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Exosomal microRNA signatures
in youth at clinical high risk for
bipolar disorder
Xinyu Meng, Shengmin Zhang, Yingzhen Xu, Zaohui Ma,
Shuzhe Zhou, Yantao Ma, Hong Ma, Xin Yu and Lili Guan*

Peking University Sixth Hospital, Peking University Institute of Mental Health, National Health
Commission (NHC) Key Laboratory of Mental Health (Peking University), National Clinical Research
Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
Introduction: Individuals at clinical high risk for bipolar disorder (CHR-BD)

experienced insufficient recognition. Little is known regarding the association

between exosome microRNA (miRNA) profile and bipolar disorder (BD) risk.

Materials and methods: Twenty youth at CHR-BD, 21 patients with BD, and 24

healthy controls were recruited in this study. Exosomal small RNA sequencing

was undertaken in the plasma sample of the participants. Using machine-

learning algorithms, target miRNAs were selected from differentially expressed

candidates. Predictive models were built and tested on validation set.

Results: The study identified two miRNAs that showed significantly differential

expression between the CHR-BD group and the HC group: hsa-miR-184 (log2FC =

4.22, P = 1.49E-04) and hsa-miR-196a-5p (log2FC = 4.75, P = 3.56E-04). Random

forest (RF) and eXtreme Gradient XGBoost jointly selected two overlapping miRNAs:

hsa-miR-1908-3p and hsa-miR-412-5p. XGBoost outperformed the RF model with

higher AUCs (BD group: 0.71 vs 0.71, CHR-BD group: 0.74 vs 0.72, HC group: 0.60

vs 0.57).

Conclusion: The study identified four target miRNAs involved in neuroimmunity

and neuronal plasticity, supported by literature linking these miRNAs to

neuropsychiatric diseases, suggesting their potential as biomarkers for early

BD. Future research should integrate additional biomarkers for improved

discriminative performance.
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1 Introduction

Bipolar disorder (BD), characterized by recurrent episodes of

mania (hypomania) and depression, accompanied by changes in

activity and function, affects about 40 million people worldwide

(1, 2). Similar to other common mental illnesses, the current

understanding of the etiology of BD is still in its infancy, and the

rate of missed diagnoses and misdiagnoses of BD is high (3, 4).

These challenges emphasize identifying early risk biomarkers for

bipolar disorder (5–7).

Youth identified as being at clinical high-risk for bipolar disorder

(CHR-BD) represents a pivotal population for investigating the

prodromal phase of the illness (8). These individuals frequently

present with subsyndromal mood disturbances, vulnerability to

suicidal behaviours, and functional impairments, despite symptoms

that are transient or insufficient in severity or duration tomeet formal

diagnostic thresholds for BD (9, 10).

Non-coding RNA has been widely described as playing a role in

brain development, with microRNA (miRNA) being the most

extensively studied type. Exosomes are considered a potential source

for studying miRNA biomarkers, as they accumulate in greater

quantities and are more stable in exosomes, and they are not

affected by lysosomal activity (11). In addition, exosomes isolated

from blood or urine may be effective diagnostic and prognostic

biomarkers for central nervous system diseases (12). In the research

of biomarkers based on miRNA, machine learning algorithms can

handle high-dimensional datasets and discover patterns and

regularities within them. The feature selection process is powerful in

identifying the most relevant miRNA features for genomic biomarker

discovery through filter, wrapper, or embededmethods (13, 14). Based

on the known miRNA expression profiles, they can predict the disease

status or other biological characteristics of samples, which is of great

significance for early diagnosis research (15).

Research has reported abnormal miRNA expression in patients

with BD, and genetic studies have identified MIR genes at BD

susceptibility loci (16). These findings collectively suggest that

miRNAs play a crucial role in the pathogenesis of BD. In recent

years, studies have summarized miRNAs related to BD phenotypes

including miR-34a, miR-137, miR-499, miR-708, and miR-1908

(16–21). The current research on exosomal miRNA in BD is very

limited. When studying exosomal miRNA in post-mortem brain

tissue of BD patients, it was found that the level of miR-34a in the

cerebellum was elevated, while the level of miR-34a in the prefrontal

cortex was decreased (18, 19). Another study based on plasma

exosomal samples revealed significant differences in 4 miRNAs

between BD patients and healthy individuals (miR-142-3p, miR-

484, miR-652-3p, miR-185-5p) (22). Therefore, the change in gene

expression influenced by miRNA markers provides a potential

mechanism for the regulation of BD phenotype. However, the

differential expression of exosomal miRNA has not been reported

in the high-risk population of BD.

In this study, we conducted exosomal miRNA sequencing

analysis among BD patients, CHR-BD individuals, and healthy

individuals. We aimed to carry out group comparisons and model

construction based on two assumptions (1): Three distinct
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groups exhibit different exosomal miRNA expression profiles (2);

Exosomal miRNA biomarkers can predict the BD risk status.
2 Materials and methods

2.1 Participants

Twenty individuals at CHR-BD, 21 patients with established

BD-I/II, and 24 healthy controls (HC) aged between 16 and 30 were

enrolled (7), matched by age, sex and ethnicity. Three trained

psychiatrists performed mental health assessments of all the

subjects using the Mini International Neuropsychiatric Interview

V. 7.0 the and the Diagnostic and Statistical Manual of Mental

Disorders 5th Edition (DSM-5) for the BD diagnosis and other

psychiatric comorbidities (23, 24). At Risk for Mania Syndrome

(ARMS) in the Bipolar Prodrome Symptom Scale—Full Prospective

(BPSS-FP) (25) and the Bipolar At-Risk criteria (BAR criteria) (26)

were applied together to define the CHR-BD in this study.

Participants who met the DSM-5 diagnosis of BD-I/II were

assigned to the patient group with BD, and those who did not

meet the DSM-5 diagnosis of BD I/II but met “ARMS” in the BPSS-

FP and the BAR criteria were assigned to the CHR-BD group.

The exclusion criteria for all participants were (1): substance

abuse disorder (2), significant head injury or a current medical or

neurological condition (3), pregnancy, and (4) intellectual disability

with an impact on functioning. The exclusion criteria for the BD

patient group additionally included past treatment with lithium,

which has been proven to play a role regarding the

pharmacogenomics and pharmacoepigenomics in BD (27). To

study the characteristics of BD and effectively differentiate it from

major depressive disorder (MDD), we excluded samples collected

during the depressive phase, defined as having a HAMD score of 17

or higher. In addition, the exclusion criteria for HC were (1)

personal or familial history of any DSM-5 identified disorder, and

(2) past treatment with psychotropic medications.

Social-demographic data regarding age, sex, ethnicity, body

mass index (BMI), medical, smoking and alcohol history were

collected by a form specifically designed for the study purpose.

The affective state (i.e., current depressive and manic symptoms)

was assessed by the Hamilton Depression Rating Scale (HAMD)

(28), and Young Mania Rating Scale (YMRS) (29). Global

functioning was assessed by the Global Assessment of

Functioning Scale (GAF) (30).
2.2 Sample collection and preparation

Plasma samples were collected from participants. The solution of

thermosensitive polymer (PNIPAM-CD63) was mixed evenly with

plasma samples and incubated at room temperature for 40 minutes.

The mixture was then placed in a water bath at 37°C for 5 minutes,

followed by centrifugation at 12000 rpm for 5 minutes at 37°C. The

supernatant was removed, and the precipitate containing exosomes

was suspended in PBS. The above water bath and centrifugation steps

were repeated 3 times to obtain purified exosomes (31).
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2.3 Exosomal RNA isolation

Samples were processed according to the TRIzol reagent

(QIAGEN) instruction manual. RNA concentration was measured

by Qubit® 3.0 Fluorometer (Life Technologies, USA). The integrity

of RNA was measured by using 1% gel electrophoresis.
2.4 Library preparation and small RNA
sequencing

Exosomal RNA sequencing was supported by WUHAN

MEDBIO CO, LTD. A total amount of 1 mg RNA per sample was

used as input material for the RNA sample preparations.

Sequencing libraries were generated using NEBNext® Multiplex

Small RNA Library Prep Set for Illumina® (NEB, USA) following

the manufacturer’s recommendations and index codes were added

to attribute sequences to each sample. Briefly, libraries were

prepared by ligating different adaptors to the total RNA followed

by reverse transcription and PCR amplification and size selection

using 6% PolyAcrylamide Gel. Library quality was assessed on the

Agilent Bioanalyzer 2100 system. Finally, the qualified libraries were

sequenced on the MGISEQ-2000 platform with SE50.
2.5 Data pre-processing and analysis of
differentially expressed miRNAs

Clean data (clean reads) were obtained by removing reads

containing adapter, reads containing ploy-N and reads of low

quality from the raw data. At the same time, Q20, Q30 and GC

content of the clean data were calculated. All the downstream

analyses were based on clean data with high quality. The clean

reads were de-redundant using miRDeep2 software, and the

collapsed reads were compared with the reference genome

(https://www.mirbase.org/). The index of the reference genome

was built using Bowtie 1.

The known miRNA sequences of species were obtained in

miRBase. The information on known miRNA expression levels in

samples and the prediction of novel miRNAs were obtained using

miRDeep2. Differential expression analysis of between groups was

performed using the DESeq2. DESeq2 normalizes counts using the

median ratio method before performing differential expression

analysis with a negative binomial distribution. After FDR

correction, miRNAs with |Log2FC| > 1 and P < 0.05 are

considered significantly differentially expressed miRNAs

(DE miRNAs).
2.6 miRNA selection and model building

Using thresholds of |Log2FC| > 1 and unadjusted P < 0.01, the

study filtered miRNAs with at least moderate differential expression

(32, 33). This method also reduces multicollinearity in high-

dimensional datasets by excluding miRNAs weakly or not
Frontiers in Psychiatry 03
associated with the phenotype, thereby minimizing redundancy

among correlated features.

To identify miRNAs capable of predicting BD risk status (three

phenotypes: HC, CHR-BD, and BD), machine learning algorithms

were incorporated to discover patterns in the expression profiles of

candidate miRNAs after filtering. The study uses two separate feature

selection methods to identify candidate miRNA, and the cross-

consideration between the results is considered as target miRNA

(1): Random Forest (RF) (2); eXtreme Gradient Boosting (XGBoost).

In each model, the parameters of the training set are adjusted using

10-fold cross-verification. For each feature selection method, we then

use the supervised machine learning method to conduct a two-

classification (each group is taken as a positive class and the other

two groups as a negative class) and create a predictive classification

model based on the features selected from the difference study.

The RF model is an ensemble learning method used for

classification or regression, which corrects overfitting by building

a large number of decision trees during training. We chose the RF

model because they are usually robust against overfitting and can

learn nonlinear relationships (34). RF feature selection using Boruta

aims to identify all relevant variables in classification (35), and then

the miRNA combinations selected by Boruta are combined into the

random forest model using the randomForest package, with the

package’s out-of-bag error reported as an unbiased estimate of the

prediction error. We conducted 300 iterations of the random forest

normalized permutation importance function to assess attribute

importance using the default settings within the Boruta package in

R, with a confidence level set at 0.01. This process was repeated 100

times, retaining only those miRNAs selected in at least 10 of these

iterations. We then integrated the miRNAs selected by Boruta into a

random forest model using the randomForest package. To optimize

the model, we used the caret package to find the best number of

trees (250) among 100, 250, 500, 750, 1000, 1250, and 1500. Next,

we determined the optimal number of variables per tree node to be

1 within the range of 1 to 4. This approach ensured that our model

achieved high predictive power while minimizing the risk

of overfitting.

The XGBoost method has been very effectively applied to a

series of classification problems and has provided insights into

biological datasets. However, it takes longer to compute than some

other methods due to the tuning of many hyperparameters, and the

results may be difficult to interpret. XGBoost sorts features

from most to least important. The model is more robust

against overfitting. To decide on regularisation parameters, we

used a grid search with 10-fold repeated cross-validation,

selecting optimal values: (‘nrounds’: 1250, ‘max_depth’: 2,

‘min_child_weight’: 1, ‘gamma’: 0, ‘colsample_bytree’: 0.8,

‘subsample’: 0.75, ‘learning_rate’: 0.025) (36). Once the miRNA is

selected, the model is retrained within the same parameter

range (37).

Non-parametric Kruskal-Wallis tests were conducted for each

feature miRNA to compare expression levels among the three

groups, to determine the significance of each miRNA. Then, the

P-values were adjusted using the Benjamini-Hochberg (BH)

multiple testing correction.
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The samples were randomly divided into a training set (70%)

and a validation set (30%) based on matching age, gender, and

group. To compare the classification performance of the models,

this study evaluated the classification accuracy of each model for

each patient in the validation set. The performance of each feature

selection method was compared using the following evaluation

indicators: True Positive (TP), False Negative (FN), True Negative

(TN), False Positive (FP); Sensitivity, Specificity, Positive Predictive

Value, Negative Predictive Value, Correct Classification Rate.

Among them: Sensitivity = TP/(TP + FN), Specificity = TN/(TN

+ FP), Positive Predictive Value = TP/(TP + FP), Negative

Predictive Value = TN/(TN + FN), Correct Classification Rate =

(TP + TN)/(TP + TN + FP + FN). The pROC package was used for

receiver operating characteristic (ROC) analysis.
2.7 Enrichment analysis and database
validation

We then predicted the gene targets for the identified DE

miRNAs and target miRNAs on the miRWalk website (http://

mirwalk.umm.uni-heidelberg.de/) (38). Based on the database

resources of the website, miRNA-target information from at least

one of the following databases is selected (1): miRTarBase database

(39) (2); TargetScan database (40); (3) miRDB database (41). Target

genes are determined based on a score equal to 1. Functional

enrichment analysis and pathway enrichment analysis, namely

Gene Ontology (GO) analysis and Kyoto Genome Encyclopedia

(KEGG) pathway analysis, were performed using the Metascape

database (http://www.metascape.org). It is considered statistically

significant when Min overlap ≥ 3 and P ≤ 0.01 (42). We also used
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miRNATissueAtlas 2025 (https://www.ccb.uni-saarland.de/

tissueatlas2025) to visualize the tissue specifity of the miRNAs

(43). The database calculates reads per million mapped (RPM) for

2656 miRNAs, with higher RPM values indicating greater

expression levels in a specific organ or tissue. In addition, we

searched for associations between miRNAs and neurological

diseases in the RNADisease database (http://rnadisease.org/) (44).

The workflow is described in Figure 1.
3 Results

3.1 Description of study participants

Demographic data of the participants is shown in Table 1.

Patients with BD, youth at CHR-BD and healthy controls showed

no differences in age, sex, BMI, ethnicity, smoking and alcohol

consumption. BD and CHR-BD groups showed higher scores for

manic and depressive symptoms and functional impairment than

the HC group (P < 0.001), and the difference in symptom scale

scores between the BD group and the CHR-BD group was not

significant (P > 0.05). Details on the stratification of the BD group

and CHR-BD group are presented in Supplementary Table 1.
3.2 Differential expression analysis of
exosomal microRNAs

This study employed DESeq2 for differential expression analysis

of miRNAs between groups. After FDR correction, 2 statistically

significant DEmiRNAs were found between the CHR-BD group
FIGURE 1

Workflow of the feature selection and downstream analysis in this study.
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and the HC group: hsa-miR-184 (log2FC = 4.22, P = 1.49E-04) and

hsa-miR-196a-5p (log2FC = 4.75, P = 3.56E-04) (Figure 2). No

statistically significant DE miRNAs were identified between the

CHR-BD and BD groups, nor between the BD and HC groups after

correction (P > 0.05, Supplementary Figure 1).
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The main purpose of this study is to explore the existence of

exosomal miRNA biomarkers that can predict BD risk status,

namely, the three phenotypes of BD, CHR-BD, and HC. All

miRNAs were filtered using thresholds of |log2FC| > 1 and

unadjusted P < 0.01 from intergroup differential expression
FIGURE 2

Volcano plot of differentially expressed miRNAs in CHR-BD vs HC. Thresholds: |log2FC| > 1 (vertical lines), FDR-adjusted P < 0.05 (horizontal line).
Significantly upregulated miRNAs are highlighted.
TABLE 1 Demographic characteristics and symptomatological scales of the three study groups.

Variables HC (N=24) CHR-BD (N=20) BD (N=21) Total H/c2 P value

Demographic characteristics

Age, mean(SD) 24.67 (2.26) 23.80 (3.68) 23.86 (3.60) 24.14 (3.17) 1.202 0.548

Sex, n(%) 0.815 0.665

Male 7 (29.2) 6 (30.0) 4 (19.0) 17 (26.2)

Female 17 (70.8) 14 (70.0) 17 (81.0) 48 (73.8)

Ethnicity, n(%) 1.389 0.499

Han 23 (95.8) 18 (90.0) 18 (85.7) 59 (90.8)

Others 1 (4.2) 2 (10.0) 3 (14.3) 6 (9.2)

BMI, mean(SD) 20.11 (0.20) 21.41 (3.95) 21.21 (3.71) 20.87 (3.41) 1.528 0.466

Smoke, n(%) 1.531 0.465

Never 23 (95.8) 17 (85.0) 19 (90.5) 59 (90.8)

Smoker 1 (4.2) 3 (15.0) 2 (9.5) 6 (9.2)

Alcohol, n(%) 1.085 0.298

Never 13 (54.2) 5 (25.0) 8 (38.1) 26 (40.0)

Drinker 11 (45.8) 15 (75.0) 13 (61.9) 39 (60.0)

Symptomatological scales

YMRS score, mean(SD) 0.13 (0.45) 11.10 (15.88) 8.24 (7.84) 6.12 (10.81) 32.464 <0.001

HAMD score, mean(SD) 1.38 (1.61) 14.32 (7.89) 8.14 (5.66) 7.44 (7.57) 30.93 <0.001

Current GAF, mean(SD) 91.92 (4.52) 64.74 (15.62) 75.80 (9.81) 78.60 (15.43) 35.425 <0.001
HC, Healthy Control; CHR-BD, Clinical High-Risk for Bipolar Disorder; BD, Bipolar Disorder; BMI, Body Mass Index; YMRS, Young Mania Rating Scale; HAMD, Hamilton Depression Rating
Scale; GAF, Global Assessment of Functioning Scale.
P < 0.05 is considered statistically significant.
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analyses. This yielded 22 miRNAs with robust effect sizes and

moderated statistical significance, which were subsequently

advanced to machine learning feature selection.
3.3 Machine Learning Feature Selection
and predictive performance

For the 22 candidate miRNAs, we performed machine learning

feature selection using two widely adopted algorithms, RF and

XGBoost. A total of 6 feature miRNAs were screened out by the

two methods: hsa-miR-1268b, hsa-miR-5100, hsa-miR-885-3p,

hsa-miR-1908-3p, hsa-miR-4686, and hsa-miR-412-5p. The

expression levels of the six feature miRNAs are detailed in

Figure 3A. For each feature miRNA, the expression levels of the

three study groups were compared using the Kruskal-Wallis test, as

detailed in Table 2. Both methods jointly selected 2 overlapping

miRNAs: hsa-miR-1908-3p and hsa-miR-412-5p (Figure 3B).

As shown in Table 3, each feature selection method has different

performance on the validation set. XGBoost has a higher area under

curve (AUC) when compared to RF (BD group: 0.71 vs 0.71; CHR-

BD group: 0.74 vs 0.72; HC group: 0.60 vs 0.57), while the RF model

is more stringent, selecting only two miRNAs. The ROC curves of

XGBoost and RF on the validation sets are detailed in Figures 4A,

B, separately.
3.4 Enrichment analysis and database
validation

To study the role of miRNA in BD risk, the 2 differentially

expressed miRNAs (hsa-miR-184 and hsa-miR-196a-5p) obtained

from the comparison between the CHR-BD and HC groups, as well

as the 2 target miRNAs (hsa-miR-1908-3p and hsa-miR-412-5p)

selected simultaneously by two models, target gene prediction was

conducted using the miRWalk website, identifying a total of 136

unique target genes (Supplementary Table 2). Subsequently, GO

and KEGG enrichment analyses were conducted on the Metascape
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pathways associated with these target genes (Figures 5A, B). The

miRNA specific expression across normal human organs and brain

tissues are shown in Supplementary Figure 2.

When the training sample is small, the feature selection

processes may be unstable. To address this, for the four target

miRNAs (hsa-miR-184, hsa-miR-196a-5p, hsa-miR-190 8-3p and

hsa-miR-412-5p), we investigated the relationship between these

miRNAs and neurological diseases using the RNADisease database

(Table 4). All four miRNAs were found to be associated with

neurodegenerative diseases: Parkinson’s disease (4/4), Fronto-

temoral dementia (3/4), and Alzheimer’s disease (2/4). In

addition, hsa-miR-184 is also related to autism spectrum disorder.
4 Discussion

In recent years, molecular biological research on BD has

indicated that miRNAs may play a crucial role in the disease’s

pathogenesis (17, 19, 21, 45). To our knowledge, this study pioneers

the study of exosomal miRNA sequencing in individuals at clinical

high risk for BD. We introduced two feature selection models to

explore the potential of intergroup differential miRNAs as early risk

markers for BD, advancing our understanding of BD’s underlying

mechanisms and potentially enhancing early detection and

intervention strategies.

Our differential analysis highlights that, compared to the HC

group, two miRNAs (hsa-miR-184 and hsa-miR-196a-5p) are

significantly upregulated in the CHR-BD group. Interestingly, no

miRNAs showed statistically significant differences between the

CHR-BD and BD groups, nor between the BD and HC groups. hsa-

miR-184 is a highly conserved, single-copy miRNA that exhibits

specific expression patterns in the adult brain, particularly within the

subependymal zone and the dentate gyrus of the hippocampus. This

miRNA plays a crucial role in neurodevelopment and synaptic

plasticity. Overexpression of hsa-miR-184 promotes the proliferation

of neural stem cells and significantly reduces neuronal differentiation

(46). A previous study has shown that hsa-miR-184 is significantly
FIGURE 3

Feature miRNAs identified by machine learning algorithms. (A) Average centralization expression value of feature miRNAs; (B) Feature selection
results and expression correlation matrix. (XGBoost, eXtreme Gradient Boosting; RF, Random Forest).
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downregulated in patients with late-onset depression, and the knockout

of its homologous gene in the fruit fly can lead to reduced motor

activity and impaired memory function, suggesting that its

downregulation may be related to the neurobehavioral abnormalities

associated with late-onset depression (47). Similar to the findings of this

study, a previous study on post-mortem brain ACC tissue indicated

that the expression level of hsa-miR-184 inMDD patients is lower than

that in healthy controls, while there is no significant difference in the

expression level in BD patients compared to healthy controls (16). Our

study found an upregulation of hsa-miR-184 in the CHR-BD group,
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and the expression in the BD group was also non-significantly higher

than that in the HC group (log2FC = 1.503, unadjusted P = 0.046, data

not shown). Considering the above, hsa-miR-184 appears to play a role

in the mechanisms of mood disorders. However, further investigation

is needed to understand the differences in related molecular

mechanisms between BD and MDD, and future studies could

explore hsa-miR-184 as a potential biomarker in mood disorders.

hsa-miR-196a-5p is involved in the development and progression of

tumours and has been extensively studied as a biomarker for various

cancers (48). In addition, it has been reported to have the potential as a

disease biomarker in pediatric epilepsy (49) and Huntington’s disease

(50). In a study on diagnostic markers for pediatric epilepsy, hsa-miR-

196a-5p was identified as a key diagnostic marker in plasma

extracellular vesicles (AUC = 0.840), and its logistic regression model

with other three miRNAs has good diagnostic potential (AUC = 0.940).

The related target genes were significantly enriched in the PI3K-Akt

andMAPK signalling pathways, suggesting that theymay participate in

the occurrence of epilepsy by regulating neuronal excitability and cell

proliferation (49). It is noteworthy that the above two signalling

pathways have also been widely reported to be related to synaptic

plasticity, neuroimmunology, and lithium treatment response in BD

(51–53). In this study, the upregulation of hsa-miR-196a-5p may lead

to an imbalance in neuronal homeostasis in clinical high-risk

populations by inhibiting key molecules in related pathways, thereby
FIGURE 4

Receiver operating characteristic curves on validation set (n = 19). (A) Performance of XGBoost on six feature miRNAs; (B) Performance of RF on two
feature miRNAs. (XGBoost, eXtreme Gradient Boosting; RF, Random Forest).
TABLE 2 Expression levels of six feature miRNAs compared across three
study groups using Kruskal-Wallis test.

Feature miRNA P BH-adjusted P

hsa-miR-1908-3p 0.02810198 0.056204

hsa-miR-412-5p 0.011762157 0.056204

hsa-miR-1268b 0.019050246 0.056204

hsa-miR-4686 0.049382394 0.0740736

hsa-miR-5100 0.166966215 0.2003595

hsa-miR-885-3p 0.287990522 0.2879905
BH, Benjamini-Hochberg.
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increasing the risk of transitioning to (hypo)manic or cyclothymic

episodes. It is worth noting that no miRNA was significantly

differentially expressed between the BD (13/21 at euthymic episode)

and HC groups, whichmay suggest a dynamic change in miRNA levels

associated with mood symptoms. Future studies employing larger,

mood-stratified cohorts should aim to disentangle pathology-specific

signals from state-dependent fluctuations.

Through machine learning feature selection, our analysis

identified two miRNAs (hsa-miR-1908-3p and hsa-miR-412-5p)

that may be associated with BD risk. Notably, these two miRNAs

are also selected by the XGBoost model. miR-1908 was previously

identified as one of the three most promising BD diagnostic

biomarkers in a genome-wide association study (GWAS)

including 9747 BD patients and 14278 controls, with 2.3 million
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SNPs and 700 miRNAs (20). The top SNP associated with miR-

1908 was rs174575 (20), which also demonstrated genome-wide

significance (P = 7.18E-10) in a more recent GWAS study involving

over 40000 BD cases (54). The MiR-1908 gene is located in the first

intron of the fatty acid desaturase 1 (FADS1) gene on chromosome

11, and the target gene network regulated by it shows significant

enrichment in neuron projection and nervous system development.

The results of RT-qPCR studies using peripheral blood samples

indicate that compared with remission status (defined as HDMD <

8), BD patients have lower expression levels of miR-1908 (P =

0.004) during depressive episodes, suggesting the potential of the

this miRNAs as biomarkers for BD disease status (45). Our findings

strengthen the evidence supporting the association between hsa-

miR-1908-3p and BD symptoms. Future studies should further
FIGURE 5

Downstream enrichment analyses of 136 target genes for four miRNAs (hsa-miR-184, hsa-miR-196a-5p, hsa-miR-1908-3p and hsa-miR-412-5p).
(A) GO functional enrichment results; (B) KEGG pathway enrichment results.
TABLE 3 Model performance of two classification models (random forest and extreme gradient boosting) on the validation set (n = 19).

　 XGBoost (selected six miRNAs) RF (selected two miRNAs)

Evaluation Metrics BD CHR-BD HC BD CHR-BD HC

Sensitivity 0.5 0.5 0.4286 0.8333 0.3333 0.4286

Specificity 0.6154 0.8462 0.75 0.6154 0.7692 0.9167

Positive predictive value 0.375 0.6 0.5 0.5 0.4 0.75

Negative predictive value 0.7273 0.7857 0.6923 0.8889 0.7143 0.7333

Correct classification rate 0.5577 0.6731 0.5893 0.7244 0.5513 0.6276

AUC (95% CI) 0.71
(0.4647, 0.9456)

0.74
(0.4959, 0.9912)

0.6
(0.2943, 0.8962)

0.71
(0.4518, 0.9584)

0.72
(0.473, 0.9629)

0.57
(0.2299, 0.9011)
XGBoost, eXtreme Gradient Boosting; RF, Random Forest; BD, Bipolar Disorder. CHR-BD, Clinical High-Risk for Bipolar Disorder; HC, Healthy Control; AUC, Area Under Curve; CI,
Confidence Interval.
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investigate this relationship in different emotional symptom

subgroups of BD risk phenotypes. Research on hsa-miR-412-5p is

limited, but its potential value in the early identification of

amyotrophic lateral sclerosis (ALS) has been preliminarily

confirmed. It may function by regulating the PI3K-Akt pathway

and targeting genes like BCL2 and OPTN, thereby contributing to

neurodegenerative changes in ALS (55). The above pathways and

genes have been identified in BD (56–59). However, the

pathological mechanisms of its involvement in BD high-risk

courses warrant future investigations.

We explored the association between the above four target

miRNAs with neuropsychiatric disease phenotypes through

searching the RNADisease database, which revealed links between

all four miRNAs and neurodegenerative disorders. These miRNAs

may regulate neurodevelopmental processes and neurodegenerative

changes through mechanisms like neuroinflammation, abnormal

synaptic plasticity, or protein homeostasis imbalance (60). Given

the unique diagnostic potential of circulating miRNAs in central

nervous system disorders (61), future studies should prioritize

validating their value in identifying BD risk.

In our model validation, the XGBoost algorithm outperformed

RF with higher AUC values, likely due to its ability to handle

complex, non-linear relationships in miRNA data (37). Despite this,

miRNA-based models are still insufficient in distinguishing BD
Frontiers in Psychiatry 09
from healthy controls at an individual level, possibly due to BD’s

multifactorial nature where miRNA expression captures only part

of the biological heterogeneity. Similar to differential analyses, these

models suggest that exosomal miRNAs are more effective for

identifying CHR-BD populations than for delineating BD

characteristics. The subtle (albeit non-significant) higher scores in

HAMD and YMRS observed in CHR-BD groups compared to BD

groups might hint at symptom-linked miRNA dynamics, suggesting

that the targeted miRNA profiles may align more closely with

dynamic, disease risk-related changes. Future longitudinal studies

with larger sample sizes that follow up on BD conversion outcomes

are essential in high-risk studies. As mood state may influence

inflammatory (16) and miRNA markers (45), these studies should

focus on subgroup analyses based on dynamic emotional states (e.g.,

euthymia, depression, hypomania, mixed) to clarify whether

miRNA patterns reflect transient mood episodes or stable risk

signatures (62). Interating clinical characteristics with multi-omics

data is essential to uncover BD-specific early regulatory networks.

In the present study, GO analyses revealed critical biological

processes, including neuroinflammation, synaptic plasticity

dysregulation, and epigenetic remodelling, that may underpin

early-stage BD pathophysiology. Supporting this, KEGG pathway

analysis highlighted the MAPK and TNF signalling pathways, both

of which are mechanistically intertwined with neuroinflammatory
TABLE 4 Summary of evidence on four target miRNAs and neurological diseases from the RNADisease database.

Findings in this article Evidence in the literature

miRNA CHR-BD group Trait Disease group Sample PMID Score
(0-1)

DE miRNAs
between CHR-
BD and
HC group

hsa-miR-184 Up-regulated Autism Spectrum Disorder 18203756 1.00

Alzheimer Disease Up-regulated Brain 20936480 0.97

Differential express Brain 23822153

Differential express Blood,
Cerebrospinal fluid

24797360

Differential express Brain 28127595

Down-regulated Temporal cortex 28137310

Parkinson Disease Up-regulated Fibroblasts 29986767 0.64

33748099

Mild Traumatic
Brain Injury

32024417 0.33

Frontotemporal Dementia 33800495 0.33

hsa-miR-196a-5p Up-regulated Parkinson Disease Up-regulated iPSCs 29986767 0.33

Frontotemporal Dementia 33800495 0.33

Overlapped
feature miRNAs
in RF
and XGBoost

hsa-miR-1908-3p Up-regulated Parkinson Disease Up-regulated Neuron 29986767 0.33

Frontotemporal Dementia 33800495 0.33

hsa-miR-412-5p Down-regulated Alzheimer Disease Differential express Brain 28127595 0.33

Down-regulated Temporal cortex 28137310

Parkinson Disease Up-regulated Neuron 29986767 0.33
fron
CHR-BD, Clinical High-Risk for Bipolar Disorder; DE miRNAs, significantly Differentially Expressed miRNAs; iPSCs, induced Pluripotent Stem Cells.
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cascades, stress adaptation, and synaptic integrity (63, 64). These

pathways are particularly salient in BD, where chronic stress and

immune dysregulation are hypothesized to drive neuronal

vulnerability. For instance, MAPK signalling not only modulates

inflammatory responses but also influences synaptic plasticity and

neurogenesis, bridging molecular dysfunction with behavioural

phenotypes observed in BD (65, 66). Similarly, TNF-a, a key

mediator of neuroinflammation, has been implicated in mood

dysregulation and neuronal apoptosis, offering a plausible link to

BD progression (65–67). These findings align with existing models

of BD pathogenesis (68). Future efforts would clarify whether these

pathways represent actionable targets for halting or reversing

disease progression in BD at-risk individuals. The specific

expression results reveal distinct tissue-specific patterns for the

identified miRNAs, with hsa-miR-184 and hsa-miR-412-5p

notably enriched in brain regions, highlighting their potential

functional importance in brain-related processes.
5 Limitation

This study has several limitations. Firstly, the sample size was

relatively small, which limited the representativeness of the

population and the statistical effectiveness of the results. Secondly,

we recruited all participants aged 16 to 30, including BD patients.

This age range could lead to an overrepresentation of early- or mid-

onset patients, as late-onset BD patients may be underrepresented or

excluded (69). However, our sample was selected based on a good

match to the CHR-BD group, and early-onset patients may better

reflect the genetic characteristics of BD. Thirdly, although we used

BARS standards and ARMS in BPSS-FP to define the CHR-BD

population, further prognostic verification is necessary. The

heterogeneity within the CHR-BD population necessitates future

cohort studies to identify subgroups at higher risk of converting to

BD. Fourthly, we did not conduct a subgroup analysis based on

different emotional states or BD diagnostic subtypes due to the

limited sample size. Future studies with larger sample size should

incorporate various mood states to clarify whether miRNA patterns

reflect transient mood episodes or stable risk signatures. Lastly, while

our study utilized peripheral blood exosomal miRNAs as a practical

proxy for brain-derived signals, cross-tissue variability in miRNA

expression remains a critical consideration. However, blood-based

biomarkers are preferable for early BD detection due to the

inaccessibility of brain tissue in clinical settings, future work should

integrate cell/tissue-specific analyses with post-mortem brain

samples, cerebrospinal fluid samples, or animal models to validate

the functional relevance of these miRNAs to neuropathology.
6 Conclusion

This study investigated exosomal miRNA in the CHR-BD

population, revealing four miRNAs with intergroup differences
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linked to BD risk. These miRNAs are implicated in neuroimmunity

and neuronal plasticity, with literature supporting their link to

neuropsychiatric diseases, especially mood disorders. Therefore,

these miRNAs and their related targets and pathways can be

considered potential biomarkers for early BD recognition. Our

predictive model developed for exosomal miRNAs represents a

novel investigation in identifying clinical risk phenotypes in BD.

While the current miRNA panel remains insufficient to fully unlock

the clinical utility of risk model for early BD prediction, future cohort

studies involving larger samples and integrating multidimensional

biomarkers are poised to bridge this gap. Such efforts promise to

enhance predictive accuracy and facilitate proactive, personalized

strategies in BD early identification and prevention.
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SUPPLEMENTARY FIGURE 1

(A) Volcano plot of differentially expressedmiRNAs in CHR-BD vs BD; (B) Volcano
plot of differentially expressed miRNAs in BD vs HC. Thresholds: |log2FC| > 1
(vertical lines), FDR-adjusted P < 0.05 (horizontal line).

SUPPLEMENTARY FIGURE 2

Organ and brain tissue specificity of four miRNAs (hsa-miR-184, hsa-miR-

196a-5p, hsa-miR-1908-3p and hsa-miR-412-5p) associated with clinical risk
of bipolar disorder. (A) Organ specificity; (B) Brain tissue specificity. (rpmm:

reads per million mapped).
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