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Aim: Abnormal neural oscillations have long been associated with cognition in

depression, especially gamma oscillation that participates in neurocircuit function,

emotion, and cognition. However, whether gamma sensory entrainment induces

alterations in neural oscillations within the cognitive biotype of depression

remains unresolved.

Method: The study includes 141 depressed patients in remission. We used

Measurement and Treatment Research to Improve Cognition in Schizophrenia

(MCCB) to identify the cognitive biotype in depression. Gamma sensory

entrainment and spectral power were conducted through Electroencephalogram

(EEG). Furthermore, we did correlation analysis to explore the relationship between

neural oscillations induced by gamma entrainment with cognitive function

in depression.

Results: We enrolled 141 depressed patients in remission, 56 were identified as

cognitive biotype. We found that alpha power caused by gamma entrainment with

37 and 48Hz decreased in cognitive biotype. Specifically, alpha power induced by 37

Hz gamma entrainment decreased alpha power in P3 (t =-2.394, FDR = 0.049), P4 (t

=-2.713, FDR = 0.038), Fp1 (t =-2.530, FDR = 0.048), T3 (t =-2.689, FDR = 0.038), T5

(t =-2.341, FDR = 0.049), F7 (t =-2.438, FDR = 0.049), T4 (t =-2.764, FDR = 0.038)

and Pz (t =-2.691, FDR = 0.038) channels in cognitive biotype. While alpha power

caused by 48 Hz gamma entrainment showed decreased alpha power only in T4

channel (t =-3.135, FDR = 0.04) except other channels in cognitive biotype.

Moreover, alpha oscillation induced by 37 Hz gamma entrainment was correlated

with working memory in P3, P4, Fp1, T3, T5, F7, T4 and Pz channels; problem

solving-ability in T5 channel. Alpha oscillation caused by 48 Hz gamma entrainment

showed significant correlation with working memory, problem solving-ability and

total scores in T4 channel. Furthermore, we observed that the most optimum

stimulus frequency of gamma entrainment eliciting peak responses varied

among participants.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1586075/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1586075/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1586075/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1586075&domain=pdf&date_stamp=2025-05-23
mailto:adyywg2019@163.com
https://doi.org/10.3389/fpsyt.2025.1586075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1586075
https://www.frontiersin.org/journals/psychiatry


Shi et al. 10.3389/fpsyt.2025.1586075

Frontiers in Psychiatry
Conclusion: Our results confirmed the influence of gamma entrainment by

sensory stimuli on neural activity in cognitive biotype of depression, and

abnormal alpha power was associated with cognitive function. Furthermore,

gamma sensory entrainment with the most optimum stimulus frequency could

serve as a potential method to improve cognition in cognitive biotype

of depression.
KEYWORDS
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1 Introduction

Depression has become the leading cause of burden worldwide,

characterized by significant cognitive deficits and neural circuit

dysfunction (1, 2). Cognitive biotype of depression was proposed

with distinct neural correlates, and functional clinical profile that

responds to therapies specifically targeting cognitive dysfunction (3).

Therefore, assessment and treatment of cognitive biotype of depression

is of great importance which would lead to improved functional

outcomes (4).

Gamma oscillations are interesting because of their interareal

coherence in addition to local regulation (5). Abnormal neural

oscillations have long been associated with cognition in depression,

especially gamma oscillation (30–90 Hz) that participates in

neurocircuit function, emotion, and cognition (6–9). The global

electroencephalogram (EEG) coherence in gamma bands of

depressed patients was significantly higher than controls, especially

in the high gamma band (10). Another EEG study found that subjects

with high depressive scores had reduced resting gamma power in the

anterior cingulate cortex (11), whereas gamma increased in frontal and

temporal regions in a study which subjects with depression performed

spatial and arithmetic tasks (12). As for cognition, not only enhanced

gamma power is observed in the neocortex and hippocampus during

information processing, but also the coherence between the brain areas

(13–16).

If gamma oscillation contributes to cognition, then inducing

gamma during cognitive tasks should impact on neurocircuit

functions and eventually behaviors. Recent studies have employed

various types of brain stimulation to induce gamma oscillations (6).

Gamma Entrainment Using Sensory Stimulation is an emerging

treatment for neuropsychiatric disorders that explored artificially

inducement of gamma oscillations using sensory entrainment

stimulation (17). Many studies have found that gamma

entrainment is involved in cognitive function. Wang et al.

reported gamma entrainment rescues cognitive impairment by

decreasing postsynaptic transmission after traumatic brain injury

(18). Moreover, the frequency of gamma entrainment differs in

various research. Gamma entrainment of 40 Hz in temporal-

parietal areas improved working memory in humans (19, 20).
02
Similarly, research showed reduced behaviorally-driven gamma

before the onset of plaque formation or cognitive decline in a

mouse model of Alzheimer’s disease. Optogenetically driving FS-

PV-interneurons at gamma (40 Hz) reduced levels of amyloid-b (A

b)1–40 and A b1–42 isoforms (21). While, 80 Hz entrainment coupled

to the theta peak in dorsolateral prefrontal cortex by tACS

improved working memory (22). Gamma entrainment using

audiovisual stimuli alleviates chemobrain pathology and cognitive

impairment induced by chemotherapy in mice (23). It is currently

unclear which is the most suitable stimulation frequency for gamma

stimulation to improve cognition. While 40 Hz is commonly used

in neuromodulation studies (e.g., TMS or flicker stimulation), this

choice typically derives from animal models of gamma entrainment

in sensory processing (24). However, the extension to 33–48 Hz in

humans demands explicit rationale based on: slow gamma (30–50

Hz) vs. fast gamma (60–100 Hz) sub-bands are associated with

distinct cognitive processes (25). The 33–48 Hz range overlaps with

“slow gamma” linked to hippocampal-cortical interactions (26), our

target aligns with this mechanism. In depression, specific gamma

sub-bands correlate with emotional processing: 40–48 Hz

abnormalities in amygdala-prefrontal circuitry, while 30–40 Hz

deficits relate to reward processing. Gamma peak frequencies vary

inter-individually based on age, genetics, and pathology (27). A

fixed 33–48 Hz range risks suboptimal entrainment without

individual peak identification (e.g., baseline EEG-guided

personalization). The 40 Hz preference in rodents stems from

auditory-driven gamma resonance (28), but human cortical

gamma exhibits broader natural ranges: 25–45 Hz in resting EEG

(29). Broad frequency ranges (15 Hz bandwidth) may inadvertently

entrain adjacent beta (20–30 Hz) or high-gamma (>50 Hz) bands

due to harmonic interactions. A narrower, biologically constrained

range (e.g., 38–48 Hz) could improve target specificity. Therefore,

we would like to explore the most appropriate frequency of gamma

stimulation in cognitive biotype of depression.

Here, we distinguished cognitive biotype in stable depression by

assessing cognition through the MATRICS Consensus Cognitive

Battery (MCCB). Moreover, gamma sensory entrainment and

spectral power was conducted via EEG, and then we analyzed its

correlation with cognitive scores. We aim to investigate the
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potential biological markers and appropriate frequency of gamma

intervention strategies in cognitive biotype of depression.
2 Materials and methods

2.1 Participants

This study enrolled 141 individuals aged 12–60 in Beijing

Anding Hospital with unipolar depression without psychotic

symptoms (according to the diagnostic criteria of DSM-5). Visual

Analogue Scale score of 5 or above is required to reduce the impact

of emotional states. Participants will be excluded if the patients

comorbid of compulsive disorder or substance abuse, or who were

unable to complete the questionnaire. Subjects who meet any of the

following criteria also will be excluded: Those who have undergone

electroconvulsive therapy within 3 months prior to enrollment or

are currently deemed by investigators to require the treatment;

Those receiving concurrent treatments at baseline-including

cognitive behavioral therapy, vortioxetine pharmacotherapy (30),

transcranial magnetic stimulation, vagus nerve stimulation, or deep

brain stimulation and require continuation of these interventions

during the study period. The final analysis for the gamma

entrainment included 56 cognitive biotype (CI) and 85 no

cognitive impairment (NCI) subgroup of depression. Written

informed consents were provided by all patients, and the study

protocol was approved by the Ethics Committee of Beijing

Anding Hospital.
2.2 Identify cognitive biotype in depression
by MCCB cognitive evaluation

We used MCCB to assess the cognition of depressed patients,

which consists of 7 dimensions, including attention, working

memory, speed of processing, verbal learning, visual learning,

reasoning and problem solving, and social cognition (31). And

then computed T-scores adjusted for age, sex and educated years of

participants (32). Based on the T-scores of MCCB, we distinguish

the cognitive biotype from depression. The criteria for cognitive

biotype were two or more cognitive dimensions lower than 40 in

MCCB evaluation (33).
2.3 Gamma sensory entrainment and scalp
encephalographic data acquisition

The steady-state auditory-evoked potentials were measured

using a 24-electrode DSI-24 system (Wearable Sensing, San

Diego, CA) positioned according to the international 10–20

system, providing uniform coverage across the scalp. There were

no background noises present. Throughout the recording session,

participants remained relaxed in a quiet, electromagnetically

shielded room measuring approximately 10 square meters. The

subjects wore EEG recording electrode caps and earphones, were
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played neuromodulation entrained audio sounds for about 5

minutes with eyes open. The entrained audio sounds consisted of

30 seconds of rest, 320 seconds of gamma oscillations entrained

audio playback and 30 seconds of rest. Gamma sensory entrainment

includes different stimuli frequency between 33 to 48 Hz, 20 second/

per frequency. The whole process lasted for approximately 7

minutes. The EEG recordings had a sample rate of 300 Hz, and

the signal was average referenced.
2.4 Power spectrum analysis of neural
oscillations

Power spectral densities (PSD) of neural oscillation were

analyzed by EEGLAB (https://sccn.ucsd.edu/eeglab/index.php)

(34), a toolbox for MATLAB (The MathWorks, Inc., Natick,

MA). The raw EEG data were acquired at a sampling rate of 300

Hz. To extract specific spectral power within each frequency band,

the data were first filtered with a high-pass filter at 1 Hz and a low-

pass filter at 90 Hz. Additionally, a notch filter was applied at 50 Hz

to remove power line interference and then segmented into epochs

of 2 seconds. Bad epochs were identified and removed, and bad

channels were interpolated using spherical spline interpolation.

Independent component analysis (ICA) was performed to

decompose the neural oscillation data, which were carefully

visually inspected to remove artifacts such as eye blinks, eye

movements , body movements , and electrocardiogram

interference. After ICA and baseline correction, the recordings

were referenced to the average of all EEG channels. Epochs

exceeding the amplitude threshold of -100 to 100 μV were

rejected. The average spectral power (μV²) of neural oscillations

in the standard frequency ranges was calculated using the Welch

averaged periodogram method (1). Spectrograms were generated

using a Fast Fourier Transform with a Rectangular Window,

averaging across the entire epoch for each frequency band. The

gamma sensory entrainment-induced power markers were derived

into the following frequency bands: delta (d = 1–4 Hz), theta (q = 4–

8 Hz), alpha (a = 8–13 Hz), beta (b = 13–30 Hz), and gamma (g >
30 Hz) (35, 36).
2.5 Alpha neural oscillations asymmetric
analysis

Alpha neural oscillation asymmetry was calculated in 37 Hz and

48 Hz gamma sensory entrainment, respectively. The recordings

were re-referenced to Cz, and asymmetry scores were calculated

using the normalized power difference between homologous right-

and left-side locations, expressed as (R−L)/(R+L) (37). Additionally,

alpha oscillation asymmetry was examined in six specific regions:

prefrontal [Fp: (Fp2-Fp1)/(Fp2+Fp1)], frontal [F: (F4-F3)/(F4

+F3)], central [C: (C4-C3)/(C4+C3)], Temporal [T: (T4-T3)/(T4

+T3)], parietal [P: (P4-P3)/(P4+P3)] and occipital [O: (O2-O1)/(O2

+O1)] cortex. This index reflects the relative activation of right-side

compared to left-side locations in individuals with depression.
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2.6 Statistical analysis

Data are expressed as mean ± standard deviation (SD).

Statistical analyses were conducted using SPSS software (version

28.0), with a level of significance that was set at *P < 0.05, **P < 0.01

and ***P < 0.001. The Independent-sample T-test was used to

analyze differences of MCCB scores and power spectral density

(including alpha neural oscillation asymmetry) induced by gamma

sensory entrainment between the CI and NCI groups. In detail, the

independent-sample T-test (FDR adjusted) was used to test

differences in alpha power spectral density between two

subgroups. Pearson correlation analysis was utilized to explore

the relationship of the alpha power spectral density induced by

gamma sensory entrainment and cognition in cognitive biotype

of depression.
3 Results

3.1 The effects of gamma sensory
entrainment on neural oscillations in
cognitive biotype of depression

To identify the most appropriate stimuli frequency of gamma

entrainment in cognitive biotype of depression, we calculated the

power spectral density of neural oscillations induced by different

gamma sensory entrainment between 33 to 48 Hz. Compared to

NCI, gamma power existed no difference induced by different

gamma sensory entrainment in cognitive biotype (Table 1).

Interestingly, we found that alpha power caused by gamma

entrainment with 37 and 48 Hz decreased in cognitive biotype.

Specifically, alpha power caused by 37 Hz gamma entrainment

decreased in P3 channel (t =-2.394, FDR = 0.049), P4 channel (t

=-2.713, FDR = 0.038), Fp1 channel (t =-2.530, FDR = 0.048), T3

channel (t =-2.689, FDR = 0.038), T5 channel (t =-2.341, FDR =

0.049), F7 channel (t =-2.438, FDR = 0.049), T4 channel (t =-2.764,

FDR = 0.038) and Pz channel (t =-2.691, FDR = 0.038) in cognitive
Frontiers in Psychiatry 04
biotype (Figure 1). While 48 Hz gamma entrainment showed

decreased alpha power in T4 channel (t =-3.135, FDR = 0.04)

except other channels in cognitive biotype (Figure 2). However,

other neural oscillation frequency brought by gamma entrainment

exhibited no significant differences in two subgroups (FDR > 0.05).
3.2 Alpha power symmetrically induced by
gamma entrainment in cognitive biotype of
depression

Furthermore, we analyzed the alpha asymmetry induced by

gamma entrainment in cognitive biotype of depression. While,

there was no statistical difference in alpha power induced by 37

Hz gamma entrainment in Fp (t = 1.016, P = 0.314), F (t =-0.715, P

= 0.476), C (t =-1.135, P = 0.261), T (t =0.651, P = 0.516), P (t

=1.315, P = 0.194), O (t =-0.567, P = 0.572) and 48 Hz gamma

entrainment in Fp (t =-1.331, P = 0.186), F (t =1.324, P = 0.188), C (t

=1.348, P = 0.18), T (t =1.101, P = 0.275), P (t =-0.486, P = 0.629), O

(t =0.08, P = 0.936) (Figure 3, Table 2).
3.3 The correlation of alpha power induced
by gamma entrainment with cognitive
function in depression

To further explore the relationship between alpha power induced

by gamma entrainment and cognitive function in depression, we did

correlation analysis. Significant correlations between cognitive function

and alpha power were observed. In 37 Hz condition, alpha oscillation

induced by gamma entrainment was correlated with working memory

in P3 channel (r = 0.209, P = 0.013), P4 channel (r = 0.217, P = 0.01),

Fp1 channel (r = 0.239, P = 0.004), T3 channel (r = 0.190, P = 0.024),

T5 channel (r = 0.214, P = 0.011), F7 channel (r = 0.233, P = 0.005), T4

channel (r = 0.226, P = 0.007), Pz channel (r = 0.206, P = 0.014);

problem solving-ability in T5 channel (r = 0.181, P = 0.032). While

alpha oscillation caused by 48 Hz gamma entrainment showed

significant correlation with working memory (r = 0.261, P = 0.002),

problem solving-ability (r = 0.171, P = 0.042) and total score (r = 0.192,

P = 0.023) in T4 channel except other channels (Figure 4).
3.4 Individualized peak distribution of
neural oscillations induced by gamma
sensory entrainment in depression

Moreover, we compared the stimulus frequency of gamma

entrainment that elicited peak neural responses in each

individual. Interestingly, we observed that the stimulus frequency

of gamma entrainment eliciting peak responses varied among

participants. The majority of depressive individuals exhibited

peak responses at 33 Hz gamma entrainment. No significant

differences were observed in the average of the maximum neural

oscillation elicited by appropriate gamma entrainment among

participants (Figure 5).
TABLE 1 Effects of gamma sensory entrainment on neural oscillations
in depression.

Gamma
Entrainment

Channel T-Value P-Value FDR

37 Hz P3 -2.394 0.018 0.049

P4 -2.713 0.008 0.038

Fp1 -2.530 0.013 0.048

T3 -2.689 0.008 0.038

T5 -2.341 0.021 0.049

F7 -2.438 0.016 0.049

T4 -2.764 0.006 0.038

Pz -2.691 0.008 0.038

48 Hz T4 -3.135 0.002 0.040
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FIGURE 1

Alpha power induced by gamma entrainment with 37 Hz decreased in cognitive biotype of depression. (A) Alpha power except other neural
oscillations induced by gamma entrainment decreased in cognitive biotype of depression. (B) Alpha power induced by gamma entrainment
decreased in P3, P4, Fp1, T3, T5, F7, T4 and Pz channels in cognitive biotype. CI, cognitive impairment group; NCI, non-cognitive impairment.
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FIGURE 2

Alpha power induced by gamma entrainment with 48 Hz decreased in cognitive biotype of depression. (A) Alpha power except other neural
oscillations induced by gamma entrainment decreased in cognitive biotype of depression. (B) Alpha power induced by gamma entrainment
decreased in T4 channel in cognitive biotype. CI, cognitive impairment group; NCI, non-cognitive impairment.
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4 Discussion

This study suggests that alpha power caused by gamma

entrainment with 37 and 48 Hz decreased in cognitive biotype.

Specifically, Alpha power induced by 37 Hz gamma entrainment

decreased in parietal, left Frontal, temporal, left frontal-temporal

regions in cognitive biotype of depression. Moreover, all these alpha

oscillations were correlated with working memory, but only

problem solving-ability in left posterior temporal lobe. While

alpha power caused by 48 Hz gamma entrainment showed

decreased alpha power only in right temporal region in cognitive

biotype. And it has significant correlation with working memory,

problem solving-ability and total score. Furthermore, we observed

that the stimulus frequency of gamma entrainment eliciting peak

responses varied among participants.

Oscillatory activity in neuronal cells has been associated with a

variety of perceptual, motor, and cognitive functions (7, 38–40).

Modulation of gamma oscillations as a possible therapeutic tool for

neuropsychiatric diseases (41–43). The impact of gamma

entrainment on gamma power in depression with cognitive

impairment or not was generally similar. Gamma entrainment
Frontiers in Psychiatry 07
primarily induces neural activity in the gamma frequency band.

However, due to the complexity of brain oscillations and cross-

frequency coupling, it may also indirectly affect other frequency

bands, such as theta, alpha, beta, etc (44, 45). The study reports a

decrease in alpha power following gamma entrainment at 37 Hz

across multiple areas in the cognitive biotype of depression. These

results suggest that 37 Hz gamma entrainment has a widespread

neuromodulatory effect, potentially influencing regions involved in

cognitive processing and memory. In contrast, 48 Hz gamma

entrainment showed a more localized reduction in alpha power,

primarily in right temporal region. This frequency-specific and

region-specific effect aligns with previous studies demonstrating

that gamma entrainment can selectively modulate neural activity

depending on the frequency and brain region targeted (46, 47).

More interestingly, research also reported there is a suppression of

alpha rhythms with 40 Hz square wave sounds (48). Gamma

entrainment is thought to synchronize neural activity, enhancing

communication between brain regions involved in cognitive

processing (49).

The reduction in alpha power observed in this study may reflect

a shift in neural resources from idling (associated with alpha

oscillations) to active processing (associated with gamma

oscillations). Alpha oscillations are theorized to reflect cortical

inhibition mechanisms (50), top-down attention regulation (51),

and cross-frequency coupling dynamics (52). Reduced alpha power

may indicate impaired inhibitory control over task-irrelevant

cortical regions. In depression, this could manifest as

hyperactivity in the default mode network (DMN) during rest

(53), potentially linked to rumination. A reference to Berger’s

original thalamocortical gating theory and modern DMN-alpha

interactions would help ground this interpretation. Moreover, alpha

oscillations modulate sensory gain in visual/auditory cortices

during attentional tasks (54). The observed alpha reduction might

reflect failure to suppress distractors (e.g., negative emotional

stimuli), consistent with depression’s attentional bias. Linking

alpha power to behavioral measures like emotional Stroop

performance could bridge neural and cognitive levels.

Depression-related alpha suppression may disrupt cross-

frequency coupling with gamma oscillations, which coordinates

distributed neural assemblies for cognitive-emotional integration

(5). Hipp et al. demonstrated that alpha phase modulates gamma

amplitude during working memory-a mechanism potentially

compromised in depression (55). Reduced alpha could reflect
FIGURE 3

The asymmetry of alpha power values induced by gamma entrainment in CI and NCI biotype in MDD. (A) There was no statistical difference in alpha
power induced by 37 Hz gamma entrainment between CI and NCI biotypes. (B) There was no statistical difference in alpha power induced by 48 Hz
gamma entrainment between CI and NCI biotypes. CI: cognitive impairment group, NCI: non-cognitive impairment.
TABLE 2 Alpha asymmetry induced by gamma entrainment
in depression.

Gamma
Entrainment

Alpha
Asymmetry

T-Value P-Value

37 Hz Fp 1.016 0.314

F -0.715 0.476

C -1.135 0.261

T 0.651 0.516

P 1.315 0.194

O -0.567 0.572

48 Hz Fp -1.331 0.186

F 1.324 0.188

C 1.348 0.180

T 1.101 0.275

P -0.486 0.629

O 0.080 0.936
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FIGURE 4

The correlation of alpha power induced by gamma entrainment with cognitive function in depression. (A-I) In 37 Hz condition, alpha oscillation
induced by gamma entrainment was correlated with working memory in P3, P4, Fp1, T3, T5, F7, T4 and Pz channels; problem solving-ability in T5
channel. (J-L): In 48 Hz condition, alpha oscillation induced by gamma entrainment showed significant correlation with working memory, problem
solving-ability and total score in T4 channel. CI, cognitive impairment group; NCI, non-cognitive impairment; WM, working memory; PSA, problem
solving-ability.
FIGURE 5

Individualized peak distribution of neural oscillations induced by gamma sensory entrainment in depression. (A) The majority of depressive individuals
exhibited peak responses at 33 Hz gamma entrainment. (B) No significant differences were observed in the average of the maximum neural
oscillation elicited by appropriate gamma entrainment among participants. CI, cognitive impairment group; NCI, non-cognitive impairment.
Frontiers in Psychiatry frontiersin.org08

https://doi.org/10.3389/fpsyt.2025.1586075
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Shi et al. 10.3389/fpsyt.2025.1586075
abnormal thalamocortical resonance, as proposed in models linking

mood disorders to disrupted oscillatory hierarchies. The differential

effects of 37 Hz and 48 Hz gamma entrainment suggest that specific

frequencies may engage distinct neural mechanisms. This could be

leveraged in therapeutic interventions to target specific cognitive

biotype in depression.

Alpha oscillations induced by 37 Hz gamma entrainment were

closely correlated with working memory in multiple areas and with

problem-solving ability in the left posterior temporal lobe. This is

consistent with research linking alpha oscillations to cognitive control

and memory processes (50, 54). For 48 Hz gamma entrainment in

right temporal region, significant correlations were observed with

working memory, problem-solving ability, and total cognitive score.

The results highlight the importance of the right temporal region in

mediating the cognitive effects of 48 Hz entrainment, which may

reflect its role in integrating sensory and cognitive information (56).

The correlation between alpha oscillations and cognitive performance

underscores the potential of gamma entrainment as a tool for

enhancing cognitive function in depression. It suggests that gamma

entrainment may facilitate the reorganization of neural networks,

improving efficiency in cognitive tasks. This is supported by studies

showing that gamma oscillations play a critical role in information

processing and synaptic plasticity (29). Auditory entrainment

coordinates cortical-BNST-NAc triple time locking to alleviate the

depressive disorder (57). Adaikkan et al. found that Tau P301S and

CK-p25 mice subjected to gamma entrainment from the early stages

of neurodegeneration showed a preservation of neuronal and

synaptic density across multiple brain areas and modified cognitive

performance (58). However, the frequency- and region-specific

effects suggest that therapeutic efficacy may depend on the targeted

cognitive domain and underlying neural circuitry.

Also, the study observed variability in the stimulus frequency of

gamma entrainment eliciting peak responses among participants.

This variability could be attributed to individual differences in

neural oscillatory patterns, brain connectivity, or the severity of

depressive symptoms (59). Individual differences in peak response

frequencies highlight the need for personalized approaches in

gamma entrainment-based therapies. This aligns with the

growing emphasis on precision medicine in psychiatry (60).

Identifying individual-specific optimal frequencies for gamma

entrainment could enhance the effectiveness of interventions and

improve outcomes in depression treatment.

The study focused on the cognitive biotype of depression, which

may limit the generalizability of the findings to other biotypes or

clinical populations. Future studies should explore the effects of

gamma entrainment across different subtypes of depression. The

mechanisms underlying the frequency-specific effects of gamma

entrainment on alpha power and cognitive functions remain

unclear. Future research could investigate the role of

neurotransmitter systems (e.g., GABA, glutamate) and functional

connectivity in mediating these effects (61). Longitudinal studies are

needed to determine whether gamma entrainment can produce

sustained improvements in cognitive function in depression.
Frontiers in Psychiatry 09
This study provides valuable insights into the neuromodulatory

effects of gamma entrainment on alpha oscillations and cognitive

function in the cognitive biotype of depression. The findings suggest

that gamma entrainment, particularly at 37 Hz and 48 Hz, may

serve as a promising therapeutic tool for addressing cognitive

deficits in depression. However, the variability in individual

responses underscores the importance of personalized approaches

in optimizing the efficacy of such interventions. Further research is

needed to elucidate the underlying mechanisms and to explore the

long-term benefits of gamma entrainment in clinical populations.
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