulate, temporal, parietal.

This framework could provide an
alternative diagnostic tool for
OCD, early identification
of at-risk individuals by
identifying relatives with similar
brain connectivity patterns to
OCD patients, and with a more
advanced neurobiological
understanding of OCD, the
development of targeted
treatment strategies.
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Used EMPaSchiz’
three regional-
based features
without
parcellation.
Neural Network 3:
84 feature sets
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Shahzad
et al. (41)
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experimental

Predict
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Healthy
Controls
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from participant
interviews with the
Y-BOCS, in
addition to the
"worth of an
individual in
family" factor.

Study Sample. 70%
for training and 30%
for testing.
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Training: 9
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(OCD) and
(controls) d
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Testing: 98
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Yang
et al.,
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specificity. Electrodes in inferior frontal, temporal, and right

occipital regions were most important for classification,

suggesting involvement of frontal-limbic and sensory areas in

OCD pathophysiology.

Kalmady et al. (40) examined resting-state functional magnetic

resonance imaging (rs-fMRI) in 188 OCD patients and 200

controls. The authors used three regional features and three

connectivity-based features (FC-Pearson correlation, FC-partial

correlation, FC-precision). They were projected onto 14 different

brain parcellation schemes, resulting in 84 feature sets used as input

supplied to a machine learning algorithm (EMPaSchiz; 40). The

ensemble algorithm achieved 80.3% accuracy, 82.7% sensitivity,

79.2% precision, and 77.8% specificity. Features selected for

schizophrenia prediction in previous work transferred well to

OCD classification, demonstrating usefulness for cross-diagnostic

transfer learning in psychiatry. The successful transfer of features

from schizophrenia prediction to OCD classification suggests some

overlap in the underlying pathophysiological mechanisms and may

facilitate the development of cross-diagnostic tools. Such transfer

learning is crucial for psychiatry research, as it reduces the need for

large, diagnosis-specific datasets, which are often difficult to obtain,

accelerates model training, and improves generalization (21).

In a study using a novel application of deep learning, Yang et al.

(42) combined spatial similarity-aware learning and fused deep

polynomial networks to construct and analyze brain functional

connectivity networks from rs-fMRI in 62 OCD patients, 65

controls, and 53 unaffected first-degree relatives. The brain was

parcellated into 90 regions of interest. Next, a brain functional

connectivity network (BFCN) was constructed with a smooth

sparse network (SSN) model to reduce the density of the network

and incorporate similarity constraints between subjects. A fused

sparse auto-encoder (FSAE) learned deep features of the BFCN to

reduce its dimensionality, and then a support vector machine

classifier output the OCD diagnosis based on the high-level

features extracted by the auto-encoder. This two-stage process–

BFCN construction using the SSN followed by deep learning and

OCD classification–achieved 88.7% accuracy in distinguishing

OCD from controls. Using this method, the model also identified

discriminative brain regions aligned with known OCD

neurocircuitry, including frontal, insular, cingulate, temporal, and

subcortical areas.

Two studies used comparatively simpler deep learning models

for diagnostic classification. One used support vector machines, k-

nearest neighbor, naïve Bayes, and deep neural networks to separate

individuals with OCD (n = 40) and trichotillomania (n = 39; 38).

Input consisted of quantitative EEG cordance values from 19

electrodes in 10 brain regions across four frequency bands. After

feature selection, the model achieved 81.04% accuracy, with true

positive rates of 82.05% for trichotillomania and 80% for OCD.

With only clinical and demographic data, Shahzad et al. (41) used a

feedforward neural network to classify OCD vs. healthy controls in

200 OCD patients and 400 healthy controls. Model input consisted

of 6 factors calculated from Y-BOCS interviews, including a newly

added factor, “worth of an individual in family.” Their model

achieved 98% accuracy in differentiating OCD patients from
T
A
B
LE

2
C
o
n
ti
n
u
e
d

St
u
d
y
C
h
ar
ac

te
ri
st
ic
s

A
im

T
e
ch

n
ic
al

Im
p
le
m
e
n
ta
ti
o
n

R
e
su

lt
s
an

d
P
e
rf
o
rm

an
ce

O
u
tc
o
m
e
s
an

d
Im

p
lic

at
io
n
s

A
rt
ic
le

N
C
o
u
n
tr
y

D
e
si
g
n

A
rc
h
it
e
ct
u
re

In
p
u
t

V
al
id
at
io
n

P
e
rf
o
rm

an
ce

O
u
tc
o
m
e
s

Im
p
lic

at
io
n
s

se
ns
it
iv
it
y
(7
6.
46
%
),

sp
ec
ifi
ci
ty

:(
61
.8
4%

).

M
L
(m

ac
hi
ne

le
ar
ni
ng
),
A
N
N
(a
rt
ifi
ci
al
ne
ur
al
ne
tw
or
k)
,F
FN

N
(f
ee
df
or
w
ar
d
ne
ur
al
ne
tw
or
k)
,N

N
(n
eu
ra
ln

et
w
or
k)
,S
V
M

(s
up

po
rt
ve
ct
or

m
ac
hi
ne
),
K
N
N
(k
-n
ea
re
st
ne
ig
hb

or
s)
,C

N
N
(c
on

vo
lu
ti
on

al
ne
ur
al
ne
tw
or
k)
,L
ST

M
(l
on

g-
sh
or
tt
er
m

m
em

or
y)
,R

N
N
(r
ec
ur
re
nt

ne
ur
al
ne
tw
or
k)
,G

R
U
(g
at
ed

re
cu
rr
en
t
un

it
),
SS
L
(s
pa
ti
al
si
m
ila
ri
ty
-a
w
ar
e
le
ar
ni
ng
),
fu
se
d
de
ep

po
ly
no

m
ia
ln

et
w
or
k
(F
D
P
N
),
rs
-F
M
R
I
(r
es
ti
ng

st
at
e
fu
nc
ti
on

al
m
ag
ne
ti
c
re
so
na
nc
e
im

ag
in
g)
,Q

E
E
G
(q
ua
nt
it
at
iv
e
el
ec
tr
oe
nc
ep
ha
lo
gr
ap
hy
),
br
ai
n
fu
nc
ti
on

al
co
nn

ec
ti
vi
ty

ne
tw
or
ks

(B
FC

N
s)
,O

FC
(o
rb
it
of
ro
nt
al
co
rt
ex
),
A
C
C
(a
nt
er
io
r
ci
ng
ul
at
e
co
rt
ex
),
V
S
(v
en
tr
al
st
ri
at
um

),
(C
ST

C
),
sc
hz

(p
at
ie
nt
s
w
it
h
sc
hi
zo
ph

re
ni
a)
,Y

-B
O
C
S
(Y
al
e-
B
ro
w
n
O
bs
es
si
ve
-C

om
pu

ls
iv
e
Sc
al
e)
.

a R
eg
io
ns
:p

re
fr
on

ta
l,
fr
on

to
ce
nt
ra
l,
ce
nt
ra
l,
le
ft
te
m
po

ra
l,
ri
gh
t
te
m
po

ra
l,
le
ft
pa
ri
et
al
,o

cc
ip
it
al
,m

id
lin

e,
le
ft
fr
on

ta
l
an
d
ri
gh
t
fr
on

ta
l.

b
Si
gn
al
s
sa
m
pl
ed

at
12
5
H
z,
pr
ep
ro
ce
ss
ed

by
fi
lte
ri
ng

fr
om

0.
1
to

50
H
z,
an
d
ap
pl
yi
ng

in
de
pe
nd

en
t
co
m
po

ne
nt

an
al
ys
is
fo
r
ar
ti
fa
ct
s
re
m
ov
al
.

c A
LF

F,
fA
LF

F,
R
eH

o.
d
FC

-P
ea
rs
on

co
rr
el
at
io
n,

FC
-p
ar
ti
al
co
rr
el
at
io
n,

FC
-p
re
ci
si
on

.
e F
ro
nt
al
_M

id
_O

rb
_L

/R
,R

ec
tu
s_
R
,I
ns
ul
a_
R
,C

in
gu
lu
m
_M

id
_L

.
f T
em

po
ra
l_
Su
p_

L,
T
em

po
ra
l_
P
ol
e_
Su
p_

R
,T

em
po

ra
l_
M
id
_R

,P
ut
am

en
_L

,T
ha
la
m
us
_L

.
g F
ro
nt
al
_S
up

_O
rb
_R

,F
ro
nt
al
_M

id
_O

rb
_L

,R
ec
tu
s_
L/
R
,C

in
gu
lu
m
_A

nt
_L

,C
in
gu
lu
m
_P

os
t_
L,

O
cc
ip
it
al
_S
up

_L
/R
,O

cc
ip
it
al
_M

id
_R

,H
es
ch
l_
L,

T
em

po
ra
l_
P
ol
e_
Su
p_

L.
h
Fr
on

ta
l_
Su
p_

L,
Fr
on

ta
l_
M
id
_R

,F
ro
nt
al
_I
nf
_O

pe
r_
R
,C

in
gu
lu
m
_A

nt
_L

,C
in
gu
lu
m
_M

id
_L

,T
em

po
ra
l_
M
id
_L

,T
em

po
ra
l_
P
ol
e_
Su
p_

L,
Su
pr
aM

ar
gi
na
l_
R
,P

ar
ie
ta
l_
Su
p_

R
.

frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1581297
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


TABLE 3 OCD treatment classification studies.

Study Characteristics Aim Technical Implementation Results and Performance Outcomes and Implications

Validation Model Outcomes Implications

old, 7-fold, and 10-fold
ss-validation on
ple data.

The architecture
predicted rTMS
treatment response with
80% accuracy using theta
band power.
Responders to rTMS had
significantly higher theta
band power at all
electrode locations
compared to
non-responders.

Frontal, central, and
occipital regions best
distinguished
responders from non-
responders.
Channels with the
highest weights: O1,
F7, C4, and Cz. Others
with notable weights:
Fz (0.972)
Pz (0.825)
Fp1 (0.792)
F3 (0.774)
F4 (0.682)
Fp2 (0.478)
O2 (0.226)

Pre-treatment qEEG
and theta band power
could predict which
patients are likely to
respond to rTMS.
qEEG screening could
lead to more targeted,
effective, and efficient
interventions.
QEEG can be used to
optimize rTMS.

ndom resampling procedure
h 10,000 resamplings. In
h resample, the sample was
domly divided into a
ining set (n = 118) and a
t set (n = 12).

The MLP had excellent
predictive performance
(correct responder
classification: 93.9%;
non-responders: 92.2%).
The MLP outperformed
logistic regression in
predicting treatment
response; mean
generalized correct
classification 93.3% vs
61.5%.
Mean generalized area
under the ROC curve
was 0.945 ± 0.0524.

46.9% of the OCD
sample were refractory
to treatment.
Logistic regression:
hoarding symptoms,
repeating rituals, and
counting compulsions
were predictors of
treatment outcome.

Complex interactions
between clinical and
neuropsychological
variables are involved
in determining
treatment response
Nonlinear modeling
strategies (ANNs) are
more effective for
investigating treatment
response than linear
techniques.
ANNs could identify
non-responders early
in the
treatment process.

on), QEEG (quantitative electroencephalography), Y-BOCS (Yale-Brown Obsessive Compulsive Scale).
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Article N Country Design Architecture Input Data

Metin et
al. (43)

35 OCD TMS
responders
15 OCD
TMS
nonresponders

Turkey Retrospective Response/
non-
response
to rTMS

FFNN with
particle
swarm
optimization

3-minute qEEG
power features (delta,
theta, alpha, beta)
from 19 electrode
locations collecting
during resting state.

5-
cro
sam

Salomoni
et al. (44)

130 OCD Italy Retrospective Responder/
Non-
responder

MLP Y-BOCS scores,
YBOCS factor scores
from checklist items,
sex,
number of
advantageous
selections in the Iowa
Gambling Task,
number of excess
moves in the Tower
of Hanoi task,
% of Perseverative
errors in the
Wisconsin Card
Sorting Test (WCST).

Ra
wi
ea
ran
tra
tes

ML (machine learning); FFNN (feedforward neural network); MLP (multilayer perceptron), rTMS (repetitive transcranial magnetic stimulati
aDefined as intensity of action unit (AU) 1+2 and AU 6+12. Negative affect was defined as intensity of AU 4 and AU 7.
f

t
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healthy controls, with contamination and cleaning being the most

important factors for prediction. The strikingly high accuracy may

reflect the presence of relevant clinical data embedded in the Y-

BOCS input. The new “family” factor was the third most important

in the models, supporting longstanding work identifying family

dynamics as a pivotal variable in understanding OCD (48, 49).
Treatment prediction studies

Only two treatment studies met inclusion criteria (Table 3). Metin

et al. (43) used artificial neural networks with particle swarm

optimization to predict response to repetitive transcranial magnetic

stimulation (TMS) in 35 TMS responders and 15 TMS non-responders

based on quantitative EEG features collected prior to treatment. The

input consisted of quantitative electroencephalography (qEEG) delta,

theta, alpha, and beta band power features from 19 electrodes locations

placed according to the 10–20 system, with linked ear electrodes (A1-

A2) as reference. Features were extracted from 3 minutes of resting-

state EEG recordings with eyes closed. Treatment responders showed

higher theta power across all electrodes compared to non-responders,

with 80% model accuracy. Frontal and central electrodes were the

most predictive.

Multilayer neural networks were used to predict response to

pharmacological and psychotherapeutic treatment in a study on 130

OCD patients based on clinical , epidemiological , and

neuropsychological variables (44). Y-BOCS scores (for obsessions,

compulsions, and insight), Y-BOCS symptom checklist items (7

obsession and 6 compulsion subtypes), sex, and neuropsychological

test scores (Iowa Gambling Task performance, Tower of Hanoi

excess moves, Wisconsin Card Sorting Test perseverative errors)

were included. Factor analysis of the 13 symptom subtypes resulted

in a 4-factor solution; these factors were used as predictors instead

of the 13 original items. Their model significantly outperformed

logistic regression, achieving 93.3% accuracy in classifying

treatment responders vs. non-responders. This study highlights

the potential of neural networks to capture nuanced

understanding of OCD treatment response beyond traditional,

linear statistical modeling methods.
Discussion

Identifying OCD: bridging technical
innovation and clinical scalability

Current deep learning models demonstrate impressive

performance in distinguishing OCD from healthy controls, with

accuracies ranging from 80% to 98% across studies using

neuroimaging, EEG, and structured clinical assessments (Table 2).

We are optimistic for deep learning in the near-term as it becomes a

more accurate diagnostic tool. However, in the mid-term, as long as

these approaches still require resource-intensive data collection

(e.g., fMRI protocols, 19-channel EEG arrays, or a clinician-

administered Y-BOCS), they will need to go beyond the high
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accuracy already afforded by specialists to demonstrate their

incremental utility. Although these models show clear promise

validating the neurobiological and behavioral correlates of OCD,

their long-term translational value is constrained without

sufficiently scaling, which could address systemic barriers to early

detection or frequent misdiagnosis (4, 50, 51). Future work should

prioritize scalable identification frameworks, some of which can

leverage passively collected or electronic medical record (EMR) data

—advances absent in the reviewed literature but rich with

opportunity. For example, natural language processing of primary

care visit notes could detect undiagnosed OCD through lexical

markers of doubt, contamination fears, or ritualistic behavior, akin

to methods successfully deployed for psychosis risk (52–54).

Similarly, smartphone sensors analyzing movement patterns (e.g.,

repetitive hand motions) or app engagement metrics (e.g., frequent

calendar rechecking) could provide digital biomarkers, building on

Wahl and colleagues’ (33) proof-of-concept for wearables.

Although deep learning has proven itself in diagnostic

classification, by shifting focus from rivaling expert diagnosis to

augmenting frontline detection, deep learning could transform

OCD identification from a specialist-dependent process to a

population-level public health tool in the years to come. Large

scale OCD detection models, like those based on EMR data,

represent a notable path forward. EMRs can contain longitudinal

data on medication trials, comorbidities, and somatic complaints

(e.g., dermatitis from overwashing)—all potential predictors of

OCD. Deep learning’s capacity to model nonlinear interactions

between these sparse, heterogeneous variables makes it uniquely

suited for this task. For instance, a multimodal network combining

structured diagnostic codes, unstructured clinician notes, and

pharmacy records could identify high-risk patients for targeted

screening, mirroring suicide risk models (e.g., 55). However,

significant challenges remain: EMR data suffers from selection

bias (overrepresentation of severe cases), fragmented care

documentation, and privacy constraints that complicate model

training. Collaborative frameworks like the ENIGMA OCD

Consortium could mitigate these issues by curating multisite

EMR repositories with standardized phenotyping.
Commonalities with broader deep learning
trends

Our findings indicate that OCD deep learning research aligns

with broader trends across psychiatry. The promising results in

diagnostic classification of OCD using neuroimaging, EEG, and

clinical data mirror successes reported in automated detection and

diagnosis for depression (24, 27), schizophrenia (28), and autism

(26). Moreover, they often utilize similar data modalities—fMRI

and EEG—along with common architectures like CNNs and

LSTMs. Furthermore, the challenges identified in the OCD deep

learning literature, like small sample sizes, the need for improved

scalability, the lack of external validation, and the necessity for

enhanced model interpretability, persist across the field (24, 27, 28).

The growing interest in treatment response prediction for OCD also
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parallels efforts in depression, where deep learning is being explored

to predict outcomes for repetitive transcranial magnetic stimulation

(rTMS) and pharmacotherapy (24).

While sharing common ground, deep learning applications in

OCD have also presented unique opportunities. The nascent but

promising use of deep learning with wearable sensor data and

intracranial recordings for granular symptom classification (e.g.,

compulsive hand washing, specific symptom states) appears

uniquely focused within OCD research compared to the broader

diagnostic detection goals often emphasized for depression or

schizophrenia (24, 28). While there seems to be some interest in

using similar technology to track suicidal behavior with recurrent

neural networks (56, 57), these EMA analyses still seem dominated

by traditional machine learning algorithms (58).

By comparison to the broader literature, our review highlights a

comparative lack of focus in OCD deep learning research on leveraging

large-scale, passively collected data streams like electronic medical

records or extensive social media analysis, areas where significant

progress or potential has been demonstrated for depression and

suicide risk assessment (27). To bridge the gap towards clinical

translation, OCD research needs to integrate methodologies

becoming crucial across precision psychiatry, such as prospective

study designs embedding deep learning algorithms, robust external

validation on diverse datasets, and developing models capable of

comparative treatment prediction (e.g., predicting differential

response to ERP vs. SSRIs) (59). Addressing these points, alongside

the shared challenges of interpretability and scalability, will be essential

for translating the technical advancements of deep learning into

tangible improvements in precision care for individuals with OCD,

moving beyond diagnostic biomarkers towards personalized and

adaptive treatment strategies.
Integrating prediction into clinical
decision-making

Current deep learning studies show clinically relevant accuracy

in predicting OCD treatment response, including rTMS (80%

accuracy) and pharmacotherapy/psychotherapy (93.3% accuracy).

This work answers the call for psychological investigations

emphasizing prediction (60). However, for deep learning to be

successful in the long-term, it must move from simple binary

predictions to providing insight into matching patients to more

complex, evidence-based treatment options (e.g., outpatient ERP vs.

intensive ERP vs. SSRIs). This current limitation reflects broader

precision psychiatry challenges, where models prioritize preselected

interventions rather than guiding initial modality choice (61). A

reasonable solution might be to integrate multimodal biomarkers—

for example, wearable-derived movement patterns (33) with clinical

profiles to predict which patients respond better to varying levels of

ERP or SSRIs (44). Implementing this approach demands hybrid

study designs that embed machine/deep learning analyses within

randomized controlled trials—a methodology absent from current

OCD research but critical for clinical translation (62).
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Three implementation challenges must be addressed to move

from prediction to clinical action. First, prediction confidence

should align with intervention risk (e.g., higher confidence is

required for neurosurgical referrals than ERP). Second, temporal

resolution must match clinical needs: EEG biomarkers enable rapid

3-minute triage for time-sensitive cases (43), while longitudinal

wearable data better informs chronic care adjustments (32). Third,

model explanations should be stakeholder-adapted—providing

clinicians neurobiological plausibility (e.g., frontostriatal

engagement) while giving patients behaviorally actionable insights

(e.g., “Hoarding reduces your ERP response likelihood by X%”).

Hybrid expert-AI systems could bridge this gap, embedding

predictions within clinical workflows. Such systems require

human-in-the-loop frameworks, which keep clinicians

accountable and involved with AI decision making (63).
Early identification of response

This review shows deep learning’s capacity to predict treatment

outcomes using baseline biomarkers—such as pre-treatment EEG

patterns or clinical symptom profiles. A key area for future research

is to identify early response signals during therapeutic

interventions. Current practice often recommends long sessions

or multiple weeks of ERP that sufficiently violate a patient’s

expectation of an aversive event occurring (64, 65). Yet

prolonging patient exposure to potentially ineffective

interventions or delaying alternative care pathways can be

inefficient and costly. Detecting movement patterns (33) and

longitudinal physiological data (32) provide foundational

evidence that symptom-linked digital phenotypes evolve

detectably within days to weeks. Adapting these modalities to

track early response could help identify divergence between

responders and non-responders at critical junctures—for instance,

detecting stalled habituation curves in ERP via reduced skin

conductance variability, or flagging SSRI non-response through

persistent ritual frequency in smartphone sensor data. Such

approaches would require shifting from static, single-time-point

models to recurrent architectures that process temporal sequences

with patient-specific models (e.g., 37).
Monitoring symptoms

We found an emerging capability for passive sensor data to

transform OCD symptom monitoring by capturing granular,

objective behavioral signatures that circumvent recall bias and

clinician-dependent rating scales. Wahl et al. (33) demonstrated

that smartwatch data could distinguish compulsive hand washing

from similar non-OCD behaviors with 84% accuracy, identifying

unique kinematic patterns (e.g., repetitive and inertial motion) that

traditional clinical assessments cannot detect or quantify. When

extended longitudinally, such real-time digital phenotyping could

map symptom trajectories at hourly resolution, detecting subtle
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response signals like reduced ritual duration or altered movement

variability weeks before Y-BOCS scores reflect improvement.

Lønfeldt et al. (32) further validated this approach, showing that

wearable-derived physiological markers (heart rate, electrodermal

activity, and skin temperature) predicted OCD event onset with

70% accuracy in adolescents. Integrating motor kinematics and

autonomic arousal patterns could yield composite digital

biomarkers that differentiate perseverative compulsions from

adaptive behaviors while controlling for contextual confounds like

exercise or stress (66, 67).
Data security and bias

For clinical-research translation, the collection, use, and

protection of sensitive personal data are paramount. Safeguarding

patient confidentiality requires not only adherence to stringent data

protection protocols but also the implementation of advanced

security measures to prevent unauthorized access or misuse (68,

69). Beyond data security, bias can influence algorithms in several

ways, amplifying negative health outcomes for marginalized and

underserved patients. For example, AI could miscalibrate risk,

leading to under-prioritization and undertreatment of minority

groups; racial stereotypes can influence data in electronic health

records (70). Addressing these challenges demands a proactive

approach that emphasizes cultural competence, inclusivity, and

fairness in AI system design. This includes curating datasets that

are diverse and representative of different demographic groups,

employing robust bias-detection and mitigation strategies, and

continuously evaluating AI performance to ensure equitable

application across varied populations (71).
Conclusion

This review highlights the promise of deep learning to

revolutionize OCD diagnosis and treatment by addressing critical

gaps in current clinical practice. At the same time, this work is in its

infancy. While current architectures achieve high accuracy in

diagnostic classification and treatment response prediction,

limited scalability and lack of integration into real-world settings

are essential for them to have clinical impact. Key areas for future

development include early identification of treatment response

through dynamic temporal modeling, comparative predictions

across therapeutic modalities, and continuous symptom

monitoring using passive data streams like wearable sensors or

electronic medical records. Collaborative efforts to standardize

multimodal datasets and incorporate diverse patient populations

will be essential for building robust, generalizable models. By

shifting the focus from technical optimization to clinical

implementation, deep learning can increase the precision,

personalization, and accessibility of OCD care.
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