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Less is more: calorie restriction
as a therapeutic for mental
health disorders
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Matthew D. Zelko1, Thiruma V. Arumugam2, Jim Penman1,
Terrance G. Johns1,3* and Zoran Boskovic3*

1Epigenes Australia Pty Ltd., Melbourne, VIC, Australia, 2School of Agriculture, Biomedicine and
Environment, La Trobe University, Melbourne, VIC, Australia, 3School of Psychology and Public Health,
La Trobe University, Melbourne, VIC, Australia
Anxiety, depression, and substance use disorders are prevalent mental health

disorders that have debilitating health outcomes, and current treatment options

are not always efficacious or tolerable. Calorie restriction (CR) has various health

benefits, with research efforts focused on its effects in improving metabolic

health and delaying biological aging. Recent studies have indicated that CR can

also improve anxiety-, depression- and addiction-like symptoms and behavior.

Similar benefits have also been observed in studies investigating a range of CR

mimetics (CRMs) - molecules that mimic one or more of the physiological effects

of CR without dietary restriction - indicating that both CR and CRMs could be

used to assist in treating these symptoms. Here, we summarize the current

evidence for the potential use of CR and select CRMs in the treatment of anxiety,

depression, and addiction, as well as the possible molecular mechanisms

underlying these beneficial effects. Finally, we propose novel molecular

signatures that could be exploited to screen for novel CRM candidates.
KEYWORDS

anxiety, depression, substance use disorders, addiction, calorie restriction, calorie
restriction mimetic
1 Introduction

Globally, an estimated one in eight people live with a mental disorder (1). In Australia,

the 2020–2022 National Study of Mental Health and Wellbeing reported that 42.9% of

individuals aged 16–85 had experienced a mental disorder in their lifetime, 21.5% had a 12-

month disorder, and 38.8% of those aged 16–24 had a 12-month disorder (2). Mental

disorders - such as anxiety, depression, and substance use disorders - impair cognition,

emotional regulation, and behavior. They are leading causes of disability and significant

contributors to premature mortality (1, 3). The COVID-19 pandemic served to further

exacerbate the mental health crisis, with patients with preexisting psychiatric disorders
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1584890/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1584890/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1584890/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1584890&domain=pdf&date_stamp=2025-06-16
mailto:terry.johns@latrobe.edu.au
mailto:z.boskovic@latrobe.edu.au
https://doi.org/10.3389/fpsyt.2025.1584890
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1584890
https://www.frontiersin.org/journals/psychiatry


Nguyen et al. 10.3389/fpsyt.2025.1584890
reporting worsening mental health, and the general public showing

lower psychological well-being compared to the pre-COVID era (4).

Mental disorders account for an estimated 418 million disability-

adjusted life years, with an associated global economic burden of

approximately USD 5 trillion (5). While current treatments -

including psychotherapy and pharmacological interventions -

offer benefits, they are often limited by delayed onset, inadequate

efficacy, side effects, or risk of dependence (6, 7). These limitations

underscore the urgent need for novel, safe, and effective

treatment strategies.

In recent years, a growing body of research has begun to explore

the potential of metabolic interventions in addressing the

limitations of conventional mental health treatments. Among

these, calorie restriction (CR) - a reduction in calorie intake

without malnutrition – has emerged as a promising avenue. This

dietary regimen has gained significant traction in recent years due

to evidence indicating a range of benefits beyond delaying biological

aging (8–10) that include improvements in metabolic health (11–

14), cancer outcomes (15–18), neuropsychological performance

(19–21) and mental health (22–25).

While there is mounting evidence for the benefits of CR across a

variety of physiological and psychological outcomes, adherence to

this regime is a key factor in determining the clinical utility of CR.

Long-termCR trials often see declining compliance over time, though

strategies like counseling, monitoring, and diet tracking can help
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improve it (26, 27). In the Comprehensive Assessment of the Long-

term Effects of Reducing Intake of Energy (CALERIE) study,

adherence to a 25% CR goal dropped significantly after 20 weeks

(28). Clinical dropout rates vary widely, ranging from single digits to

40%. In one year-long study, dropout rates were 38% for alternate-

daymodified fasting, 29% for CR, and 26% for the control group (29).

To this end, it has been proposed that CR mimetics (CRMs) - which

can mimic one or more physiological, metabolic, and hormonal

signaling cascades of CR - can be used to administer the positive

health outcomes of CR without dietary restriction [Figure 1, (30, 31)].

While there have been significant advances in the development of

CRMs, their potential in improving outcomes in individuals with

mental health disorders is still under investigation (32–35).

Given the limitations of existing psychiatric treatments, there is

a critical need to explore novel, mechanism-based approaches that

address the underlying biological drivers of mental illness. In this

review, we summarize emerging evidence that suggests that CR, and

in particular CRMs, may offer such an approach with promising

effects on mental health in preclinical and clinical settings. We will

explore the molecular mechanisms that may mediate their effects

and examine the therapeutic potential of CRMs as more sustainable

alternatives to current treatments and to CR alone. We also

highlight emerging molecular targets that could be leveraged for

the development and screening of next-generation CRMs, offering a

new avenue for innovation in psychiatric therapeutics.
FIGURE 1

Understanding the genetic signatures induced by CR can lead to the development of novel treatments for mental health conditions, including
anxiety disorders, mood disorders such as depression, and substance use disorders. Created in BioRender. Boskovic, Z. (2025) https://BioRender.
com/epcts6e.
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2 Calorie restriction and its effect on
anxiety and depression

Anxiety and depression are highly comorbid, and a strong

predictor of major depressive disorder is comorbid anxiety

disorder (36, 37). Common therapeutic approaches have included

psychotherapy and psychopharmacology. However, anxiolytics and

antidepressants are not always effective and can lead to drug abuse,

failure to respond, lag time for therapeutic effect, dependence, and/or

intolerance (6, 7). As such, the use of CR as a non-pharmacological

tool to assist in the treatment of neuropsychiatric disorders has the

potential to have a profound impact on the treatment of these

debilitating conditions. There is a growing body of evidence to

support this line of reasoning, and while traditionally most of this

has come from pre-clinical studies discussed in the following section,

we will also present the growing clinical data supporting CR’s

therapeutic role and its limitations.
2.1 Preclinical evidence on therapeutic
effects of calorie restriction

The effects of CR on anxiety-like behavior in animal models

vary, dependent on length, severity, and age at initiation of CR.

When young rats (about 4 weeks old) were put on a severe diet that

cut their calories by 50% for five weeks, they showed increased signs

of anxiety (38). In contrast, studies in adult rats have found that a

more moderate reduction - about 25% fewer calories - can reduce

anxiety, especially when continued for several weeks or even up to

18 months. These effects were observed using common behavioral

tests like the elevated plus maze and open field tests (39–42). The

results in older rats are more mixed: a short-term CR (3 months)

starting at 21 months old increased anxiety, but a longer CR (6

months) starting at the same age reduced it (43). Interestingly,

starting CR a bit earlier at 18 months also reduced anxiety levels.

These findings suggest that CR can help reduce anxiety even in

older animals, but the length and timing of the intervention matter.

Overall, mild CR in fully grown animals seems to have the most

consistent anxiolytic effect.

Researchers have also explored whether CR can reduce

depression-like behaviors in animal models. In the widely used

forced swim test, which measures behavioral despair, mice on a CR

diet showed less immobility - suggesting a potential antidepressant-

like effect (44, 45). Another way to assess depression-related

behavior is by examining social withdrawal. Mice on a 25% CR

diet showed increased social interaction compared to controls,

indicating reduced social withdrawal (46). Notably, even short-

term CR (10 days at 40%) reversed social deficits caused by social

stress, an effect linked to changes in orexin signaling - a brain

system involved in appetite and emotional regulation (47). In

aggressive behavior tests, CR mice were more sociable and less

aggressive, effects that were lost in mice lacking the cAMP Response

Element-binding (CREB) protein, suggesting that CREB is

necessary for CR’s behavioral benefits (48). Other findings point

to astrocytes as possible mediators of CR’s antidepressant effects.
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CR failed to reduce depression-like behavior in mice lacking IP3R2,

a receptor involved in calcium signaling in astrocytes, suggesting

this pathway plays a key role (45).

While encouraging, the observed findings come with several

important limitations. In animal models, the effects of CR are highly

nuanced and depend on variables such as the age at intervention,

the severity and duration of restriction, and the specific behavioral

assays used. Additionally, differences across species and sex further

complicate the translation of these results to human populations.

Despite these challenges, preclinical studies offer valuable insight

into potential mechanisms by which CR may exert therapeutic

effects on psychiatric symptoms. Beyond the highlighted molecular

pathways like CREB and orexin signaling, CR also modulates key

neurotransmitter systems implicated in mood regulation, including

dopamine (43, 49, 50), serotonin (51, 52), and norepinephrine (53,

54). These findings suggest that CR may influence anxiety and

depression through a complex interplay of neuromodulation,

intracellular signaling cascades, and astrocyte function. Taken

together, this body of evidence highlights promising molecular

targets for future therapeutic development in psychiatry.
2.2 Clinical evidence on therapeutic effects
of calorie restriction

While preclinical studies have long suggested that CR may

alleviate behaviors associated with psychiatric disorders, human

data supporting its use in clinical settings is only beginning to

emerge. It is well-established that weight loss from interventions

such as exercise, pharmacotherapy, or bariatric surgery can improve

symptoms of anxiety and depression (55–59). However, it remains

unclear whether these benefits stem from weight loss itself or

mechanisms specific to CR. Human trials examining CR’s

psychiatric effects are limited, often constrained by short

durations (6–12 weeks), use of very low-calorie diets (VLCDs

<800 kcal/day), and concerns about feasibility, adverse outcomes,

and adherence (55, 58, 60, 61).

Nonetheless, human studies are encouraging with two recent

meta-analyses reporting that CR in overweight and obese

individuals reduced depressive symptoms (58, 59). Echoing

findings from the preclinical space, human studies vary in

duration of CR and its therapeutic benefits. While one study

reports 30% CR over six months improved both anxiety and

depression in obese participants (62), a recent randomized clinical

trial indicated that improvements in anxiety and depression

symptoms are observed as quickly as 15 days after initiation of

CR in overweight and obese individuals and persisted for at least 60

days (61). However, the Clinical Study of Obesity and Intestinal

Microbiota (ECOMI) trial showed that short-term CR (12 weeks)

can lead to significant improvements in anxiety and depression

scores in obese individuals only when combined with probiotic

supplementation (63). Interestingly, a 2019 study undertaken in

Spain showed that in obese individuals, therapeutic effects of CR on

anxiety were only observed in women, while improvements in

depression scores were observed in all participants (23).
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Encouragingly, human studies mimic preclinical findings

demonstrating that CR can have significant effects on

dopaminergic and serotonergic signaling in obese individuals (62,

64), providing mechanistic evidence for the therapeutic avenues of

CR in humans.

While the aforementioned results are encouraging, they still do

not fully differentiate whether the observed therapeutic benefits are

due to CR, weight loss or a combination of both. To this end, the

findings of the Comprehensive Assessment of the Long-term Effects

of Reducing Intake of Energy (CALERIE) phase 1 (CALERIE-1)

and phase 2 (CALERIE-2) study are particularly illuminating.

CALERIE-1 was designed to emphasize adherence to a 25% CR

over an extended period of time with no specific macronutrient

composition (other than nutritional adequacy) being recommended

(65). CALERIE-2 was a continuation of this study, with the aim to

assess the beneficial effects of CR when participant’s weights

stabilized following the initial weight loss (60). The findings of

the latter study show individuals who undergo 25% CR for 2 years

have significant improvements in mood and reported fewer mood

disturbances (measured by Beck Depression Inventory - II). The

authors indicate that this regime is feasible, has positive metabolic

effects, and can improve mood with no negative impacts on health-

related quality of life. These findings provide significant evidence

that CR can mediate positive therapeutic outcomes on anxiety and

depression independent of weight loss, suggesting that the positive

observations in clinical trials performed in obese individuals are

mediated in part or completely by CR-induced changes.

The preclinical and clinical findings outlined in this section are

highly relevant to psychiatric practice, especially when considering

adjunctive strategies for treatment-resistant depression, anxiety

disorders, or comorbid obesity and mood dysfunction. While CR

is not yet a mainstream therapeutic tool in psychiatry, its

mechanistic overlap with known pathways involved in anxiety

and depression -neurotransmitter modulation, CREB and orexin

signaling, and astrocyte function - makes it a promising area for

future translational research and clinical trials.
3 Calorie restriction and its role in
treating addiction

Substance use disorders, including alcohol and drug addiction,

remain a major global health challenge, contributing significantly to

premature death and disability (66, 67). In 2021, it was estimated

that 39.5 million people globally suffer from substance use disorder,

of which only 20% received drug treatment (68). An estimated 400

million people suffer from alcohol use disorder, which was

responsible for 6.7% of all premature mortality in 2019 (69).

Although the role of CR in treating addiction in humans remains

largely unexplored, animal studies offer intriguing insights. In the

alcohol-preferring rat model, 25% CR reduced alcohol self-

administration and suppressed relapse behaviors such as alcohol
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seeking (70, 71). These findings suggest that CR may reduce

compulsive alcohol consumption and protect against relapse, key

therapeutic goals in addiction treatment.

However, the protective benefits of CR can be complex, as other

preclinical studies have shown that food-restricted animals tend,

paradoxically, to increase their consumption of addictive

substances. This may be a result of CR enhancing the rewarding

properties of drugs of abuse and amplifying drug-seeking behavior

(72–74). These processes seem to be mediated by stress-related

neurocircuits, such as corticotropin-releasing factor (CRF) and

dopamine transmission, but not corticosterone (75, 76). Both

CRF and corticosterone are key mediators of behavioral,

autonomic, and endocrine responses to stress, but only CRF, and

not corticosterone, has been shown to contribute to relapse to

heroin-seeking induced by stressors (77). These findings should be

interpreted with caution as the CR regimen was short-term and

relatively mild (15-20%), which begs the question whether longer or

more severe CR might produce potentially beneficial effects on

addiction-related behavior.

Emerging preclinical evidence suggests that chronic CR may

have protective effects against addiction and relapse, particularly in

alcohol use models, by modulating key neurobiological systems

involved in reward and stress. While acute food restriction may

increase vulnerability to drug-seeking behaviors, sustained,

moderate CR could represent a promising, non-pharmacological

strategy for managing substance use disorders. However, differences

in physiology, psychological context, and environmental

complexity between humans and preclinical models highlight

significant translational limitations. Further research, including

clinical studies to explore CR’s potential as a novel adjunctive

treatment for addiction in psychiatric settings, is needed to

determine the efficacy of CR-based interventions in patients with

substance use disorders.
4 Calorie restriction mimetic
candidates

Given the negative effects that the global obesity epidemic has on

health and the economy, it comes as no surprise that pharmaceutical

compounds that mimic the metabolic effects of CR for the purposes

of weight loss have gained attention from the public and scientific

community (78). The impact these drugs have had in the clinical

treatment of obesity is evidenced by the fact that the journal Science

named GLP-1 drugs the breakthrough of 2023 (79). Coupled with the

practical limitation of human subjects adhering to CR in non-

controlled environments, we have seen increased research into

CRMs - which can mimic one or more physiological, metabolic,

and hormonal signaling cascades of CR without dietary restrictions.

In the following section, we focus on the role that some of these

compounds may have in the treatment of mental health disorders.
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4.1 Resveratrol

Resveratrol, a natural polyphenol found in grapes, exhibits a

wide range of cellular effects, including antioxidant, anti-

inflammatory, anti-carcinogenic, neuroprotective, and anti-aging

properties (80, 81). Resveratrol is believed to stimulate the activity

of sirtuin 1 (SIRT1) and phosphorylated-5 ’adenosine

monophosphate-activated protein kinase (AMPK) in multiple

tissues, yet its exact mechanism of action is elusive because SIRT1

and AMPK can regulate each other and share many common target

molecules (82, 83).

In relation to anxiety and depression, preclinical studies have

shown that resveratrol appears to have antidepressant and

anxiolytic effects, possibly by inhibiting phosphodiesterase-4

(PDE4) - an enzyme that breaks down cAMP, a molecule

involved in neuroplasticity and mood regulation (84). Through

PDE4 inhibition, resveratrol may indirectly enhance signaling

pathways such as PKA-CREB-BDNF, which are frequently

dysregulated in mood disorders. The effect of resveratrol on this

pathway is of particular interest as PDE4 inhibition has been

studied for some time as a potential anxiolytic and antidepressant

pathway (85–88). Over the past 10 years, numerous PDE4

inhibitors have been discovered (89, 90) and a number of these

have entered clinical trials (91). While most trials have focused on

treating non-psychiatric conditions, such as rheumatoid arthritis,

chronic obstructive pulmonary disease (COPD), and asthma, some

of these compounds have been trialed for their effects on anxiety

and depressive disorders. The earliest and most investigated PDE4

inhibitor, Rolipram, was initially trialed with no success (92), but

has since been brought back into Phase I with results yet to be

reported (91). Given that Rolipram is a first-generation PDE4

inhibitor, efforts have been made to improve potency, selectivity,

and improve side effect profiles. This led to the development of

numerous novel inhibitors in clinical trials for the treatment of

depressive and anxiety disorders. These include Roflumilast (Phase

I), Zatomilast (Phase II) and GSK356278 (Phase I), with the trials

either still in progress or results to be submitted (91). Beyond PDE4

inhibition, some evidence does suggest resveratrol may positively

affect mood, by modulating key neurotransmitter systems including

dopamine, serotonin, and NPY (93), influencing BDNF-mediated

neuroplasticity (94) or reducing systemic inflammation (95).

There is also growing interest in resveratrol’s potential to treat

substance use disorders. In animal models, resveratrol impaired the

acquisition of drug-associated behaviors and prevented relapse in

alcohol-conditioned place preference paradigms (96). Notably, its

efficacy was comparable to acamprosate, a clinically used drug for

managing alcohol dependence. Similar effects were observed with

heroin, where resveratrol reduced addiction-like behaviors (97, 98),

suggesting it may modulate common reward pathways or stress-

related circuits involved in addictive behavior.

Resveratrol shows promise in preclinical studies for improving

mood, reducing anxiety, and decreasing addiction-like behaviors,

likely through mechanisms involving PDE4 inhibition, enhanced

cAMP signaling, modulation of key neurotransmitters, and
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pathways like SIRT1 and BDNF. However, its clinical utility

remains uncertain due to limited and inconclusive human data.

Furthermore, while there is overlap between the effects of

resveratrol and CR, resveratrol does not mimic all aspects of CR

(99) and widespread use of resveratrol has been hindered by its low

bioavailability, though improvements have been made by

manipulating its formulation (81, 100).
4.2 Rapamycin

Rapamycin is an inhibitor of the mechanistic target of

rapamycin (mTOR) protein kinase pathway and has been long

investigated as a CRM candidate. mTOR is a key component of a

signaling network that can sense local (e.g. glucose, oxygen, amino

acids) and systemic (e.g. insulin and insulin-like growth factor-1)

nutrient status and respond accordingly to regulate cell growth,

metabolism, proliferation, and survival (101). There have been

reports that rapamycin may increase anxiety-like behavior (102,

103), however, considering the strength of evidence that has been

published so far, rapamycin can ameliorate depressive- and anxiety-

like behavior induced by a variety of conditions (104–106).

These effects appear to be mediated by several interconnected

molecular pathways. One key mechanism is enhanced autophagy, a

cellular process involved in the degradation and recycling of damaged

cellular components (107). Chronic stress and depression are

associated with impaired autophagic activity in the brain,

particularly in regions such as the hippocampus and prefrontal

cortex (108). Rapamycin restores this deficit by inhibiting

mTORC1, thereby activating autophagy, which contributes to

cellular homeostasis and neuronal resilience (105). Restored

autophagic flux may help clear dysfunctional mitochondria, reduce

oxidative stress, and promote neuroplasticity - all of which are

implicated in the pathophysiology of depression.

Additionally, rapamycin has been shown to increase levels of

BDNF (109), a critical neurotrophin involved in synaptic plasticity,

neuronal survival, and cognitive function. Decreased BDNF levels

are consistently observed in individuals with depression, and

enhancing BDNF signaling is a known mechanism of action for

many antidepressants (110). By increasing BDNF expression,

rapamycin may support neuronal growth and synaptic

connectivity, helping to reverse the structural and functional

brain changes associated with mood disorders (105).

Another mechanism includes enhanced myelination,

particularly in the medial prefrontal cortex, a region highly

relevant to emotional regulation. Increased myelination may

improve the speed and efficiency of neuronal signaling, thereby

supporting improved behavioral responses to stress and emotional

stimuli (106).

Rapamycin can also reduce motivational responding to cocaine

using the progressive ratio testing after animals were trained for

self-administration (111), and reduced cocaine-related relapse

behavior (112). These preclinical results are corroborated by
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results from a double-blind clinical trial in abstinent heroin addicts,

which showed that a single dose of rapamycin can reduce heroin

craving when exposed to drug-related imagery (113). This suggests

that there may also be a therapeutic role for rapamycin in the

treatment of substance use disorders.

Although rapamycin can be considered a CRM, there are

differences in mechanisms when compared to CR (114–116).

Liver transcriptome and metabolome analysis in mice showed

that approximately 80% of the transcripts were distinct to either

CR or rapamycin treatment, with 20% overlapping (115). This

distinct molecular signature suggests these interventions might have

complementary effects, though further research is needed to

determine if these effects are additive in the liver, and whether

similar patterns exist in other tissues. There are apprehensions in

taking rapamycin for extended time periods due to the lack of long-

term studies and underassessment of rapamycin’s effects on the

respiratory, digestive, renal, and reproductive systems (117).

However, a recent meta-analysis showed that rapamycin (and its

derivatives) can be considered tolerable in humans, as no serious

adverse events have been associated with its use (117).

While rapamycin shows promise as a CRM, and the collective

neural pathways affected by rapamycin position it as an intriguing

candidate for novel psychiatric treatment, further translational

research is needed to evaluate its clinical viability. While direct

clinical trials of rapamycin for treating depression and anxiety are

limited, studies such as the effects of combination therapy with

ketamine on alleviating depressive symptoms (118) may provide

critical insight into the therapeutic effect of rapamycin in the human

population and pave the way for future clinical studies.
4.3 Semaglutide: a CRM-adjacent
therapeutic

Semaglutide was developed initially to treat type 2 diabetes

mellitus (T2DM) and is an analog to GLP-1 that has significant

effects on glycemic control and body weight regulation by binding

to GLP-1 receptors. Being widely distributed in the brain, GLP-1

signaling has many functions, with activation of GLP-1 receptors in

the hypothalamus, brain stem, and septal nucleus believed to

mediate the effect of semaglutide on appetite and body weight

regulation (119).

While semaglutide is not traditionally classified as a CRM, we

include it in this review for three key reasons. Firstly, GLP-1

receptor agonists such as semaglutide engage signaling pathways

that overlap with those activated by CR, including pathways related

to energy metabolism, inflammation, and cellular stress resistance

(120). Exploring these shared mechanisms may offer valuable

insight into how CR mediates its neuropsychiatric benefits.

Secondly, although some of semaglutide’s mental health benefits

may stem from weight loss (121), the associated reduction in caloric

intake (122) could itself activate neuromolecular circuits similar to

those triggered by CR, including modulation of reward processing,

neuroplasticity, and stress resilience. Finally, given the rapid and

widespread growth in both preclinical and clinical research on
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and addictive behaviors discussed below - it presents a timely and

relevant opportunity to evaluate how metabolic interventions may

influence psychiatric outcomes. Excluding such a widely studied

compound from the CRM discussion would miss a critical

perspective on the evolving landscape investigating the interface

between metabolism and mental health.

Beyond its metabolic effects, semaglutide engages central

pathways relevant to psychiatric function, further supporting its

inclusion as a CRM-adjacent compound. Activation of GLP-1

receptors in the amygdala has been linked to increased dopamine

turnover and reduced food reward, indicating semaglutide’s

influence on reward processing and motivational behavior (123).

This dopaminergic modulation may contribute to the drug’s effects

on learning, memory, and emotional regulation. Supporting this,

GLP-1 receptor knockout mice exhibit deficits in memory and

synaptic plasticity, including impaired long-term potentiation - an

essential mechanism for learning and mood stability (124).

Furthermore, GLP-1 peptide seems to alleviate depressive

symptoms through several mechanisms shared by CR, including

neuroinflammation, neurotransmitter modulation and synaptic

function (125). Preclinical studies have shown that semaglutide

improves cognitive performance and reduces anxiety- and

depression-like behaviors in mice exposed to a high-fat diet,

suggesting neuroprotective and mood-stabilizing properties (126).

Importantly, semaglutide has also demonstrated promise in

addiction models. It reduces alcohol intake in a dose-dependent

manner in binge-drinking paradigms (127) and prevents relapse-

like behavior following alcohol withdrawal in both male and female

rats (128). Semaglutide also seems to be faster-acting than its

predecessor, liraglutide, for the treatment of alcohol use disorder

(129), pointing to its potential utility in substance use disorders.

While limited, emerging clinical data demonstrates that

semaglutide can have beneficial effects on addiction and

addiction-like behaviors. In a cross-sectional study of 69 obese

patients, it was shown that semaglutide was effective in ameliorating

emotional eating and other abnormal eating patterns (130), while in

a retrospective cohort study the beneficial therapeutic effect was

expanded to include reduction of binge eating behavior (131). In the

space of alcohol-use disorder (AUD), obese individuals taking

semaglutide self-reported less alcohol consumption and fewer

binge drinking episodes in comparison to controls and to before

semaglutide treatment (132). A more recent trial in non-obese

patients with AUD (133) showed that even in low doses semaglutide

significantly reduced alcohol intake and cravings. The efficacy of

this treatment for AUD is still expanding, with two currently

ongoing trials (Semaglutide Therapy for Alcohol Reduction -

Tulsa (STAR-T) NCT05891587; Clinical Trial of Rybelsus

(Semaglutide) Among Adults With Alcohol Use Disorder

NCT05892432) investigating the effects of low-dose treatment for

a period of 12 weeks, and a higher dose treatment for a period of 8

weeks, respectively. Taken together, the encouraging findings on the

use of this compound for the treatment of addictive disorders

further emphasize the immense potential of metabolic

interventions in the field of psychiatry.
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Despite encouraging clinical data showing the effectiveness of

semaglutide for the treatment of addictive behaviors, there have

been concerns that semaglutide use is associated with an increased

number of suicidal ideations compared to other antidiabetic

medications (134) and has adverse effects on depression (135).

However, a recent retrospective cohort study, which included

240,618 overweight or obese patients who were prescribed either

semaglutide, or non-GLP1R-agonist anti-obesity medications, did

not find increased risk of suicidal ideation with semaglutide use

(136). This was corroborated by another retrospective study that

found that instead, after multiple testing correction, semaglutide

was associated with reduced risk for several such outcomes (137).

Although semaglutide shows much promise as a glucose and

weight management pharmacological tool, if used for some of the

aforementioned benefits outside of weight loss, there would be

concerns regarding its long-term safety profile and in patients

where weight loss is not desirable. There are also concerns about

long-term benefits since upon cessation of semaglutide treatment,

patients tend to regain a significant portion of the lost weight (138,

139), with reports that patients who underwent 68 weeks of

treatment with semaglutide rapidly regained two-thirds of

previously lost weight, and cardiometabolic measures reverted to

baseline after 120 weeks following semaglutide withdrawal (139). It

stands to reason that any beneficial effects of semaglutide outside of

weight loss would follow similar trajectories once treatment has

been discontinued. To fully understand whether this is the case,

there is a need for follow-up and longitudinal clinical studies

specifically aimed at assessing long-term effects of semaglutide on

psychiatric conditions.

With limited but rapidly expanding clinical data assessing the

efficacy of semaglutide for the treatment of psychiatric disorders

(140), caution should be taken when interpreting and translating

preclinical findings. Nevertheless, the positive impact of this

compound on T2DM management has been profound, with

preclinical and limited clinical observations on the beneficial

effects of semaglutide in anxiety, depression, and addiction

further highlighting the significant potential of utilizing this

compound as a mental health treatment.
5 Development of next-generation
CRMs

The current understanding of mechanisms by which CR exerts

its effects spans multiple neurophysiological processes, including

neurogenesis, synaptic plasticity, neurotransmitter modulation,

oxidative stress, nutrient-sensing, autophagy, and inflammatory

pathways (141). Although these pathways can regulate CR’s

effects independently, there is significant overlap between their

signaling cascades. We have so far reviewed evidence of a variety

of beneficial effects of CR and CRMs on mental health disorders.

However, we suggest that to maximize therapeutic benefits, future

CRMs need to target a very specific aspect of the CR signaling

pathway in order to avoid some unwanted effects within the

target population.
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While we have explored several mechanisms by which CR could

influence mental health, there remains vast potential for expanding

the pathways of next-generation CRMs. In the following section, we

highlight the cAMP/protein kinase A (PKA)/CREB cascade and

specific epigenetic pathways, as we believe they have potential to be

leveraged for development into innovative CRM treatments for

mental health disorders.
5.1 cAMP/PKA/CREB signaling pathway

The cAMP/PKA/CREB signaling pathway, also known as the

cAMP-dependent pathway, has a role in regulating neuronal

growth and development, synaptic plasticity, neurogenesis and

memory consolidation (48, 142). The canonical cAMP/PKA/

CREB pathway for gene transcription lies downstream of ligand

binding to an appropriate G-protein coupled receptor, causing

cAMP production, that in turn activates PKA to directly

phosphorylate CREB resulting in histone modification and

increased transcription (143, 144). The CR signaling pathway has

significant overlap with the cAMP/PKA/CREB cascade with both

CR and exogenous administration of cAMP in mice increasing

SIRT1 mRNA expression to prevent oxidative stress, increase

longevity and improve neuropsychological functioning (145).

The most likely candidate within this pathway through which

CR mediates its mental health benefits is CREB, as CREB-deficient

animals show limited neurophysiological improvements in

response to CR (48). CREB is also a mediator of experience-based

neuroadaptations and regulator of the addictive qualities of drugs of

abuse (146) and its expression in the hippocampus is directly

correlated with antidepressant effects (147–149). As highlighted in

section 4.1 above, numerous novel therapies targeting CREB

through PDE4 inhibition have been developed and are being

trialed as treatments for mental health disorders, further

emphasizing CREB signaling as a promising therapeutic target.

However, therapeutic targeting of CREB through direct or

indirect pharmacological intervention remains challenging due to

its role in the ubiquitous cAMP signaling cascade. This cascade,

which involves cAMP, PDE4, PKA, and CREB, mediates,

modulates, and regulates diverse cellular functions throughout

both central and peripheral systems, making therapeutic effects

difficult to isolate and predict. Further exploration in the overlap

between CR and the CREB pathway may reveal targets that could be

modulated to specifically exert beneficial effects on mental health

without having adverse outcomes on other neuronal functions.
5.2 Epigenetics

A strong implication stemming from the previously reported

improvement of neuropsychological function in the offspring of CR

rodents is that such an intervention causes inheritable epigenetic

modifications (150). CR induces epigenetic changes mainly via

DNA methylation [reviewed in (151)], histone modification, and

non-coding RNA regulation – processes that have only been
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partially investigated in the context of CR (152). In particular, CR

has been found to affect the DNA methylation pattern of genes

involved in metabolism, oxidative stress and aging (153–155) in

different tissue types such as in the liver (156), kidney (157) and

brain (158, 159). In mice, CR causes hypermethylation of

methyltransferase promoters (155) and may have histone

modification abilities due to its ability to upregulate SIRT which

has histone deacetylase properties (160). Histone deacetylase

activity has been also observed to be increased by CR and was

suggested to facilitate CR’s ability to act as a protective mechanism

(161). There has been limited evidence of changes in non-coding

RNA by CR in mice brains, however, researchers have found that

40% CR for 2 years (162) and 15% CR for 72 weeks (163) can

modulate severa l microRNAs involved in apoptos is ,

neuroprotection, neurogenesis, neuronal survival, axon guidance

and histone regulation (164).

CR’s potential as a treatment for mental health disorders,

combined with its ability to induce epigenetic modifications, is

particularly relevant given that aberrant epigenetic changes

contribute to the pathophysiology of mental health disorders and

addiction (165–168). Epigenetic modification, predominately via

gene-specific and genome-wide DNA methylome investigations, has

been suggested to represent the physiological mechanistic link between

environmental factors that can increase susceptibility to mental health

disorders (169, 170). Abnormal changes in histone modification and

microRNA deregulation have also been linked to mental health

disorders (171–173). For example, blood of patients with MDD had

lower levels of H3K4me3 levels, a marker for chromatin activation, in

the promoter regions of TNFAIP3. TLR4, TNIP2, miR-146a and miR-

155 (172). The same study also showed that the severity of depression

symptoms was associated with H3K4me3 levels at TLR4 and TNIP2

(172). In mouse models of anxiety, increases of histone deacetylation

expression are observed and once inhibited, anxiety- and depressive-

like symptoms are reversed (174, 175). As such, targeting epigenetic

modifications caused by CR may be a promising avenue for novel

CRM development.
6 Conclusions

In this review, we have examined the growing body of evidence

supporting the potential role of CR and CRMs in the treatment of

key psychiatric disorders, including anxiety, depression, and

addiction. While CR has long been associated with increased

lifespan and improved metabolic health, accumulating preclinical

findings suggest that it can have beneficial impacts on mood and

behavior. Specifically, CR exerts mild but consistent anxiolytic

effects when initiated during young adulthood, and shows

promise in alleviating depression-associated behaviors, such as

social withdrawal, aggression, and modest improvements in the

forced swim test. These effects seem to be achieved through

modulation of key mood-related pathways, including serotonin,

dopamine, and orexin signaling, CREB activity, and astrocyte
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function. In the case of addiction, in particular alcohol use

disorder, CR may play an adjunctive role by reducing relapse risk

through modulation of neurobiological systems involved in reward

and stress, a finding largely restricted to the preclinical context.

A critical limitation of preclinical findings is that the efficacy of

CR is not uniform - it is highly dependent on the timing, duration,

and degree of caloric restriction. The most favorable outcomes are

observed with moderate restriction (20–40%) maintained for

extended periods (typically two months or longer) and initiated

in early adulthood. In contrast, CR introduced later in life or under

more severe regimens can be ineffective or even counterproductive.

However, translation from preclinical models to psychiatric practice

remains limited.

CR modulates a wide array of signaling pathways - such as the

cAMP/PKA/CREB axis, orexin signaling, and epigenetic regulators

- yet a more nuanced understanding of how these mechanisms

converge to affect behavior in humans is urgently needed. While the

majority of the reviewed clinical findings report positive effects of

CR on mood disorders, they were performed in overweight and

obese populations, confounding interpretation. Namely, it is

difficult to discern whether the positive effects come from CR,

weight loss, or a combination of both. However, the findings of the

CALERIE study suggest that CR alone could be sufficient to provide

significant mood improvements. Nonetheless, weight loss

associated with CR may not be clinically appropriate in all

populations, such as those with cancer or eating disorders,

limiting its utility as a broadly applicable intervention.

These limitations underscore the clinical potential of CRMs -

compounds that mimic the molecular effects of CR without dietary

restriction. Among the compounds discussed in this review -

resveratrol, rapamycin, and semaglutide - all show mechanistic

and behavioral evidence of efficacy in models of anxiety, depression,

and addiction. This is further evidenced by the increased research of

these compounds in the clinical setting. Importantly, these

compounds may offer more targeted therapeutic benefits than CR

itself due to their action on specific molecular pathways. For

instance, resveratrol’s inhibition of PDE4 leads to enhanced

cAMP signaling; rapamycin promotes autophagy and elevates

BDNF levels; and semaglutide, a GLP-1 receptor agonist,

influences reward-related behaviors and reduces substance-

seeking in preclinical models through neurotransmitter

modulation such as dopamine.

Future research should focus on several fronts:
• Clinical Trials – More rigorously designed trials are needed

to directly test CR and CRM efficacy in patients with

anxiety, depression, and substance use disorders. In

particular, further clinical studies on the effectiveness of

metabolic interventions in non-obese populations are

needed to understand the potency of this class

of therapeutics.

• Mechanistic Studies – Clarifying the molecular cascades

that link metabolic changes to neuropsychiatric outcomes
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will be critical. Emphasis should be given to pathways

involving neurotrophic factors, the cAMP signaling

pathway, critical neurotransmitter systems, and key

epigenetic modifications.

• Personalized Interventions – Identifying patient-specific

biomarkers or psychiatric subtypes that are most likely to

benefit from CR or CRM-based therapies could maximize

therapeutic success while minimizing risk.

• Novel CRMs – While CR and CRMs affect numerous

molecular pathways, many of their modulatory

mechanisms remain to be fully elucidated. This

underscores the urgent need for the development of novel

compounds that may provide all the benefits of CR with

limited side effects.
In summary, the intersection of metabolism and mental health

represents a novel and promising frontier in psychiatry. CR and

CRMs offer a compelling therapeutic avenue by modulating core

biological processes, one that warrants deeper investigation and

clinical translation.
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