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Structural brain alterations
in patients with anxious
depression: evidence from
the REST-meta-MDD project
Songhao Hu1,2†, Li Zhu1,2*† and Xiang-Yang Zhang1*

1Department of Child and Adolescent Psychiatry, Hefei Fourth People’s Hospital, Hefei, Anhui, China,
2School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
Background: Anxious depression (AD) is a clinically significant subtype of major

depressive disorder (MDD) characterized by prominent anxiety symptoms.

Emerging neuroimaging evidence shows that AD patients have significantly

altered brain structure. This study aimed to identify reliable neuroimaging

biomarkers for AD in a Chinese cohort.

Methods: Participants were recruited from the REST-meta-MDD project,

including 178 MDD patients and 89 healthy controls. MDD patients were

stratified into 89 patients with AD and 89 with non-anxious depression (NAD).

Voxel-based morphometry (VBM) was used to quantify gray matter volume

(GMV) using T1-weighted images. Depressive and anxiety symptoms were

assessed using the Hamilton Depression Rating Scale (HAMD-17) and the

Hamilton Anxiety Rating Scale (HAMA-14). Structural covariance (SC) analysis

was employed to investigate coordinated morphological changes across brain

regions. Additionally, a support vector regression (SVR) model was constructed

to predict anxiety severity in MDD patients, with external validation performed in

an independent dataset.

Results: In AD patients, significant increases in GMV were observed in the right

precuneus (PCUN) and right superior parietal gyrus (SPG). Reduced SC was also

found between the right PCUN and left anterior cingulate gyrus (ACG), as well as

between the right PCUN and right angular gyrus (ANG). Additionally, SVR analysis

demonstrated that the right PCUN GMV could effectively predict MDD patients’

HAMA-14 scores (r = 0.477, MSE = 73.865), validated in an independent external

dataset (r = 0.368, MSE = 100.961).

Conclusions: This study’s findings indicate that brain structural abnormalities

may be a crucial pathophysiological basis for AD.
KEYWORDS

major depressive disorder, anxious depression, gray matter volume, structural
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1589040/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1589040/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1589040/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1589040/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1589040&domain=pdf&date_stamp=2025-07-25
mailto:zhulihfsy@163.com
mailto:zhangxy@psych.ac.cn
https://doi.org/10.3389/fpsyt.2025.1589040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1589040
https://www.frontiersin.org/journals/psychiatry


Hu et al. 10.3389/fpsyt.2025.1589040
1 Introduction

Major depressive disorder (MDD) represents a complex global

mental disorder characterized by persistent depressive mood and

anhedonia, with a global prevalence of approximately 185 million

people (1, 2). According to a 2013 epidemiological study, MDD has

become the leading cause of disability in China, imposing a

substantial burden on both individual functioning and public

health systems (3). MDD exhibits substantial heterogeneity in

terms of clinical presentations, pathogenic mechanisms, and

treatment responses, which has led to an increasing recognition

that it may represent a spectrum of disorders rather than a single

disease entity (4, 5). The challenges of accurately diagnosing and

effectively treating MDD make it imperative to focus on

understanding its different subtypes, thus facilitating the

advancement of more personalized and effective therapeutic

approaches (4).

Among the various clinical presentations of MDD, anxious

depression (AD) has emerged as a predominant subtype,

manifesting prominent anxiety features and occurring in roughly

45.7% of MDD patients (6). Clinical investigations have

demonstrated that AD patients present distinct clinical profiles

when contrasted with their non-anxious depression (NAD)

counterparts, including exacerbated symptom severity,

pronounced functional impairment, elevated relapse susceptibility,

diminished therapeutic responsiveness, and increased suicidality

risk (6–10). The differential characteristics between AD and NAD

have been extensively examined across multiple domains,

encompassing neurobiological mechanisms, phenotypic

expressions, and molecular biomarkers (11, 12).

The field of neuroimaging has made significant strides in

elucidating the neural correlates of anxiety disorders (AD), with

resting-state magnetic resonance imaging (rs-MRI) emerging as a

pivotal tool for identifying depression-related neurobiological

subtypes (4, 13, 14). Among these, structural magnetic resonance

imaging (sMRI) studies have consistently revealed distinct patterns

of neuroanatomical alterations in AD patients. Emerging evidence

from a recent brain network study has established a significant

association between the presence of anxiety symptoms and reduced

cortical volumes in key regions of the default mode network (DMN)

in affected patients (15). Voxel-based morphometry (VBM)

investigations have additionally uncovered notable decreases in

grey matter volume (GMV) within the frontal and temporal lobes

of AD patients (16, 17). Moreover, Zhou et al. effectively employed a

random forest classification model using multimodal MRI features,

achieving a high classification accuracy in identifying AD patients

(AUC = 0.802) (18). Therefore, investigating neuroimaging

biomarkers for AD based on sMRI data represents a feasible and

promising strategy, offering potential avenues for advancing

diagnostic accuracy and personalized therapeutic interventions in

future research.

However, most prior studies have focused solely on structural

changes in isolated brain regions in AD, overlooking the disruption

of structural association, a key feature of its multiregional

collaborative pathology. Structural covariance (SC), a well-
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established neuroimaging methodology based on sMRI data,

provides a reliable characterization of coordinated morphological

variations across cerebral cortical regions (19). It provides partial

insight into the interregional connectivity patterns within the brain.

Compared to functional connectivity (FC), which examines inter-

regional associations based on functional similarity derived from

fMRI data, SC demonstrates more stable connectivity features (20,

21). Previous studies by Chen et al. have demonstrated that patients

with anxiety disorders exhibit distinct structural connectivity

patterns between the anterior cingulate cortex (ACC) and

prefrontal cortex (PFC) (22). Therefore, exploring the pattern of

SC changes in AD patients based on GMV alterations that

characterize AD patients holds significant potential for

elucidating the underlying neuropathological mechanisms of AD.

Moreover, machine learning has emerged as a novel analytical

approach in recent years, offering powerful tools to elucidate the

underlying mechanisms linking neuroimaging alterations with core

clinical manifestations of mood disorders (23). Support Vector

Regression (SVR) has been widely adopted in sMRI analyses due

to its superior performance in modeling the relationship between

pathological changes and clinical symptoms, making it a well-

established machine learning approach in the field (24, 25).

Consequently, this study employs SVR to examine the

relationship between GMV in specific brain regions and

anxiety levels.

As far as we are aware, no studies have yet investigated

structural brain alterations in Chinese AD patients by combining

VBM and SC methods. In this study, we first identified GMV

alterations in AD patients. Subsequently, we integrated SC analysis

based on these GMV changes to investigate structural covariance

patterns among brain regions. Finally, the clinical relevance of the

identified regions was further validated using an SVR model. Based

on the available evidence, we proposed three main hypotheses: 1)

AD patients would exhibit unique patterns of structural brain

alterations; 2) AD patients exhibit distinct patterns of SC

alterations across brain regions; and 3) these specific structural

alterations would predict the severity of anxiety symptoms in

MDD patients.
2 Materials and methods

2.1 Participants

The study participants were derived from the REST-meta-MDD

project, encompassing 25 research cohorts across 18 Chinese

medical institutions (26, 27). A comprehensive demographic and

clinical profile was established through systematic collection of key

variables, including diagnostic status, sociodemographic

characteristics (age, gender, educational attainment), and

psychometric assessments using the 14-item Hamilton Anxiety

Rating Scale (HAMA-14) and 17-item Hamilton Depression

Rating Scale (HAMD-17). However, the lack of detailed

documentation regarding medication protocols and disease

progression in this project unfortunately precludes a
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comprehensive evaluation of their potential impact on the

study outcomes.

Before being enrolled in the study, all participants gave written

informed consent, which had been sanctioned by institutional

review boards. The research protocol received ethical clearance

from local Institutional Review Boards, with subsequent data

sharing authorization granted by the Ethics Committee of the

Institute of Psychology, Chinese Academy of Sciences, following

the complete deidentification of participant information. These

rigorous ethical safeguards were implemented to maintain

research integrity and protect participant rights throughout

the study.

Thise study recruited MDD participants who satisfied the

inclusion criteria: 1) aged at least 15 years; 2) a confirmed

diagnosis of MDD through a Structured Clinical Interview based

on the Diagnostic and Statistical Manual of Mental Disorders-IV

(DSM-IV) or International Classification of Diseases 10 (ICD-10);

and 3) a HAMD-17 total score ≥17 at the baseline assessment before

neuroimaging. Additionally, 88 individuals diagnosed with MDD

and 38 healthy controls were excluded from the analysis (28). This

study implemented rigorous exclusion criteria to ensure data

quality and homogeneity: 1) exclusion of patients with late-onset

depression or patients in remission; 2) exclusion of participants

missing basic demographic data (gender, age, or education level); 3)

exclusion of imaging data that did not meet the quality control

criteria, particularly those with inadequate spatial normalization.

Based on the aforementioned criteria, we enrolled a total of 178

patients with MDD and 89 healthy controls as the primary dataset

for subsequent analyses (see in Supplementary Table 1).

Additionally, an independent external validation dataset

comprising 20 MDD patients and 20 healthy controls was

included to evaluate the generalizability of the SVR model. The

external validation dataset was selected based on the following

inclusion criteria: 1) participants aged 15 years or older, and 2) a

confirmed diagnosis of MDD established through DSM-IV or ICD-

10. To ensure data quality and homogeneity, stringent exclusion

criteria were applied: 1) patients with late-onset depression or those

in remission were excluded; 2) participants lacking essential

demographic data (gender, age, or education level) were removed;

3) imaging data failing to meet quality control standards—

particularly those with inadequate spatial normalization—

were discarded.
2.2 Clinical measures

In this study, two well-validated psychometric instruments were

used for symptom assessment: the HAMD-17 for quantifying

depression severity and the HAMA-14 for assessing anxiety

severity in MDD patients. Both instruments have demonstrated

reliable psychometric properties in the Chinese population, with

scale scores positively correlating with symptom severity; higher

HAMD-17 scores indicate more pronounced depressive features,

while the higher HAMA-14 scores reflect greater anxiety intensity

(29, 30).
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In the primary dataset, AD classification was determined

through HAMD-17 and HAMA-14. MDD patients meeting the

criteria of HAMD-17 scores ≥17 and HAMA-14 scores ≥14 were

classified into the AD group, while those with HAMD-17 scores ≥17

but HAMA-14 scores<14 were classified into the anxious

depression (NAD) group (31). This classification scheme has been

empirically validated in prior research (31–34). In addition, we

selected 89 healthy subjects as the healthy controls (HC) group;

none of the HC group had anxiety or depression symptoms.

Notably, due to the absence of HAMD scale data in the external

validation dataset, MDD patients with HAMA-14 scores ≥14 were

classified into the AD group, while the remaining MDD patients

were designated as the NAD group.
2.3 MRI data acquisition, preprocessing,
and quality control

In this research, T1-weighted structural MRI images were

processed utilizing the DPARSF software for initial preparation

(35). The image analysis was conducted utilizing the SPM 8

software in conjunction with the VBM 8 toolbox (http://

dbm.neuro.unijena.de/vb) (26). T1 images were normalized using

template space and subsequently segmented into grey matter (GM),

white matter (WM), and cerebrospinal fluid (CSF). To align the

individual grey matter and white matter images to MNI space, we

applied the normalization function from the Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra

(DARTEL) toolbox. Finally, the grey matter maps of each subject

were smoothed with an 8 mm full-width at half-maximum

(FWHM) Gaussian kernel.
2.4 Analysis of SC

In this study, we adopted a data-driven approach, selecting seed

regions exhibiting significant between-group differences in GMV to

perform SC analysis (19, 20). By examining the relationships

between these seed regions and whole-brain voxel-wise GMV, we

investigated distinct SC alteration patterns in AD patients.

Furthermore, to compare SC differences between AD and NAD

groups, we constructed an interaction linear model.

Ti = b0 + b1Tj + b2Group + b3(Tj� Group) + b4Tn+ ∈

To examine differences in GMV correlation slopes between seed

areas and other brain regions across groups (AD vs. NAD), the

interaction model was employed. Here, Ti indicated the average

GMV of a seed region, while Tj represented voxel-wise GMV values

across the brain. The two groups were assigned to the same variable

in the model (Group), allowing the model to capture group-specific

effects (AD vs. NAD) on the slope of GMV correlations between

seed regions and other brain voxels. Coefficients b0 to b4 were

estimated, where b0 denoted the intercept, b1 captured the Ti-Tj

association, b2 reflected group effects, and b3 quantified the effect of
the interaction. In addition, b4 and Tn indicate the removal of the
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effect of covariates (e.g., gender, age, education, site factor).

Regression slope differences between groups were evaluated using

Student’s t-tests applied to the interaction terms. The resulting

statistical maps were corrected for multiple comparisons using false

discovery rate (FDR) Multi-comparison correction, revealing

significant clusters showing between-group differences in SC.
2.5 SVR analysis and independent external
validation

To evaluate the predictive capacity of GMV alterations in MDD

patients for anxiety severity, we constructed a support vector

regression (SVR) model using the LIBSVM toolbox (http://

www.csie.ntu.edu.tw/~cjlin/libsvm/) (36). The model incorporated

GMV values from all voxels within regions showing significant

differences among the three groups as initial features. We employed

leave-one-out cross-validation (LOOCV) for dataset partitioning and

model evaluation (37). Feature selection was performed by retaining

only those voxels whose GMV values showed statistically significant

correlations with HAMA scores (p< 0.05) in each LOOCV iteration.

The SVR model was implemented with parameter C set to 10 while

maintaining default values for other parameters. Predictive accuracy

was quantified by calculating the Pearson correlation coefficient

between the model’s predicted values and actual clinical scores. The

statistical significance of prediction results was verified through 1000

permutation tests. Finally, we identified “consensus features” as those

voxels consistently selected across all LOOCV iterations (38). The

weight coefficients of these consensus features were mapped onto

brain templates for spatial visualization.

Furthermore, we employed an independent external validation

cohort (comprising 20 AD and 20 NAD patients) to assess the

model’s performance. Using the consensus features, we

reconstructed the model with the original parameters and

rigorously evaluated its efficacy in external validation.
2.6 Statistical analysis

Statistical analyses were conducted with SPSS 25.0 (IBM Corp.,

Armonk, NY). Intergroup differences among the three groups were

analyzed using one-way analysis of variance (ANOVA) for

continuous variables (age and years of education) and chi-square

tests for categorical variables (gender distribution). Clinical

characteristics, including HAMD-17 and HAMA-14 scores, were

compared between AD and NAD groups using independent

samples t-tests. The statistical significance threshold was

maintained at p< 0.05 for all analyses.

To examine GMV variations across the three groups (AD,

NAD, and HC), we conducted comprehensive whole-brain

analyses employing ANCOVA. Additionally, to control for

potential confounding effects and account for site-related

variability, we included sex, age, educational level, and site effects

as covariates in the statistical models, following established
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practices in prior research (27, 39). Between-group comparisons

were subsequently performed using post hoc t-tests with multiple

comparison corrections, implementing a dual-threshold approach

(voxel-level p< 0.001 combined with cluster-level FDR correction at

p< 0.05). Given the significant age differences among the three

groups in this study, we conducted a sensitivity analysis with age

stratification to enhance the robustness of our findings. Based on

previous studies (40, 41), the primary dataset was stratified into

three age-based subgroups:<25 years (young group), 25–40 years

(core adulthood group), and >40 years (late adulthood group).

Subsequent intergroup analyses were conducted within these

subgroups, comparing AD, NAD, and HC groups.

Furthermore, region-specific GMV values from significantly

different clusters were extracted for subsequent correlation

analyses with clinical measures of anxiety and depression severity,

while controlling for demographic variables (age, sex, educational

attainment, and site effects).
3 Results

3.1 Demographic data between the groups

In the primary dataset, demographic characteristics were

similar across the three groups, with the only significant

difference observed in age (p< 0.05). The AD group showed

elevated anxiety levels on HAMA-14 compared to NAD controls

(p< 0.05), while depressive symptoms measured by HAMD-17

remained comparable between groups (p > 0.05) (Table 1).

In the external validation dataset, no significant differences were

observed in demographic characteristics between the AD and NAD

groups, except for HAMA-14 scores (Table 2).
3.2 Brain regional differences in GMV
between AD, NAD, and HC groups

ANOVA revealed significant regional differences of GMV in the

right precuneus (PCUN) among the AD, NAD, and HC groups

(Table 3, Figure 1A). Post-hoc analysis revealed that the AD group

exhibited significantly higher GMV in the right PCUN compared to

the NAD group (Table 3, Figure 1B). Furthermore, relative to the

HC group, the AD group demonstrated increased GMV in the SPG

(Table 3, Figure 1C).

Moreover, given the observed age distribution differences

among the three groups in this study, we conducted additional

sensitivity analyses by stratifying participants into three age

subgroups. Replicating the primary analyses within these

subgroups consistently revealed brain regions with significant

differences among the three groups, further supporting our

findings (see Supplementary Figures 1–3).

After controlling for sex, age, education level, and site

information, the correlation analysis in all MDD patients in this

study demonstrated that the total HAMA-14 score was significantly
frontiersin.org
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associated with the three brain regions showing significant

differences in the above analysis (p< 0.05) (Figure 1).
3.3 Differences in SC among AD, NAD, and
HC groups

Based on the significant between-group differences identified by

ANOVA, we conducted SC analysis. As illustrated in Figure 2 and

detailed in Table 4, the AD group exhibited significantly reduced SC

between the right PCUN and left anterior cingulate gyrus (ACG), as

well as between the right PCUN and the right angular gyrus (ANG),

compared to the NAD group.
3.4 SVR prediction results

In this study, we employed an SVR model constructed using all

voxels within brain regions exhibiting significant between-group

differences in the ANOVA analysis to predict the anxiety severity in

MDD patients. Regression analysis revealed that the predicted

HAMA-17 scores derived from the SVR model in the primary

dataset showed a significant positive correlation with the actual

HAMA-17 scores (r = 0.477, MSE = 73.865), with the significance

confirmed by 1000 iterations of permutation testing (p< 0.001)

(see Figure 3).

Furthermore, in the interpretability analysis, the SVR model

identified voxels consistently selected across all LOOCV iterations
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as ‘consensus features’, and their corresponding weights were

examined. The results demonstrated that GMV in five key regions

—the inferior parietal lobule (IPL), cuneus (CUN), supramarginal

gyrus (SMG), and PCUN—contributed substantially to the model’s

predictive performance (see Figure 4).
3.5 External validation results of the SVR
model

Furthermore, the SVR model was externally validated using an

independent dataset, demonstrating consistently excellent

performance (r = 0.368, MSE = 100.961) (see Figure 3).
4 Discussion

This study investigated the clinical and structural brain

characteristics of AD patients using a multicenter MRI dataset.

Three key findings were identified (1): Significant differences in

GMV were observed among the three groups in the right PCUN.

Specifically, the AD group exhibited significantly increased GMV in

the right PCUN compared to the NAD group. Furthermore, relative

to the HC group, the AD group showed elevated GMV in the right

SPG. And these regional GMV alterations were significantly

correlated with anxiety severity scores (2). We observed

significantly diminished SC in AD patients, particularly between

the right PCUN and both the left ACG and the right ANG (3).
TABLE 2 Demographic and clinical characteristics of the external validation dataset.

Characteristics (mean±SD) AD (n = 20) NAD (n = 20) Statistical value p-value

Gender (M/F) a 8/12 11/9 1.200 0.342

Age (years) b 26.60±8.04 29.55±7.64 1.190 0.241

Education (years) b 10.35±5.09 9.70±6.91 0.339 0.737

HAMA-14 b 19.90±8.77 9.20±2.97 5.168 < 0.001*
AD, anxious MDD; NAD, non-anxious MDD.
aChi-square test.
bt-tests.
*p< 0.05.
TABLE 1 Demographic and clinical characteristics of the primary dataset.

Characteristics (mean±SD)
MDD HC

(n = 89)
Statistical value p-value

AD (n = 89) NAD (n = 89)

Gender (M/F) a 28/61 40/49 40/49 4.48 0.107

Age (years) b 39.93±14.76 29.93±10.66 31.44±11.34 16.87 0.001*

Education (years) b 11.25±3.55 11.75±3.26 13.80±3.51 0.99 0.989

HAMD-17 c 22.08±3.39 21.45±4.19 NA 1.10 0.272

HAMA-14 c 25.36±6.79 9.74±3.18 NA 19.66 0.001*
HC, healthy controls; MDD, major depressive disorder; AD, anxious MDD; NAD, non-anxious MDD.
aChi-square test.
bOne-way ANOVA.
ct-tests.
*p< 0.05.
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Leveraging structural changes in AD patients, we established an

SVR model with superior predictive accuracy for evaluating anxiety

severity in MDD patients, which was robustly validated in an

independent external dataset.

In this study, we observed significant differences in the PCUN

among the AD, NAD, and HC groups. Post hoc analysis revealed

that compared to the NAD group, the AD group exhibited

abnormally increased GMV in the PCUN region. Furthermore,

we identified a significant correlation between this region and

anxiety level scores, further underscoring the unique relevance of
Frontiers in Psychiatry 06
the PCUN in AD. The PCUN not only plays a critical role in the

DMN during resting-state brain activity, but also serves as a central

component of the theory of mind (ToM) neural circuitry (42, 43).

ToM refers to the capacity to understand and predict the mental

states of others based on their actions or experiences (44). Increased

GMV in the PCUN may enhance the functioning of ToM neural

circuitry, promoting excessive self-referential processing and

heightened sensitivity to the perceptions of others, which can

contribute to anxiety-related symptoms. Zhou et al. found that

patients with AD exhibited higher regional homogeneity (ReHo) in
FIGURE 1

(A) Brain regions showed significant differences in GMV among the AD, NAD, and HC groups, and their correlations with HAMA-14 scores. (B) Brain
regions with significant GMV differences between AD and NAD groups, and their correlations with HAMA-14 scores. (C) Brain regions demonstrating
significant GMV differences between AD and HC groups, and their correlations with HAMA-14 scores. PCUN, Precuneus; SPG, Superior parietal
gyrus. The color bars indicate the t-value or F-value (voxel-p< 0.001, cluster-p< 0.05, FDR correction).
TABLE 3 Brain areas with significantly different GMV among AD, NAD, and HC groups.

Brain areas Cluster size (voxels) MNI coordinates Peak F/t value

X Y Z

Three groups

Right PCUN 3120 1.5 -70.5 48 19.757

AD > NAD

Right PCUN 2031 1.5 -70.5 48 6.949

AD > HC

Right SPG 3004 19.5 -64.5 55.5 6.133
GMV, gray matter volume; PCUN, Precuneus; SPG, Superior parietal gyrus.
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the PCUN, suggesting enhanced functional activity in this region in

AD patients. This finding further supports our results, suggesting

that structural and functional alterations in the PCUN may

contribute to the exacerbation of anxiety symptoms in patients

with MDD. These findings suggest that the PCUN may serve as a

potential neuroimaging biomarker for AD. In addition, this study

revealed that the GMV of the SPG was significantly larger in the AD

group compared to the HC group. As a key component of the dorsal

attentional network (DAN), the SPG plays a critical role in top-

down attentional control, memory retrieval, and spatial task

processing (45–47). Recent studies have further demonstrated

that heightened functional connectivity within certain regions of

the DAN, including the parietal lobe, is significantly associated with

anxiety scores (48). The underlying mechanism may involve

impaired emotion regulation due to disruptions in DAN-related

brain regions, which could contribute to the development of anxiety
Frontiers in Psychiatry 07
symptoms (49). Supporting this notion, a recent study reported

elevated ReHo in the SPG of AD patients (18). These findings

collectively suggest that structural and functional abnormalities in

the SPG of AD patients may disrupt emotion regulation, thereby

promoting the emergence of anxiety symptoms. Moreover, the

emotional and cognitive symptoms associated with SPG

dysfunction may exacerbate these disruptions in emotion

regulation, potentially leading to a vicious cycle. In this cycle,

impaired emotion regulation could further aggravate cognitive

decline and behavioral symptoms such as anxiety and depression

(49). Future research should explore whether targeted

interventions, such as transcranial magnetic stimulation (TMS)

therapy focusing on the SPG region and cognitive therapy for

anxiety symptoms, can alleviate anxiety symptoms and enhance

overall cognitive functioning in AD patients. These interventions

may provide a promising approach to addressing the complex
FIGURE 2

SC with significant differences between the AD group and the NAD group. SC, Structural covariance; PCUN, Precuneus; ACG, Anterior cingulate and
paracingulate gyri; ANG, Angular gyrus.
TABLE 4 Brain areas with significantly lower SC in AD than in NAD groups.

Seed brain area Brain areas Cluster size (voxels) MNI coordinates Peak t value

X Y Z

Right PCUN Left ACG 15 0 13.5 25.5 4.292

Right ANG 184 42 -57 49.5 5.774
SC, Structural covariance; PCUN, Precuneus; ACG, Anterior cingulate and paracingulate gyri; ANG, Angular gyrus.
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interplay between structural abnormalities and neuropsychiatric

symptoms in AD. Anxiety symptoms are prevalent in patients with

MDD and can contribute to the development of AD, which is

characterized by heightened agitation and restlessness (50, 51). The

comorbidity of anxiety and depression can exacerbate disease

progression and elevate the risk of suicide in MDD patients (7,

10, 50–52).

In this study, we selected the right PCUN region, which

demonstrated significant differences in the three-group ANCOVA

analysis, as a seed region for voxel-wise SC analysis. Our findings

revealed that compared to the NAD group, the AD group exhibited

significantly reduced SC between the right PCUN and both the left

ACG and right ANG. This suggests that AD patients display a

distinct pattern of structural connectivity alterations compared to

NAD patients. In the present study, we identified significant SC-

induced alterations in the PCUN, ACG, and ANG, all of which are

key components of the DMN (53, 54). The DMN is implicated in

self-referential thought and emotional control, with evidence

suggesting its critical involvement in impaired affective processing

observed in depression (55, 56). Research indicates that the

functional connectivity within the DMN reflects sustained self-

referential processing in the absence of external stimuli and is

associated with maladaptive rumination (57). This psychological

mechanism may lead individuals with MDD to exhibit excessive

focus on their emotional states and negative life events (58, 59).

Such maladaptive rumination on negative attributes potentially

exacerbates anxiety symptoms, thereby contributing to the

development of AD. Moreover, the ACG, a key hub of the DMN,

also serves as a critical component of the ACC. Notably, ACC

dysfunction has been widely recognized as a hallmark feature of
Frontiers in Psychiatry 08
anxiety disorders (60). Lueken et al. reported in their investigation

that ACC activity may serve as a predictive biomarker for treatment

response in anxiety disorders (61). Existing studies have

demonstrated that weakened functional connectivity between the

ACC and other brain regions might represent a neural signature of

anxiety, which aligns consistently with the findings of our current

study (62). In AD, the ACC contributes to both affective regulation

and executive functions. Its interaction with the amygdala likely

facilitates the evaluation of emotional stimuli and the subsequent

initiation of appropriate behavioral responses (63). The amygdala

may further modulate top-down emotional regulation through its

connections with the medial prefrontal cortex (mPFC). A recent

study investigating the amygdala in AD patients further

substantiates this hypothesis (51). Therefore, we propose that in

patients with AD, the ACC may contribute to anxiety symptoms

through its role in emotional regulation and executive functions, as

well as via its relation with the amygdala. This perspective has also

been confirmed in studies specific to anxiety disorders (64, 65). This

may represent the neuropathological mechanism underlying

anxiety symptoms in AD patients in the present study.

Currently, the assessment of anxiety severity in patients with

MDD depends heavily on subjective patient reports and clinicians’

empirical assessments, highlighting the urgent need for objective

MRI-based methodologies to quantify anxiety levels in this patient

population (18). In this study, we extracted the GMV of all voxels in

the right PCUN showing significant intergroup differences and used

these features to construct an SVR model. Our results demonstrated

that the GMV of the right PCUN has predictive value for HAMA

scores in individuals with major depressive disorder (MDD). This

finding was further validated in an independent external dataset.
FIGURE 3

Predictive efficacy of a support vector regression model based on the right PCUN-derived GMV for HAMA Scores. (A) Performance Evaluation in the
primary datasets. (B) Performance Evaluation in the external validation datasets. PCUN = Precuneus.
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Furthermore, in the interpretability analysis of the SVR model, we

identified the five brain regions with the highest contribution weights,

including the IPL, CUN, SMG, and PCUN. The results demonstrated

that these features could predict the HAMA-14 scores to some extent.

Similar studies have been conducted previously. For instance, Zhou

et al. used multimodal MRI data to develop a diagnostic predictive

random forest model that included GMV, low-frequency fluctuation
Frontiers in Psychiatry 09
(fALFF), ReHo, and functional connectivity values in the brain

regions showing significant differences among AD, NAD, and HC

groups (18). Their model achieved a notable classification

performance with an AUC of 0.802. Comparing these two studies,

we observed that the features used for predictive modelling

overlapped, particularly in the PCUN regions. This suggests that

MRI-based features, especially in the PCUN regions, are feasible for
FIGURE 4

Consensus features and their weight distribution in the support vector regression Model.
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constructing predictive models of anxiety symptoms. In light of these

findings, subsequent studies should focus on the development of

standardized MRI-based biomarkers to evaluate anxiety symptoms in

MDD patients and their incorporation into clinical practice

guidelines to establish a more objective and reliable diagnostic

framework for anxious depression.

Furthermore, as a common MDD subtype, AD exhibits poorer

prognosis (52). In this study, AD patients demonstrated significant

structural abnormalities in brain regions including the PCUN, SPG,

and ACG. As discussed, both the SPG and ACG are implicated in

emotion regulation, a core mechanism in the development,

maintenance, and treatment of depression and anxiety disorders,

significantly influencing treatment outcomes (42, 66–68).

Psychotherapy studies targeting improved emotion regulation

demonstrate that enhancing this capacity significantly improves

prognosis in depression and anxiety (66, 67). This may explain the

poorer prognosis observed in AD patients. Moreover, abnormalities

in regions like the ACG may relate to executive function deficits,

potentially impacting daily functional recovery and contributing to

poorer outcomes (69). This aligns with task-based fMRI findings by

Bashford-Largo et al., showing that adolescents with anxiety

disorders exhibit poorer task performance under emotional

interference and reduced activation in the PCUN and anterior

cingulate cortex (64). While consistent with existing literature, the

limited scope of this study necessitates future longitudinal

investigations to further elucidate the relationship between these

neural correlates and disease prognosis.

Several limitations of this study should be carefully considered.

Primarily, notable demographic disparities in age were observed

among the AD, NAD, and HC groups. Although these variables

were incorporated as covariates in our statistical analyses, the

potential confounding effects cannot be entirely ruled out. Future

investigations should be conducted with more balanced intergroup

data to address this limitation. Secondly, while the multicenter

nature of this study enhances the generalizability of our findings, it

inevitably introduces data limitations, including incomplete

medication records and insufficient documentation of disease

progression. Importantly, these limitations preclude our ability to

further investigate the potential impacts of medication details (e.g.,

type, dosage, duration) and disease course (e.g., frequency of

episodes, changes in severity) on the study outcomes. Subsequent

research should prioritize comprehensive clinical data collection,

with particular attention to controlling for confounding factors

such as medication use and comorbidities, to ensure more robust

and reliable outcomes. Third, the lack of HAMD score information

in the external validation dataset may have compromised the

rigorous selection of AD patients, potentially introducing bias in

the SVR model’s performance. Future studies should validate these

findings using larger, more comprehensive datasets with complete

clinical annotations. Fourth, although site effects were adjusted for

as covariates across centers, they may still bias our findings. Future

studies should validate our results in large single-center samples.
Frontiers in Psychiatry 10
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Our findings reveal distinct structural patterns in the brain

organization of AD patients. Specifically, we identified significant

GMV alterations in the right PCUN and right SPG in AD patients,

along with distinct SC patterns between the right PCUN and both the

right ANG and left ACG. These structural alterations may serve as

neuroimaging biomarkers for AD and could potentially predict anxiety

severity in patients with MDD. Collectively, these results advance our

understanding of structural alterations in AD, with implications for

biomarker development and pathophysiology exploration.
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