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Depression is a common mental health issue, and early detection is crucial for

timely intervention. This study proposes an end-to-end EEG-based depression

recognition model, AMCCBDep, which combines Attention-based Multi-scale

Parallel Convolution (AMPC), Conformer, and Bidirectional Gated Recurrent Unit

(BiGRU). The AMPC module captures temporal features through multiscale

convolutions and extracts spatial features using depthwise separable

convolutions, while applying the ECA attention mechanism to weigh key

channels, enhancing the model’s focus on crucial electrode channels. The

Conformer module further captures both global and local temporal

dependencies in EEG signals to ensure the capture of long-range

dependencies and local patterns. The BiGRU module improves the model’s

ability to recognize depressive states by utilizing bidirectional modeling. We

used the 128-channel resting-state EEG signals from the MODMA dataset, which

includes data from 24 depression patients (13 males, 11 females, aged 16 to 56)

and 29 healthy individuals (20 males, 9 females, aged 18 to 55). Experimental

results show that the AMCCBDep model achieved an accuracy of 98.68% ±

0.45% on the MODMA dataset. The model evaluation results for both 128-

channel and 16-channel configurations demonstrate that reducing the number

of electrodes has a minimal impact on performance, suggesting that electrode

reduction could be considered in practical applications. This model showcases

strong potential in advancing depression detection in neuroscience, providing an

efficient and scalable solution for clinical and practical applications. Future

research will further optimize model performance and explore the impact of

reducing the number of electrodes on clinical practice.
KEYWORDS

depression detection, electroencephalography (EEG), attention, deep learning
(DL), AMCCBDep
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1 Introduction

Depression is a severe mental disorder characterized by

persistent sadness, hopelessness, and a lack of interest in most

activities, along with changes in sleep, appetite, and difficulty

concentrating, as defined by the Diagnostic and Statistical Manual

of Mental Disorders, Fourth Edition (DSM-V). It often coexists

with anxiety disorders, substance use disorders, and physical health

issues like cardiovascular diseases (1). The World Health

Organization (WHO) predicts that by 2030, depression could

become the leading cause of non-natural deaths globally (2).

Therefore, early detection and diagnosis of depression are crucial.

However, existing clinical diagnostic methods encounter issues such

as susceptibility to misdiagnosis, subjective denial, and low

sensitivity (3). Therefore, there is a critical need for a simple,

precise, and dependable approach to aid clinicians in

diagnosing depression.

The identification of depression primarily relies on scales and

interviews, with the final diagnosis typically based on the subjective

judgment of experienced psychiatrists. However, there is currently a

lack of effective and objective assessment criteria for depression in

clinical practice (4). In recent years, with the advancement of

science, technology, and healthcare in China, neuroimaging

technologies such as electroencephalography (EEG) have seen

increasing application in depression research. Compared to other

technologies, EEG can capture neural electrical activity in the brain

with millisecond temporal resolution, offering high reliability and

low cost (5). However, EEG signals have relatively low spatial

resolution, which limits their application in capturing detailed

brain activity. Additionally, other imaging technologies such as

computed tomography (CT) (6) and magnetic resonance imaging

(MRI) are also widely used in the diagnosis of acute neurological

disorders. CT provides higher spatial resolution, while methods like

functional MRI (fMRI) can improve diagnostic accuracy by

extracting nonlinear factor matrices from data using deep

learning techniques such as Deep CSAF (7) and HB-DFL (8),

without relying on prior knowledge (9). The Deep WTFAF model

has also been proposed, which enhances the key features of fMRI

data through a time-frequency attention module, offering new

perspectives for neuroimaging analysis.

Additionally, EEG technology has been widely applied in the

diagnosis of other psychiatric disorders, particularly in depression

research. Alaei et al. (10) employed EEG source reconstruction and

graph theory-based directed brain network analysis to investigate

the differences between anxious depression and non-anxious

depression patients. They found significant differences in brain

network connectivity strength and betweenness centrality in

anxious depression patients. These findings provide new

directions for the subtyping of depression. Aydın et al. (11)

studied the brain network indices in boys with ADHD-C and

found that long-term medication treatment significantly

improved brain functional connectivity, particularly in increasing

the brain’s segregation and resilience. This study offers new insights

into the application of EEG in childhood psychiatric disorders.

Knott et al. (12) revealed abnormalities in interhemispheric
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synchrony and asymmetry in the brains of depression patients.

These findings provide important biological markers for

understanding the EEG characteristics of male depression.

The progress of artificial intelligence has enabled automated

solutions for diagnosing mental disorders (13). In the area of brain-

computer interfaces, brainwave signal feature extraction networks

are progressively evolving to deeper levels and are applied to tasks

such as motor imagery, sleep staging, and emotion recognition, with

depression recognition being no exception. In recent years, with

advancements in deep learning for computation, this technology

has become increasingly popular in the field of depression

recognition and has been widely applied. For example, Su et al.

(14) introduced the 3DMKDR model, which enhances depression

recognition accuracy by transforming EEG signals into three-

dimensional structures and utilizing multi-scale convolution

kernels. Chen et al. (15) introduced LG-GCN, a graph

convolutional network that combines local and global graph

representations. Through multi-graph fusion and information

enhancement modules, it improves the spatial feature extraction

capabilities of EEG data. Zhang et al. (16) proposed a spatial-

temporal EEG fusion method based on neural networks for

depression detection, using LSTM to extract time-domain

features, constructing brain functional networks with PLI, and

extracting spatial-domain features via 2D CNN, followed by

feature fusion. Since EEG signals are one-dimensional, extending

them into three-dimensional or four-dimensional space for feature

extraction in the aforementioned methods may lead to overfitting

and excessively long training times. Additionally, multi-scale

information is crucial for EEG signals, as many physiological

components operate on different time scales (17, 18), yet most

existing depression recognition methods do not focus on this

aspect. The concept of Transformer is considered one of the most

powerful concepts in deep learning today, and it is also widely

applied in EEG classification. Wang et al. (19) proposed a

Transformer-based model, which enhances the ability to capture

global dependencies in EEG by integrating information at the

electrode and brain region levels while emphasizing key brain

regions, although it overlooks the importance of local features.

Furthermore, RNNs have been widely used in EEG analysis due to

their excellent time-series data processing capabilities. For example,

in recent research, Luo et al. (20) combined graph neural networks

(GNN) and gated recurrent units (GRU) to capture the

spatiotemporal dependencies of brain networks and introduced a

distance-based universal graph adjacency matrix and a learnable

correlation matrix to model individual brain network differences.

To tackle the previously mentioned challenges and inspirations,

this paper introduces a hybrid model for depression recognition,

which combines Attention-based Multi-Scale Parallel Convolution

(AMPC), Conformer, and Bidirectional Gated Recurrent Units

(BiGRU). The AMPC module extracts rich time-frequency

features from different dimensions through multi-scale

convolution and the ECA mechanism. The Conformer module

combines self-attention and convolution, enabling the model to

capture long-range global dependencies while also processing local

time-series features. The BiGRU module uses a bidirectional
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recurrent neural network to capture bidirectional dependencies

along the time dimension, enhancing the model’s capacity to

represent time-series data. The main contributions of this paper

are summarized as follows:
Fron
• Firstly, a hybrid model based on attention-based multi-scale

Parallel convolution is proposed, which also incorporates

the Conformer encoder and Bidirectional Gated Recurrent

Units (BiGRU) to handle the feature extraction and

classification of EEGsignals in a seamless, end-to-

end process.

• Secondly, by extracting features from multiple scales and

utilizing attention to adaptively focus on key channels, the

model’s feature representation ability and computational

efficiency are enhanced, effectively improving the accuracy

and robustness in processing complex data.

• Finally, results from experiments on the MODMA public

dataset show that the proposed model excels in

classification accuracy and F1 score. Additionally, ablation

studies confirm the model’s effectiveness.
The structure of the rest of the paper is as follows. Section 2

describes the materials and methods. The experimental results are

presented in Section 3. Section 4 provides a discussion of the

proposed method. Finally, Section 5 concludes the paper.
2 Materials and methods

2.1 Dataset

The EEG data used in this study includes 128-channel resting-

state signals from the MODMA dataset, a multimodal open resource

designed for mental disorder analysis (21, 22). This dataset includes

24 patients with depression (13 males and 11 females, aged 16 to 56)

and 29 healthy individuals (20 males and 9 females, aged 18 to 55).

EEG data were recorded while participants were awake with their

eyes closed, seated in a quiet, soundproof, and well-ventilated room,

maintaining a stationary position without any head or limb

movement and without unnecessary eye movements (e.g., scanning,

blinking, etc.). Data collection was carried out using the Net Station

software and the HydroCel Geodesic Sensor Net (HCGSN) (Electrical

Geodesics Inc., Oregon Eugene, USA), version 4.5.4. The sampling

frequency was set at 250 Hz, with the Cz electrode as the reference

point, and approximately 5 minutes of EEG signal data was recorded

for each participant. All participating patients with depression met

the diagnostic standards for depression as defined by the Diagnostic

and Statistical Manual of Mental Disorders, Fourth Edition (DSM-

IV) (23).
2.2 Preprocessing

Due to the high sensitivity of EEG signals to external

environments and other physiological signals within the body,
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their raw data is often subjected to various types of interference

before processing. To resolve this problem, we applied a set of

preprocessing steps to the EEG data. Inspired by previous work

(24), Firstly, considering both time efficiency and computational

cost, this study selected 16 electrodes (Fp1/2, F3/4, C3/4, P3/4, O1/

2, F7/8, T3/4, T5/6) from the original 128 electrodes. Previous

studies have demonstrated the feasibility of using these electrodes to

identify depressive states. Akar et al. (25) emphasized the

significance of the frontal and parietal regions in emotion

regulation and cognitive control. Abnormal activity in these

regions is frequently observed in depression, making them highly

suitable for detecting depression-related EEG signals. The 16

selected electrodes cover key brain areas involved in emotional

processing, cognitive control, and self-regulation. Li et al. (26)

found that EEG signals from the parietal and frontal regions are

crucial for detecting mild depression, and that these regions

enhance classification accuracy. These areas are essential for

cognition and emotional regulation, and selecting electrodes from

these regions is supported by solid evidence. Sun et al. (27)

highlighted the importance of functional connectivity features,

such as the Phase Lag Index (PLI), in depression recognition,

particularly intrahemispheric connections. The selected electrodes

(e.g., F3, F7, T3) are located in these critical brain regions and

capture functional connectivity data that may reveal significant

differences in brain activity associated with depression. According

to Aydın et al. (28), emotion regulation is linked to spectral

coherence in EEG signals, with the frontal and parietal regions

playing a central role. Thus, we selected electrodes from these

regions, including the frontal (F) and parietal (P) regions, as well

as the occipital (O) region. These brain areas are integral to

emotional processing and are often dysregulated in individuals

with depression, making them highly relevant for our analysis.

Next, a notch filter was used to remove 50Hz power line

interference, and a band-pass FIR filter was applied to preserve

the frequency range between 1Hz and 40Hz. Following that, the

EEG data was divided into 4-second windows, with a 75 % overlap

between adjacent windows (29). Fourth, the automatic artifact

rejection algorithm Autoreject (30) was used to generate cleaner

EEG data. Fifth, normalization was performed on the data, which

was processed using a functional normalization method before

entering the network structure, as shown in Equation 1:

z =
Xi,j − m

s
, (1)

Here, Xi,j represents the feature vector, m denotes the mean of

the feature vector, and s represents the standard deviation of the

feature vector.
2.3 Proposed methodology

The research framework we proposed is depicted in Figure 1.

Following data preprocessing, we developed the AMCCBDep model

to tackle the depression classification task. This section outlines the

architectural design of AMCCBDep, which comprises three key
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modules: the AMPC module, the Conformer module, and the

BiGRU module.

2.3.1 AMPC module
As shown in Figure 1, inspired by the neurophysiological

characteristics of EEG signals and the work in (24), this paper

designs an attention-based multi-scale parallel convolution

(AMPC) module to extract network modules for multi-level

frequency features. The module sets the size of the temporal

convolution kernel H to a specific ratio of the EEG sampling

frequency fs. These ratios are defined as a. Therefore, ST
represents the size of H, as shown in Equation 2:

ST = ( 1, a · fs ) (2)

At the same time, excessive convolution operations increase the

number of parameters, which can affect computational efficiency.

Therefore, without affecting classification performance, the time

convolution layer is designed with three branches. The ratio

coefficients for the parallel convolution layers range from 1 to 3,

and are set to [1,0.5, 0.248], corresponding to the sizes of H as

[(1,250),(1,125),(1,62)]. From a frequency perspective, when the

length of H is set to different ratios of the sampling frequency fs, the

time convolution layer can capture frequencies of 1 Hz, 4 Hz, and 8

Hz and above. From a temporal perspective, these kernel sizes

correspond to time steps of 1000 ms, 248 ms, and 124

ms, respectively.

The AMPC module extracts EEG features by applying three

types of convolutions in parallel. First, 2D convolution performs

frequency filtering along the time axis. Second, deep convolution

processes spatial features, followed by an average pooling layer to
Frontiers in Psychiatry 04
reduce the time dimension, with dropout applied to prevent

overfitting. Next, the ECA attention mechanism (31) is

introduced in each branch. The ECA attention mechanism

adaptively assigns weights to different EEG channels, enhancing

the model’s focus on key channels, thus better capturing

depression-related features. In time-series data, higher weights are

typically assigned to important features, while less relevant features

are given lower weights. Therefore, the ECA attention mechanism

prioritizes processing relevant information, enhancing the

network’s ability to identify and respond to critical features. The

configuration of the ECA module is shown in Figure 2.

In the ECA module, channel weights are generated by applying

a 1D convolution with creatively selected kernel sizes (k) on the data

aggregated through Global Average Pooling (GAP). The value of k

is determined by mapping C.

Finally, the outputs from each branch are fused in the

concatenation layer, followed by downsampling through an

average pooling layer with a kernel size of (1, 8) to improve

computational efficiency.

2.3.2 Conformer module
This paper introduces the Conformer encoder (32) because

Transformer models are effective at capturing global, content-based

interactions, while CNNs excel at leveraging local features. To

combine the strengths of both, a parameter-efficient approach is

used to model both local and global dependencies within sequences.

As illustrated in Figure 1, the Conformer module incorporates two

half-step feedforward neural networks (FFNNs). Between these

FFNNs, multi-head self-attention (MHSA) with four heads is

applied, followed by a convolutional module. The convolutional
FIGURE 1

The deep learning framework diagram of the AMCCBDep model for depression recognition based on EEG signals. The framework consists of three
main components: the AMPC module, the Conformer module, and the BiGRU and Classification.
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module in the figure begins with layer normalization, a pointwise

convolution layer, and a gated linear unit (GLU) activation to

address the vanishing gradient problem. The GLU output is then

processed through a 1D depthwise convolution layer with a Swish

activation function, followed by another pointwise convolution

layer. A dropout layer is applied at the end to regularize the

network. The computation for the Conformer is as shown in

Equation 3:

~xi = xi +
1
2 FFN(xi)

x
0
i = exi + MHSA(exi)

x
0 0
i = x

0
i + Conv(x

0
i)

yi = Layernorm(x
0 0
i + 1

2 FFN(x
0 0
i ))

(3)

FFN refers to the Feed-Forward Network module, MHSA

denotes the Multi-Head Self-Attention module, and Conv

represents the Convolution module.

2.3.3 BiGRU module
Since EEG signals contain dynamic content, variations between

time slices may conceal additional information that could

contribute to more accurate depression classification. Therefore,

we utilize a BiGRU to extract contextual information from the

output of the conformer. As illustrated, the basic unit of the BiGRU

consists of two GRU cells: one for forward propagation and the

other for backward propagation. The configuration of the BiGRU

module is shown in Figure 3.

The BiGRU module combines forward and backward GRUs to

capture contextual information from both past and future time

steps. Its operations primarily include forward propagation,

backward propagation, and hidden state updates. The

corresponding equations are as shown in Equation 4:

ht
!

= GRU(xt , ht−1
��!

)

ht
 

= GRU(xt , ht+1
 ��

)

ht = ½ht
!
, ht
 �

(4)
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2.3.4 Classification
The output from the BiGRU is fed into the fully connected

layer, and the final classification result is produced using the

softmax function. In deep learning models, the main purpose of

the softmax function is to transform the network’s output into a

probability distribution, ensuring each output value lies between 0

and 1, with the sum of all probabilities equaling 1. The softmax

formula is as shown in Equation 5:

y = softmax(W∘hf + b∘) (5)

Here, hf denotes the output of the BiGRU module, W°

represents the weight matrix of the fully connected layer, and b°
is the bias term of the fully connected layer.
2.4 Evaluation

The evaluation metrics used in this study include classification

accuracy, sensitivity, specificity and F1 score. The formulas for

calculating classification accuracy, sensitivity, specificity, and F1

score are as shown in Equation 6:
FIGURE 3

BiGRU module configuration.
FIGURE 2

ECA module configuration.
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Acc = TP+TN
TP+FP+TN+FN

Sens = TP
TP+FN

Spec = TN
TN+FP

F1 = 2TP
2TP+FP+FN

(6)

Here, TP represents true positives, TN represents true negatives,

FN represents false negatives, and FP represents false positives.
3 Results

3.1 Experimental setup

In this study, the deep learning architecture was implemented

using the Keras framework with TensorFlow as the backend. Training

was conducted on an NVIDIA GeForce RTX 3090 GPU, supporting

CUDA 12.0 and cuDNN v8.9. All models in this study maintained

consistent training configurations. For the proposed EEG-based

depression classification model, the Adam optimization algorithm

was used with a batch size of 64 and a learning rate of 0.001. The

Adam optimizer adapts the learning rate and combines momentum

with adaptive gradient methods, effectively improving the stability of

the deep learning model during training. A batch size of 64 was

selected to balance computational efficiency and accuracy, enabling

effective training acceleration without significantly increasing

computational burden. The learning rate of 0.001 was set to ensure

smooth convergence during the training process and prevent
Frontiers in Psychiatry 06
instability caused by overly large update steps. These hyperparameter

configurations were validated through preliminary experiments to

ensure the efficiency and stability of model training.
3.2 Experimental result

The model uses 10-fold Cross Validation to conduct a binary

classification experiment between depression disorder patients and

healthy controls. This method involves randomly dividing the

dataset into multiple subsets, training and evaluating the model

on each split individually, which helps mitigate the risk of

overfitting. Additionally, by averaging the various evaluation

metrics from the 10 experiments, a more comprehensive and

reliable performance assessment can be obtained. In Figure 4, the

average AUC value reached 99.88%, further indicating that the

model demonstrates a strong capability to identify depression

disorders. The confusion matrix provides an overall performance

metric for the model, detailing the predictions for each category and

enabling the evaluation of the classification model’s performance.

The confusion matrix for the model AMCCBDep is shown in

Figure 5, which contains two labels: healthy control group

samples and depression patient group samples. The predicted

labels are shown on the horizontal axis, while the true labels are

displayed on the vertical axis. The diagonal represents the accuracy

of the predictions. From the results, it is clear that the proposed

method attained high classification accuracy on the dataset.
FIGURE 4

Sensitive feature weighted AUC curve.
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3.3 Detection performance with different
numbers of channels

Since the number of EEG channels directly affects the amount of

MDD (Major Depressive Disorder) information it contains, this study

aims to investigate the impact of different electrode channel counts on

the accuracy of MDD recognition. In the experiment, two electrode

configurations, 16 channels and 128 channels, were used, and the

accuracy, sensitivity, specificity, and F1 score for each configuration

were calculated. The related results are shown in Table 1. FromTable 1,

it can be seen that the model achieved relatively ideal MDD diagnostic

performance with both channel configurations. Specifically, when

using 128 channels, the model’s average accuracy reached 99.12%,

which is an improvement of 0.44% compared to the 16-channel

configuration. Given the considerations of computational efficiency
Frontiers in Psychiatry 07
and time performance, in subsequent experiments, unless otherwise

specified, the 16-channel configuration will be used as the default input.
3.4 Comparison with existing models

As shown in Table 2, the AMCCBDep model presented in this

study directly processes raw EEG signals, which have undergone

basic preprocessing, as input. When evaluated on metrics such as

accuracy, F1 score, sensitivity, and specificity, the proposed method

outperforms others, demonstrating its ability to effectively capture

task-related semantic information in EEG signals while fully

leveraging their time-frequency domain characteristics. Table 1

compares the performance of the proposed approach with other

methods using the MODMA dataset.
3.5 Ablation experiments

To assess the effectiveness of the AMCCBDep model in

depression recognition, five distinct model architectures were

created to investigate the contribution of each module within

AMCCBDep. (i) MsNet: This model uses a multi-scale

convolutional structure to extract multi-level frequency features,

followed by a fully connected layer for depression detection. (ii)
FIGURE 5

Confusion matrix.
TABLE 1 Results for different channels.

Number of
electrode
channels

ACC
(%)

F1
(%)

Sens
(%)

Spec
(%)

16 98.68 98.59 98.64 98.71

128 99.12 99.07 99.00 99.23
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AMPC: This model is based on MsNet for feature extraction, with

an added ECA module after each branch of MsNet to adjust feature

weights based on channel dependencies for depression detection.

(iii) AMPC-BiGRU: This model extracts features using the AMPC-

BiGRU module, concatenates the extracted features, and then

performs depression detection using a fully connected layer. (iv)

AMPC-Conformer: This model incorporates the Conformer

module on top of AMPC to extract features, concatenates the

extracted features, and then performs depression detection using

a fully connected layer. (v) AMCCBDep: This model consists of

three main modules: AMPC, Conformer, and BiGRU.

The above five architectures were evaluated using the 10-fold

cross-validation method (10-Fold CV), and the experimental results

are shown in Table 3. As can be seen from the table, the multi-scale

convolution MsNet has a relatively low classification accuracy. By

comparing the results of MsNet and AMPC, it is found that the

ECA module added after each branch adjusts the feature weights

based on the dependencies between channels, ensuring that

important channel features are enhanced, resulting in a 2.36%

increase in classification accuracy. Additionally, AMPC-BiGRU

and AMPC-Conformer, compared to AMPC, show that the

former effectively fuses multi-scale time-frequency features with

the context of EEG time-series extracted by BiGRU, validating the

effectiveness of the BiGRUmodule. The latter demonstrates that the

multi-head attention mechanism in the Conformer facilitates the

learning of both global and local temporal context features. As a

result, the AMCCBDep model effectively captures these global and

local features, leading to a significant enhancement in its

overall performance.
Frontiers in Psychiatry 08
4 Discussion

In this paper, AMCCBDep, demonstrates excellent performance

in the task of EEG-based depression recognition by combining the

advantages of the AMPC, Conformer, and BiGRU modules.

AMCCBDep is a lightweight EEG decoding solution that does not

require pretraining, needing only minimal preprocessing steps such as

bandpass filtering and normalization, and is not dependent on specific

tasks. The AMPCmodule extracts temporal features using multi-scale

convolution kernels and applies depthwise separable convolutions in

the spatial dimension (i.e., between channels). After each convolution

branch, the ECA mechanism is used to adjust the channel features by

applying a weighting scheme. The ECA module captures inter-

channel relationships using lightweight convolutions, efficiently

enhancing the representational power of channel attention, allowing

the model to more accurately recognize and distinguish different EEG

signal patterns. The Conformer module further models both global

and local temporal dependencies, ensuring the model captures long-

range dependencies and local patterns in the EEG signals. The BiGRU

module performs bidirectional modeling along the time dimension,

capturing bidirectional dependencies in the time series and ultimately

outputting feature representations for classification. Therefore,

compared to existing CNN-based models (29, 40), the proposed

method is capable of learning more discriminative representations.

In the experiments, Figures 4, 5 demonstrate that the model

achieves high accuracy on public datasets, with evaluation metrics

approaching 1, reflecting its excellent generalization capability.

Additionally, this paper includes ablation studies that highlight

the contribution of each module in the AMCCBDep architecture.
TABLE 3 Comparison of performance on MODMA datasets.

Model ACC(%) (mean ± std) F1(%) (mean ± std) Sens(%) (mean ± std) Spec(%) (mean ± std)

MsNet 93.25 ± 0.31 92.64 ± 0.32 90.24 ± 0.42 95.92 ± 0.55

AMPC 95.61 ± 0.68 95.29 ± 0.73 94.40 ± 1.03 96.68 ± 0.74

AMPC-BiGRU 96.89 ± 0.17 96.68 ± 0.18 96.13 ± 0.43 97.58 ± 0.48

AMPC-Conformer 98.31 ± 0.28 98.20 ± 0.29 97.85 ± 0.51 98.72 ± 0.53

AMCCBDep(Our) 98.68 ± 0.45 98.59 ± 0.48 98.64 ± 0.58 98.71 ± 0.47
TABLE 2 Comparison of the performance of AMCCBDep on MODMA datasets with other methods in recent years.

Method ACC(%) F1(%) Sens(%) Spec(%)

Qayyum et al. (33) 78.2 74.9 – –

Shen et al. (34) 80.67 81.08 84.13 72.79

Shao et al. (35) 86.7 86.4 – –

Cui et al. (36) 95.53 95.4 95.12 96.03

Sun et al. (37) 97.22 – 96.57 97.86

Yang et al. (38) 97.43 – 96.99 97.77

Yang et al. (39) 97.56 – – –

AMCCBDep (Ours) 98.68 98.59 98.64 98.71
Bold data indicates the best performing results.
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Five distinct model configurations were tested to assess the

importance of each module in the AMCCBDep structure. The

results reveal that the AMCCBDep model effectively captures

both global and local features of the modality, leading to a

significant improvement in overall performance.

Despite the measures taken, the model still has some

limitations. First, while we used standard hyperparameter

configurations (such as the Adam optimizer, batch size of 64, and

learning rate of 0.001), future work will introduce Grouped

Bayesian Optimization (29, 41) to further optimize the

hyperparameters and improve the model’s performance. Bayesian

optimization can find the optimal configuration with fewer

experiments, especially in high-dimensional hyperparameter

spaces, thereby enhancing the model’s generalization ability.

During training, we employed ten-fold cross-validation, trained

for 100 epochs, and used an early stopping mechanism to prevent

overfitting, ensuring the model’s stability and generalization ability.

The dataset was split into 80% for training and 20% for validation.

Secondly, due to significant individual differences in EEG signals,

the model’s generalization ability in cross-subject scenarios may be

affected, leading to suboptimal classification performance across

different individuals. This suggests that future work should explore

personalized data processing methods or adopt transfer learning

techniques to improve the model’s performance in cross-subject

tasks. Future research will focus on applying the model to cross-

subject tasks while incorporating visualization techniques (7, 42) to

further enhance the model’s interpretability. By visualizing the

feature extraction process and the model’s classification decisions,

we hope to assist clinical experts in better understanding the

internal mechanisms of the model, thereby improving its

effectiveness in clinical applications.
5 Conclusion

This paper tackles the challenge of inadequate feature extraction

and the limitations of convolutional neural networks (CNNs),

which are typically restricted to capturing only local features. To

address this, a hybrid neural network model for recognizing major

depressive disorder (MDD) is proposed, utilizing deep learning

techniques. The model integrates the AMPC, Conformer, and

BiGRU components to effectively capture complex features from

EEG signals. This approach significantly enhances both the

classification accuracy and robustness, enabling the model to

perform exceptionally well across various time scales and spatial

dimensions of EEG data. Additionally, the model streamlines the

feature extraction and classification process through an end-to-end

framework, minimizing the reliance on manual feature engineering.

Experimental findings using the MODMA dataset indicate that the

model demonstrates robust performance in analyzing depression

through EEG signals. Ablation studies further highlight the crucial

role of each module in the AMCCBDep structure, confirming the

model’s efficacy and the viability of the proposed depression

recognition approach. Despite these achievements, there are still

areas for improvement. This study provides a qualitative analysis of
Frontiers in Psychiatry 09
mental states, and future research should aim to incorporate

quantitative analysis as well.
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