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Cognitive effort devaluation
and the salience network:
a computational model of
amotivation in depression
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1Department of Psychiatry and Behavioral Neurosciences, International St. Mary’s Hospital, Catholic
Kwandong University College of Medicine, Incheon, Republic of Korea, 2Catholic Kwandong
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Introduction: Amotivation in depression is linked to impaired reinforcement

learning and effort expenditure via the dopaminergic reward pathway. To

understand its computational and neural basis, we modeled incentive,

temporal and cognitive burden effects, identifying key components and brain

networks of cost-benefit valuation.

Methods: Data from 43 psychotropic-free individuals (31 non- or minimally

depressed individuals), including Beck Depression Inventory (BDI), Apathy

Evaluation Scale (AES), n-back task performance, and resting-state fMRI, were

analyzed. Cost-benefit valuation was modeled using loss aversion, learning,

temporal, and cognitive effort discounting factors. Model fitting and

comparison (two-learning rate vs. two-temporal discounting) were performed.

Principal Component Analysis and linear regression identified factors predicting

amotivation severity. Correlations of estimated factors with nucleus accumbens

and anterior insular cortex (AIC) functional connectivity were analyzed.

Results: Overall, greater 2-back than 0-back accuracy occurred in longer,

positively incentivized tasks. Non- or minimally depressed individuals showed

accuracy difference by N-back load at higher rewards, with divergence between

reward and loss tasks at higher incentive and longer lengths. The two-temporal

discounting model best explained these results. Cognitive effort discounting

specifically predicted amotivation scores, derived from BDI and AES, and

correlated with AIC-anterior mid cingulate cortex (aMCC) functional connectivity.

Conclusions: Our findings demonstrate amotivation is specifically associated

with cognitive effort devaluation in a cost-benefit analysis incorporating loss

aversion, incentive learning, temporal discounting, and cognitive effort

discounting. Modulation of effort valuation via the AIC-aMCC network

suggests a potential treatment target.
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1 Introduction

Major depression is characterized by a marked decrease in

interest or pleasure in most or all activities. It can lead to

motivational deficit, which is associated with functional

impairment in patients with major depressive disorder (1). These

symptoms of apathy, anhedonia, and amotivation are related to and

can arise from impairment in any components of goal-directed

behavior, including learning of rewards, approach-related

behaviors, and willingness to exert effort to obtain rewards (2).

Particularly, motivation facilitates overcoming the cost of an

effortful action to achieve the desired rewarding outcome (3).

Preference to choose approach/avoidance and effortful behavior

are implicitly learned through reinforcement. Reward learning,

which may involve separate neural pathways for approach and

avoidance behavior, occurs in both positive and negative outcomes

(4). Reward incentives can also boost attentional effort and

conversely, effort can discount choice values in decision-making

modulated by dopamine (5–7). Individuals typically place a higher

value on effort when it is directed towards avoiding punishment

rather than obtaining rewards (8, 9). Thus, intrinsic motivation for

loss aversion is greater particularly for effortful goal-directed

behavior. Discounting of learned reward values is sensitive to

time delay and reward magnitude (10, 11). Additionally, temporal

discounting of learned values is less steep for losses than rewards,

and the magnitude effect on discounting in rewarding outcomes is

absent in monetary loss outcomes (12, 13).

Reward-based decision making involves the dopaminergic

pathway-projected brain regions including the nucleus accumbens

(NAc), caudate, putamen, orbitofrontal cortex, anterior insula (AIC),

anterior and posterior cingulate cortex (14). Particularly, the NAc and

AIC are involved in evaluating effort. The NAc is more active when

making rewarding choices requiring less physical effort, while the AIC

is associated with devaluing effortful options (15, 16). Moreover,

variability in dopamine responses in the NAc is associated with

willingness to exert effort for larger, low-probability rewards, whereas

such variability in the insula is negatively correlated with unwillingness

to exert effort for rewards (7).

A meta-analysis of behavioral data using a reinforcement learning

framework revealed that anhedonia and major depressive disorder were

associated with diminished reward sensitivity but not impaired learning

(17). Considering that effort enhances both reward and loss sensitivity to

outcomes (18) and can devalue choice options in decision-making (6, 7),

effort expenditure may be critical factor in the reinforcement learning

processes of depressed individuals. Indeed, studies of effort-based

decision-making have demonstrated that individuals with major

depressive disorder are less inclined to exert effort for rewards (19,

20). Moreover, another study indicated that these patients exhibit

reduced effort in both reward acquisition and loss avoidance, despite

intact anticipation of negative outcomes (9). Consequently, the

neurocognitive underpinnings of anhedonia and amotivation in

depression encompass effort cost valuation. However, the extent to

which different dimensions of effort cost, such as exertion time and

magnitude, are differentially impacted in depression remains unclear.
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To examine the implicit neural processing of cost-benefit

analysis, we developed and conducted a monetary incentive n-

back task and employed resting-state fMRI. We manipulated

cognitive load, incentive valence, incentive magnitude and task

length to investigate the influence of integrated valuation on

cognitive performance and associated brain networks. Integrating

reward and effort-based valuation models, we aimed to identify the

computational mechanisms and the neural network underlying

cost-benefit valuation, and to identify the components associated

with amotivation. We hypothesized that cognitive effort

discounting is linked to amotivation and explored the relationship

between model-derived parameters and functional connectivity

within the NAc and AIC, key valuation processing hubs.
2 Materials and methods

2.1 Participants and procedure

Forty-nine participants consented to the procedures approved

by the Institutional Review Board of International St. Mary’s

Hospital. Participants aged 19 to 65 years were included in the

study. Exclusion criteria encompassed individuals with a history of

major psychiatric disorders, neurological disorders, acute or severe

physical illnesses requiring hospitalization or surgery, alcohol or

substance abuse disorders, or neurodevelopmental disorders. In

addition, any individuals who were on any CNS drugs within the

past 2-weeks were excluded. We screened for potential alcohol use

disorder using the Alcohol Use Disorder Identification Test

(AUDIT), with a score greater than 15 indicating harmful alcohol

consumption (21). The self-rating scales including the Beck

Depression Inventory – II (BDI) (22, 23) and the Apathy

Evaluation Scale (AES) (24, 25) were used to measure the

severities of depressive symptoms and amotivation in all

participants. All participants performed a monetary incentive N-

back task on a laptop computer and then underwent a brain scan

including structural and functional Magnetic Resonance

Imaging (MRI).
2.2 Monetary incentive N-back task

We modified a prior task (9) by incorporating a n-back task to

examine the implicit effects of incentive valence, incentive

magnitude, and costs of temporal delay and cognitive effort on

cognitive performance.

The task was conducted in two sessions, in the order of 0-back

and 2-back. Each session comprised one positive and one negative

incentive run, and their order was counterbalanced across

participants. In positive incentive runs, participants earned

monetary rewards for successful completions and received no

reward for unsuccessful ones. Conversely, in negative incentive

runs, they avoided monetary losses for successful completions and

incurred losses for unsuccessful ones (Figure 1A).
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The task began with the presentation of a cue that indicated the

condition for the current task block. Participants then pressed a start

key to initiate the trial. Subsequently, four light bulbs were displayed,

one of which illuminated randomly and consecutively. Participants

were required to press a key corresponding to the currently illuminated

bulb for the first session (0-back), or the bulb lit two sequences prior for

the second session (2-back). Following the completion of 4 to 20 trials

in each n-back block, feedback of money earned/loss avoided after

successful performance, or no money earned/money lost after failed

performance was presented (Figure 1B).

The n-back blocks varied in task length (i.e., short or long trials)

and incentive magnitude (i.e., high or low). A single task run

comprised a randomized sequence of 20 n-back blocks (each with

a fixed incentive type and n-back task) and 5 null blocks (each

consisting of a single trial without any contingencies) (Figure 1C).

Participants received instructions on n-back task procedures and

were informed that the cue figure indicated the length of the task block

and the magnitude of potential monetary earnings or losses avoided for

successful completion. However, the specific task lengths and

contingencies assigned to each cue were not explained. Participants

were informed of the task load (i.e., 0-back or 2-back) at the beginning

of each session. A practice session was administered to ensure

participants comprehended and correctly executed the task.
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After completing the task, all participants filled out a cue

assessment questionnaire to ascertain the formation of subjective

cue values. The post-task cue assessment questionnaire had three

sections: subjective cue value assessment, cue preference within task

incentive valences, and cue preference between task incentive

valences. In the subjective cue value assessment, participants rated

the value of individual cues using a scale of 0 to 3,000 Korean Won,

in 500 Won increments. They were explicitly instructed to assign

these values subjectively, independent of the actual task values. For

cue preference within incentive valences, participants ranked each

of the 12 cue triplets from 1 to 3. Each triplet set had identical

incentive valence and included one null cue and all possible

incentive cue pairs. Cue preference between incentive valences

was assessed by participants selecting a preferred cue from

comparisons of reward and loss task cue pairs (16 pairs total).
2.3 Image data acquisition

The MRI data were obtained using a SIEMENS 3.0T scanner

(MAGNETOM Skyra, SIEMENS, Germany). High-resolution T1-

weighted images were acquired using a 3D magnetization prepared

rapid acquisition gradient echo (MP-RAGE) sequence with the
FIGURE 1

The schematic description of the monetary incentive N-back task. (A) The task was performed sequentially from a 0-back to a 2-back session. Each
session consisted of a reward (positive incentive) and a loss (negative incentive) run in a pseudo-randomly counterbalanced order across
participants. (B) A single task block consisted of a cue presentation, the n-back trials and performance feedback. (C) The cues indicated the
combination of task block conditions defined by 2 incentive valences (i.e., reward and loss), 2 incentive magnitudes as monetary value in South
Korean Won (KRW) (i.e., high and low), and 2 task lengths (i.e., short and long). Additionally, null conditions were denoted by 2 cues. The number of
blocks per cue is specified in brackets. Each condition comprised 5 n-back task blocks.
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following parameters: field of view = 256 mm, voxel size =

1.0×1.0×1.0 mm3, TR = 2300 ms, TE = 2.19 ms, flip angle = 9°.

Then functional MRI (fMRI) data were acquired using T2*-

weighted single-shot echo-planar imaging (EPI) sequence with

the following parameters: field of view = 195 mm, voxel size = 2.5

× 2.5 × 4.0 mm3, number of slices = 34, TR = 2000 ms, TE = 30 ms,

flip angle = 90°. Participants were instructed to keep their eyes fixed

at a projected crosshair and not think about anything, while being

scanned for 6 min 46 s.
2.4 Behavioral task data analysis

To differentiate the within-task block effects of incentive

magnitude and task length, mean accuracy rates were calculated

in two distinct ways. First, eight mean accuracy rates were

computed for each combination of N-back load, incentive

valence, and incentive magnitude, disregarding task length.

Second, mean accuracy rates for each combination of N-back

load, incentive valence, and task length were calculated,

disregarding incentive magnitude.

Since the distribution of the n-back task accuracy rates were

skewed due to ceiling effects, we conducted non-parametric tests.

For within-group comparisons of task performance between

conditions, Wilcoxon signed rank tests were applied separately

for the mean accuracy rates by incentive magnitude and task

length. The relationship of the accuracy rates with the BDI and

AES scores were examined by performing Spearman’s rank

correlation tests. A post-hoc analyses after excluding participants

with BDI score greater than 13 (i.e. mild to severe depression) was

conducted to clarify the conditional effects on performance

unconfounded by depression. Analyses results were considered

statistically significant at Bonferroni-corrected P < 0.05 (i.e. P × 8

for Wilcoxon tests; P × 16 for Spearman tests). Statistical tests of

accuracy were performed using R Statistical Software (v4.3.1; R

Foundation for Statistical Computing 2023).
2.5 The post-task cue assessment data
analyses

The cue preference rank score was defined as the average of each

cue’s rank-reversed scores derived from the within-incentive-valence

cue preference data. For the between-incentive-valence cue preference

data, relative cue preference was defined as the ratio of preferring

reward cues over loss cues. We calculated six distinct relative cue

preference ratios, each corresponding to specific combinations of

incentive magnitude and task length. These included the relative

preference for completely matched and mismatched reward over loss

(N→P [C], N→P [IC]), low reward over high loss and high reward

over low loss regardless of task length (N2→P1, N1→P2), and short

reward over long loss tasks and long reward over short loss tasks

regardless of incentive size (NL→PS, NS→PL). Scores ranged from 1

to 3, with higher scores indicating a greater preference for the cue.
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Wilcoxon one-sample tests were performed on the subjective

cue values to compare their median to the actual cue values. For the

cue preference rank scores, Wilcoxon signed-rank tests were

conducted to compare reward or loss cue scores of either

matched incentive magnitude or task length. The significance of

the relative cue preference ratio was assessed using Wilcoxon one-

sample tests. Additionally, Wilcoxon signed-rank tests were used to

investigate the effects of incentive magnitude and/or task length by

comparing matched to other unmatched relative cue preference

ratios. Wilcoxon signed-rank tests were considered statistically

significant at Bonferroni-corrected P < 0.05 (i.e. P × 2 for cue

preference rank scores; P × 5 for relative cue preference).
2.6 Computational model

We assumed that the intra-individual variability in the n-back

task performance is modulated by the task’s anticipated value. This

value is derived from a cost-benefit analysis that incorporates

incentive valence and magnitude, task duration, and cognitive

load. To capture these conditional components within a unified

value function, we integrated three distinct models: the loss aversion

model for accounting the different impact of monetary gains versus

avoided losses; the temporal difference learning model for learning

the reward magnitude and temporal delay associated with each cue;

and the effort discounting model, which accounted for cognitive

burden. Lastly, the softmax function was used to model

performance as determined by cognitive capacity.

Based on the prospect theory, outcomes of “gains” and “losses”

have different value functions (26, 27). When x is the amount of

reward, the value of the reward is determined by rho (r), the degree
of risk aversion, and lambda (L), the loss aversion factor, as follows.

l > 0

if x ≥ 0,    Va(x) = xr

if x < 0,    Va(x) =  −l · ( − x)r

We used the hyperbolic function for modeling cognitive effort

(28). At time t, the value is obtained by the reward amount (x),

discounting factor for cognitive effort (g) and the cognitive load (c).

Values for c was 0 for 0-back session and 2 for 2-back session. The g
values ranged between 0 and 1.

Vc(t) = x ·
1

(1 + g · c)

Then we assumed r = 1 for simplicity and combined the reward

and effort value functions by substituting the x in the cognitive effort

model with the reward value function, Va(x). Thus, the trial cue

stimulus value at n-back turn t (i.e., V(St)) is formulated as follows.

For positive incentive (i.e., x ≤ 0),

V(St) =  
Va(x)

(1 + g � c)
  =  

V(St−1)
(1 + g � c)
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For negative incentive (i.e., x > 0),

V(St) =  
Va(x)

(1 + g � c)
  =  

l ·  V(St−1)
(1 + g � c)

The cue stimulus value is further updated by reward received,

learning rate (a), and temporal discounting factor (k) by the

temporal difference learning model (29). The a and k values

ranged between 0 and 1.

 V 0(St)←V(St−1) + a � (r + (k � V(St)) − V(St−1))

Given prior reports of the differential impairments in reward

and punishment reinforcement and the reported abnormalities in

delay discounting in depression, we constructed two distinct

learning models (30, 31): one incorporating dual learning rate

factors (a1 and a2) and another featuring dual temporal

discounting factors (k1 and k2).
We assumed that the probability of correct response was

determined by the cognitive capacity (b) and the cue stimulus

value before receiving reward. The softmax function was modified

to incorporate 4 response choices so that random response would

result in a probability of 25% (i.e., when b = 0) as follows.

b > 0

P(St) =  
1

(1 + 3� e(−b ·V(St )))
2.7 Model fitting and comparison

Two models were compared; the dual learning rate model (2-

LR) and the dual temporal discounting model (2-TD) in which

separate learning rates and temporal discounting rates were

assigned for positive and negative incentive trials. (Supplementary

Methods S1 code for 2-TD & Supplementary Methods S2. code for

2-LR model).

We estimated the model parameters, identified individually

responsible models, and performed a group-level model

comparison using the hierarchical Bayesian inference (HBI;

https://payampiray.github.io/cbm) (32). First, each model was fit

to individual subject data using Laplace approximation. Then HBI

was conducted for parameter estimation and to generate model

frequency and protected exceedance probability. The estimate of

how much each model is expressed across the group (i.e., model

frequency) and the probability that each model is the most likely

across the group while considering differences between model

frequency arising by chance (i.e., protected exceedance

probability, Ppx) were computed. The model with higher Ppx was

selected for model validation.
2.8 Model validation

To validate the task model for clinical amotivation, we

performed a multiple linear regression to examine whether the
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parameters from the winning model (higher Ppx) can predict the

dependent variable representing clinical amotivation. First, a

Principal Component Analysis (PCA) was conducted to extract

the general component scores representing the overlapping clinical

construct of amotivation from the BDI and AES scores. Following

standardization (centering and scaling) of the BDI and AES scores,

PCA was performed on the correlation matrix. The amotivation

component was identified if a principal component met Kaiser’s

criterion (Eigenvalue > 1) and contributed to a cumulative

proportion of variance of at least 80%. For interpretability, only

BDI and AES scores with positive loadings on this component

were considered.

Then, we used the amotivation component scores (ACS) as the

dependent variable and the five parameters (excluding beta, the

cognitive capacity factor) from the winning model in an Ordinary

Least Squares (OLS) Linear Regression. The model equation for the

regression included ACS for the i-th individual(yi), intercept (b0),
regression coefficients for the winning model parameters (b1~5i),
values for the winning model parameters(x1~5i), and the error term

or residual (∈i) is as follows.

yi =   b0 +   b1 · x1i +   b2 · x2i +   b3 · x3i +   b4 · x4i +   b5 · x5i + Єi

All model validation procedures were conducted using R

Statistical Software (v4.3.1; R Foundation for Statistical

Computing, 2023). PCA was performed using the prcomp

function, and OLS linear regression was carried out using the lm

function. To address potential heteroscedasticity, robust standard

errors were calculated using the HC3 estimator, implemented via

the coeftest function (from the lmtest package) in conjunction with

the vcovHC function (from the sandwich package).
2.9 Image data analysis

Preprocessing and functional connectivity analysis of the fMRI

data were conducted using the CONN toolbox (conn v.21.a, http://

www.nitrc.org/projects/conn, RRID: SCR: 006394) and SPM12

(RRID: SCR:007037) procedures. Realignment and unwarp

procedures were conducted in which all scans were coregistered

and resampled to the first scan as a reference image to adjust head

motion and match the deformation field. Next, slice-timing

differences were corrected, and outlier scans were identified.

Functional and anatomical data were normalized into standard

MNI space and segmented into grey matter, white matter, and CSF

tissue classes. Lastly, functional data was spatially smoothed by

convolution with a 6 mm full-width-at-half-maximum

Gaussian kernel.

In the denoising step, an anatomical component-based noise

correction method (aCompCor) was implemented to regress out

noise components from the white matter and cerebrospinal fluid

areas, estimated subject-motion parameters, identified outlier scans

and quality assurance metrics. Then despiking was conducted to

remove artificially high signals and temporal band-pass filter at

0.001~0.1Hz was applied to specifically focus on slow-frequency

fluctuations. Subsequently, seed-to-whole brain (seed-to-voxel)
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correlation maps were computed using seeds in the anterior insular

cortex (AIC) selected from the salience network defined by CONN’s

independent component analyses of the Human Connectome

Project dataset. Additionally, the nucleus accumbens (NAc),

defined by the Harvard-Oxford atlas and generated using FSLeyes

(https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes), was also used as a seed

in the first-level analyses.

In the 2nd-level analyses, regression analyses with each model

parameter as covariate across all subjects were conducted examining

the seed-to-voxel functional connectivity arising from the four seeds in

the bilateral AIC and the NAc. First, F-tests were conducted to find

any effects among the four seeds of interest. Then, post-hoc T-tests

were performed to specify the seed that was the main contributor to

the F-test results. Results were considered statistically significant with

cluster threshold at False Discovery Rate-corrected P (FDR-P) < 0.05

and voxel threshold at uncorrected-P < 0.001 using random field

theory parametric statistics.
3 Results

Thirty-one females and twelve males with a mean age of 37.0

years (range 21~65, SD = 15.4) completed the study. The

participants’ depression severity by BDI scores ranged from

minimum to severe (0~33) with a mean score of 10.6 (SD = 9.3)

and 12 participants (27.9%) were mildly to severely depressed

(BDI > 13). The mean AES score was 34.9 (SD=6.26) and only

two participants (4.7%) showed AES score greater than the Korean

cutoff values of 45.2 (Table 1).
3.1 Task accuracy

The 2-back task showed a significantly higher overall accuracy

rate compared to the 0-back task, with median rates of 0.983 (IQR =

0.020) and 0.985 (IQR = 0.022), respectively (V=175, P=0.0016).

Specifically, no accuracy rate differences by N-back load or

incentive valence were found in low and high incentive trials

(Figure 2A). However, greater 2-back than 0-back task accuracy

rates were observed only with positively reinforced longer trials

(V=202, Bonferroni-corrected P=0.0250, Cohen’s d=-0.357)

(Figure 2B). When analysis was restricted to individuals with no

or minimum depression (n=31), the accuracy rates of the 2-back

task were greater than that of the 0-back task in positive incentive

trials with higher reward or longer trials (V=56, Bonferroni-

corrected P=0.0115, Cohen’s d=-0.572; V=43, Bonferroni-

corrected P=0.0008, Cohen’s d=-0.761) (Figures 3A, B).

Furthermore, accuracy was higher in 2-back trials featuring

positive incentives of higher magnitude, in contrast to trials

involving negative incentives (V=349.5, Bonferroni-corrected

P=0.0353, Cohen’s d=0.481). Conversely, accuracy was lower in

long 0-back trials under conditions of positive incentives compared

to negative incentives (V=72.5, Bonferroni-corrected P=0.0424,

Cohen’s d=-0.522) (Figures 3A, B).
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BDI scores were significantly associated with accuracy rates in

the 2-back task involving positive incentives of high magnitude,

showing a moderate effect size (Figure 4A). Conversely, AES scores

correlated with accuracy rates in the 0-back task with negative

incentives of high magnitude, showing a moderate effect size

(Figure 4B). AUDIT scores did not correlate with any of the task

accuracy rates.
3.2 Post-task cue valuation and preference

The subjective cue values exhibited a distribution symmetric

around their actual incentive magnitude only when reward and loss

cues were associated with short trials and low incentive magnitudes

(P1S, V = 207, P = 0.421; N1S, V = 246, P = 0.165); in all other

conditions, a significant difference in distribution was observed

(P0N, V = 190, P < 0.001; P2S, V = 30, P < 0.001; P1L, V = 313, P =

0.003; P2L, V = 49, P < 0.001; N0N, V = 276, P < 0.001; N2S, V = 26,

P < 0.001; N1L, V = 222, P = 0.038; N2L, V = 44, P <

0.001) (Figure 5).

Among the reward cues, preference scores were significantly

higher for cues associated with shorter trials delivering high rewards

(P2S > P2L) and long trials offering lower rewards (P1L > P2L).

Conversely, for loss incentive cues, higher preference scores were

observed for cues representing short trials with lower losses (N1S >

N2S), shorter trials incurring low losses (N1S > N1L), and shorter

trials with high losses (N2S > N2L) (Figure 6).
TABLE 1 Sociodemographic and clinical characteristics in all
participants (n=43).

Characteristics Number (%) or Mean

Gender
: Female/Male

31/12
(72.1%/27.9%)

Age 37.0 ± 15.4 [21~65]

Years of Education 14.9 ± 2.1 [9~18.5]

Smoking
: Non-smoker/Stop
smoking/Smoking

38/3/2

(88.4%/7%/4.7%)

AUDIT 4.37 ± 3.57 [0~14]

Low risk (0~7)
Medium risk (8~15)
High risk (16~19)
Addiction likely (20~40)

34 (79.1%)
9 (20.9%)

0
0

BDI 10.6 ± 9.3 [0~33]

Minimum (0~13)
Mild (14~19)
Moderate (20~28)
Severe (29~63)

31 (72.1%)
5 (11.6%)
3 (7.0%)
4 (9.3%)

AES 34.9 ± 6.3 [24~49]

Korean Cutoff (>45.21) 2 (4.7%)
mean ± standard deviation, (%), [range] are presented.
AUDIT, Alcohol Use Disorder Identification Test; BDI, Beck Depressive Inventory; AES,
Apathy Evaluation Scale.
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Overall cues associated with reward incentives were

significantly preferred over those with loss incentives regardless of

incentive magnitudes and task lengths with the exception when the

task was shorter in loss cues than in reward cues (N→P [C], V =

629, P < 0.001; N→P [IC], V = 280, P = 0.001; N2→P1, V = 609, P <

0.001; N1→P2, V = 464, P = 0.034; NL→PS, V = 693, P < 0.001;

NS→PL, V = 402, P = 0.437). The distribution of reward-over-loss

cue preference became significantly less skewed toward reward

when incentive magnitudes and task lengths were mismatched,

when incentive magnitude was lower in loss than reward cues and

when task lengths were shorter in loss than reward cues (Figure 7).
3.3 Model comparison

The two-temporal discounting (2-TD) model was the most likely

model across the group as compared to the two-learning rate (2-LR)

model (Ppx = 1 for 2-TD model and Ppx = 3.387 � 10–12 for 2-LR

model; model frequency 97.67% in 2-TD and 2.33% in 2-LR). The

estimated responsibility and the log evidence of each model generated

in each individual dataset are shown in Supplementary Table 1. The

median value of the parameter estimates from the two-temporal

discounting model are presented in Supplementary Table 2.
3.4 Model validation: OLS linear regression
for amotivation component score

The PCA revealed two principal components (PC). PC1

accounted for 81.0% of the total variance with an Eigenvalue

greater than 1, while PC2 accounted for 19.0% of the total

variance. Together, these two components explained 100% of the
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total variance in the BDI and AES scores. PC1 showed strong

positive loading from both BDI (0.707) and AES (0.707) suggesting

that this component represents a general construct related to both

depression and apathy severity. PC2, on the other hand, showed a

positive loading for BDI and negative loading for AES, indicating a

discordant component. Therefore, PC1 was identified as the

amotivation component score (ACS) for the regression

analysis (Table 2).

The full regression model was statistically significant (F(5,37) =

3.108, P < 0.05), indicating that the alpha, lambda, gamma, kappa1,

kappa2 parameters collectively explain a significant portion of the

variance in the ACS. Moreover, 20% of the variance in the ACS

could be accounted for by the five independent variables in the

model (Adjusted R2 = 0.201). Among the five independent

variables, only gamma (cognitive effort discounting factor)

emerged as a statistically significant predictor of the ACS by an

increasing it by 0.45 standard deviations, holding other variables

constant (b* = 0.451, robust SE = 0.806, T = 2.685, P <

0.05) (Table 3).
3.5 Functional connectivity

Multivariate analyses (F-tests) revealed that the seed-to-voxel

functional connectivity originating from the AIC and NAc covaried

with alpha, lambda, and gamma parameters. Specifically, the

learning factor (alpha) covaried functional connectivity to the

posterior lobe of the cerebellum and the cuneal cortex extending

to the occipital pole. The loss aversion factor (lambda) showed

covariance with functional connectivity to the right posterior

superior temporal gyrus, the juxtapositional lobule cortex (or

supplementary motor area), the central opercular cortex, and the
FIGURE 2

Accuracy rates of the monetary incentive n-back task in all participants. Accuracy rates are compared by N-back and incentive valence in low and
high magnitude conditions (A) and in short and long task length conditions (B). P, positive incentive (reward); N, negative incentive (loss); Bonferroni-
corrected *P <0.05.
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precentral gyrus. Furthermore, the cognitive effort discounting

factor (gamma) covaried with functional connectivity to the

anterior mid-cingulate cortex. In contrast, the cognitive capacity

(beta) and temporal discounting factors (kappa1 and kappa2) did

not exhibit any significant effects (Table 4).

The post-hoc t-tests revealed that the learning rate factor (alpha)

positively correlated with functional connectivity between the right

NAc and the posterior lobe of the cerebellum (Figure 8A). In

contrast, the loss aversion factor (lambda) negatively covaried

with functional connectivity between the right AIC and the right

posterior superior temporal gyrus (Figure 8B). The cognitive effort

discounting factor (gamma) also showed a negative correlation with

functional connectivity between the left AIC and the anterior mid-

cingulate cortex (aMCC) (Figure 8C).

The AUDIT score did not show significant effect on the

functional connectivity originating from the seeds of interest.
4 Discussion

We initially established the validity of the monetary incentive n-

back task in differentiating the interactive effects of incentive

valence and magnitude, task length, and cognitive load. Task

trials with greater cognitive load exhibited enhanced performance

when reinforced with higher positive incentives or during longer

tasks. The divergent performance outcomes observed with positive

and negative incentives were mediated by the incentive magnitude

and the task length. The conditional effects became evident only

after individuals with depression were excluded from the behavioral

data. Additionally, the formation of subjective cue values through

task performance was evident in the varied cue preference across

both reward and loss tasks and the reduced reward-over-loss cue
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preference linked to incentive magnitude and task length.

Subsequently, we demonstrated that a computational model

incorporating temporal difference learning, loss aversion,

cognitive effort discounting and dual temporal discounting factors

accounted for the variability in the n-back task performance across

conditions of incentive valence, incentive magnitude, task length,

and cognitive load. Finally, among the model parameters, the

cognitive effort discounting factor accounted for the variance in

clinical amotivation severity as hypothesized. Moreover, in partial

support of the model’s neural underpinnings, learning rate, loss

aversion, and cognitive effort discounting were associated with

distinct neural networks originating in the NAc and AIC.

The effort-based decision-making paradigm has been employed to

neurobehaviorally operationalize motivation. Previous research

examining the influence of reward and effort values on preferences

has demonstrated an association between depression and reduced

willingness to exert effort for reward, consistent with anticipatory

anhedonia (20, 33, 34). Moreover, a recent study suggests that

expenditure of effort and reward sensitivity may be independently

linked to anhedonia (35). Computational modeling studies have

revealed that elevated sensitivity to effort cost is associated with

depression across preference, performance, and learning tasks, with

individuals with major depressive disorder exhibiting a steeper

discounting of rewards in response to cognitive effort (36, 37).

While these studies explicitly assessed willingness to exert effort

through choice-based paradigms, our investigation examined the

implicit impact of reward and effort on cognitive performance,

yielding congruent yet extended findings. Specifically, the cognitive

effort discounting factor, within the valuation process affecting

cognitive performance variability, emerged as the key correlate of

amotivation, as opposed to the loss aversion, learning or temporal

discounting factors. These results indicate that the detrimental effects
FIGURE 3

Accuracy rates of the monetary incentive N-back task in individuals with no or minimal depression. Accuracy rates are compared by N-back and
incentive valence in low and high magnitude conditions (A) and in short and long task block length conditions (B). P, positive incentive (reward);
N, negative incentive (loss); Bonferroni-corrected *P <0.05, **P<0.001.
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of heightened effort devaluation extend beyond decision-making to

influence behavioral performance, potentially contributing to the

concentration difficulties observed in depression.

The observed functional connectivity patterns associated with

loss aversion and learning rate align with previous research

findings. The loss aversion-related functional connectivity

centered on the AIC corroborates prior studies implicating the

AIC in aversive conditioning and decisions to avoid imminent loss

(38, 39). Given the established role of the right posterior superior

temporal gyrus (pSTG) in serial visual feature search and object

identification involving complex goal-directed movement (40, 41),

the AIns-right pSTG connectivity likely reflects the process of

assigning or identifying aversive value from visual cue features.

Learning rate, a critical parameter in reinforcement learning

models, has been extensively linked to prediction error. Previous
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animal and human studies have demonstrated that learning rate

modulates reward prediction error signals originating from midbrain

dopaminergic projections to the NAc (42–44). Notably, our findings

revealed learning rate-associated NAc connectivity to the cerebellum.

Prior clinical and animal research has established the cerebellum’s role

in reward-based reversal learning and its influence over reward

circuitry via projections to the ventral tegmental area (45, 46).

Furthermore, the cerebellum has been implicated in indirectly

affecting reinforcement learning by reducing motor noise (47).

Considering the cerebellum’s established role in reward learning, we

hypothesize that it may regulate the extent to which dopaminergic

prediction error signals in the NAc contribute to updating previously

acquired value representations.

Regarding cost valuation, we demonstrated distinct functional

neural correlates for cognitive effort discounting in the AIC, while

those for temporal discounting were not observed. Previous studies

indicate partially separate valuation networks for delay and effort

costs, including the ventromedial prefrontal cortex, ventral

striatum, posterior cingulate cortex, and lateral parietal cortex for

delayed reward valuation, the AIC and anterior cingulate cortex

(ACC) for effort valuation, and the right orbitofrontal cortex and

lateral temporal and parietal cortices for encoding the value of

chosen options related to delay and effort discounting (16, 48). The

lack of observed neural correlates for temporal discounting may be

due to the limitations of resting-state functional connectivity in

capturing the temporal variability required for valuation. Task-

activated imaging data might be more suitable for examining the

neural correlates of temporal discounting.

Our model-based analysis revealed the role of the left AIC and

aMCC network in modulating cognitive effort valuation, a finding

that is partially consistent with prior studies. Previous research

demonstrated the role of AIC and ACC in decision-making based

on effortful reward, distinct from effects of reward delays (16, 49).

While prior studies primarily investigated physical effort, Aben

et al. (50) established the dorsal ACC’s involvement in processing

cognitive effort demands through its connectivity with task-specific

cortical regions. The adjacent aMCC is also functionally connected

to the AIC, as demonstrated during both resting and task

performance, and is associated with cognitive-motor control (51).

Moreover, Touroutoglou et al. (52) have suggested the aMCC’s role

in motivation by predicting energy needs and guiding behavior

toward allostatic energy balance. We observed activity in the aMCC

instead of more rostral ACC regions because our task primarily

required motor execution and cognitive control and did not elicit

conflict or incorporate decision-making. Our results expand on

prior findings by linking AIC-aMCC connectivity to cognitive effort

discounting and its impact on performance variability. This

association reflects the implicit influence of effort valuation in

cognitive processing.

Furthermore, our results showing the effects of effort discounting

on incentive valence has been underexplored. Notably, Hernandez

Lallement et al. (18) showed that cost-benefit valuation may engage

distinct neural networks for gains and losses. They found that the AIC

activity is significantly modulated by loss magnitude when effort is

involved. Our observations of the AIC functional connectivity related
FIGURE 4

Scatter plots with the trend fitted lines (i.e. grey solid lines) using
locally estimated scatterplot smoothing showing the association of
the accuracy of the 2-back task with the Beck Depression Inventory
(BDI) and Apathy Evaluation Scale (AES) scores. The transformed (i.e.
square root, sqrt) accuracy values of the 2-back task blocks with high
reward (positive incentive) magnitudes (A), and high loss (negative
incentive) magnitude (B) are presented for better visualization.
(A) Spearman’s rho = -0.460, Bonferroni-corrected P = 0.031;
(B) Spearman’s rho = -0.457, Bonferroni-corrected P = 0.033.
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to loss aversion and effort discounting are consistent with and extend

their findings.

Notably, we observed laterality in the right and left anterior

insular cortex (AIC) differentially associated with loss aversion and

cognitive effort discounting, respectively. Lateralized engagement of

the AIC has been observed in different aspects of loss aversions in

prior studies. Specifically, a right dominance was observed for

aversive salience (53, 54), while bilateral or left-lateralized

activation was found in learning-related risk prediction errors

(55–57). Therefore, our observed association between resting-state
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functional connectivity in the right AIC and loss aversion aligns

with the AIC’s role in saliency processing.is congruent with its role

in the salience component of loss aversion.

Conversely, the left lateralization of the AIC in cognitive

discounting observed in our study contrasts with some prior

studies reporting right AIC activation related to expected effort

cost, effort prediction during probabilistic learning, and the

valuation of prospective effort (58, 59). However, this finding may

reflect a resting-state network involved in the subjective experience

of task demand, consistent with prior studies reporting left AIC
FIGURE 6

The boxplots of the reward (P) and loss (N) cue preference rank scores. P0N/N0N, null cues; P1S/N1S/P1L/N1L, 1000 KRW incentive cues; P2S/N2S/
P2L/N2L, 2000 KRW incentive cues; P1S/N1S/P2S/N2S, short task cues; P1L/N1L/P2L/N2L, long task cues. Significant difference was observed in
P1L > P2L (V = 604), P2S > P2L (V=511), N1S > N2S, (V=631), N1S > N1L (V=782) and N2S > N2L (V=708). Bonferroni-corrected P < *0.05,
**0.01, ***0.001.
FIGURE 5

The boxplots of the reward (P) and loss (N) cue subjective values in Korean Won (KRW). P0N/N0N, null cues; P1S/N1S/P1L/N1L, 1000 KRW incentive
cues; P2S/N2S/P2L/N2L, 2000 KRW incentive cues; P1S/N1S/P2S/N2S, short task cues; P1L/N1L/P2L/N2L, long task cues.
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activation during self-evaluation of mental effort investment

modulated by task demands (60).

Crucially, we were able to demonstrate the relationship between

baseline AIC-aMCC connectivity and amotivaton-related tendency

to discount cognitive effort during a working memory task using

model-based analysis. These results implicate the AIC-aMCC

network as a potential pathophysiological mechanism underlying

concentration difficulties in depression. Our findings therefore

imply that enhancing baseline salience network function,

particularly concerning cognitive effort valuation, could be a

promising therapeutic target for depressive disorders.

A key limitation of this study is the overall small sample size. Given

the number of parameters included in our computational and

regression models, small sample size could decrease the statistical

power of our analyses and increase the potential for overfitting,

which might affect the generalizability of our findings. Another

limitation is the absence of task-based fMRI data to match and

confirm that the functional connectivities demonstrated by model-

based analyses are the brain regional network recruited during task

performance. Lastly, the inclusion of nine medium-risk drinkers in our

sample could introduce confounding effects on the behavioral and

neural results. Prior studies report that severe alcohol use can diminish

neural capacity in working memory task performance and affect

resting-state neural networks (61, 62). However, we did not observe

any correlations between AUDIT scores and either task accuracy rates

or resting-state functional connectivity within our sample.

In conclusion, we found that among components of cost-benefit

analysis in cognitive performance, devaluation of effort, involving the

AIC-aMCC network, may underly a general mechanism of amotivation.

We demonstrated that a computational model of temporal difference

learning and value discounting is feasible for examining the implicit

behavioral effect of cost-benefit analysis and identifying the subconstruct

behind amotivation. Furthermore, our results suggest that interventions

targeting the salience network to modulate effort valuation as a potential

therapy for treating amotivation. To validate the applicability of this

model and to establish the pathophysiological role of these findings in

depressive disorders, larger-scale studies are required for cross-

validation and comparison between individuals with major depressive

disorder and healthy controls.
FIGURE 7

The boxplots of relative cue preference for reward (P) than loss (N)
cues. [C]/[IC], compatible/incompatible cues with matched/
mismatched incentive magnitudes and task lengths; P1/N1, 1000
Korean Won; P2/N2, 2000 Korean Won; PL/NL, long trials; PS/NS,
short trials. Significant differences from N→P[C] were observed in
N→P[IC] (V = 189), N1→P2 (V = 219), and NS→PL (V = 288).
Bonferroni-corrected P < *0.05, **0.001.
TABLE 2 Result of the principal component (PC) analysis for beck
depression Inventory (BDI) and apathy evaluation scale (AES) scores.

Statistics PC1 PC2

Eigenvalue 1.620* 0.380

Proportion of variance 0.810 0.190

Cumulative proportion 0.810 1.000

BDI loading 0.707 0.707

AES loading 0.707 -0.707
*Kaiser’s criterion: Eigenvalue > 1.
TABLE 3 The ordinary least squares linear regression results for the principal component score of the beck depression scale and apathy
evaluation scale.

Independent variable
Regression

coefficient b̂
Robust

standard error
Standardized regression

coefficient b* T (P)

Intercept -1.294 1.709 -5.188 × 10-17 -0.757 (0.454)

Alpha (learning rate) -1.107 3.052 -0.058 -0.363 (0.719)

Lambda (loss aversion) -0.830 1.262 -0.142 -0.658 (0.515)

Gamma (cognitive effort discount) 2.165 0.806 0.451 2.687 (0.011)*

kappa1 (PR temporal discount) 1.583 1.047 0.227 1.513 (0.139)

kappa2 (NR temporal discount -0.306 1.396 -0.045 -0.219 (0.828)
PR, positive reinforcement; NR, negative reinforcement.
Model fit statistics (N=43): Adjusted R2 = 0.201, F (5,37) = 3.108, P = 0.02.
*Significance level at P < 0.05.
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FIGURE 8

The seed-to-voxel functional connectivities with model parameter effects and their effect size. Cluster with significant effect from the T-tests of
specific seed of interest including the bilateral anterior cingulate cortex (AIC) and nucleus accubmens (NAc) at cluster level False Discovery Rate-
corrected P < 0.05 and voxel level uncorrected P < 0.001 are shown. The effect sizes as Fisher transformed correlation coefficient and their error
bars representing 90% confidence intervals are presented. *The bar graphs representing the statistically significant effect size [(A) size = 131, T(41) =
6.12; (B) size = 272, T(41) = -6.08; (C) size = 97, T(41) = -4.73].
TABLE 4 The seed-to-voxel functional connectivity analysis results of the model parameter effects.

Model parameter Clusters
Coordinate
(x, y, z)

F (4, 38) Size
Size

P-FDR
Peak

P-uncorrected

Alpha Cerebellum, posterior
lobe (crus2)

38, -68, -50 6.75 80 0.00986 <0.00001

Cuneal Cortex-Occipital Pole -10, -88, 22 7.87 316 <0.00001 <0.00001

Beta NSC

Lambda Posterior Superior
Temporal Gyrus

50, -14, 8 11.72 161 0.00022 0.00002

Juxtapositional Lobule
Cortex (SMA)

6, -4, 54 9.81 141 0.00033 0.00005

Central Opercular Cortex 52, 2, 6 9.27 113 0.00106 0.00002

Precentral Gyrus 2, -18, 52 7.05 54 0.03910 0.00004

Kappa1 NSC

Kappa2 NSC

Gamma Anterior Mid-Cingulate Cortex 4, 16, 30 5.52 103 0.006652 0.00002
F
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Clusters showing significant model parameter effect on functional connectivity originating from any of the four seeds in the bilateral anterior insular cortex and nucleus accumbens are shown.
Cluster size threshold of P-False Discovery Rate (FDR) corrected < 0.05 and peak threshold of uncorrected-P < 0.001 are considered statistically significant.
NSC, no significant clusters; SMA, supplementary motor area.
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