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Introduction: Modern society's increasing stress and irregular lifestyles have led

to rising insomnia prevalence, making sleep quality assessment crucial for health

management. This study investigates the relationship between heart rate

variability (HRV) collected from wearable devices and sleep quality, specifically

focusing on wake-after-sleep-onset (WASO) as a critical marker of sleep

fragmentation. We aimed to develop predictive models for next-day sleep

quality using continuous digital biomarkers.

Methods: We conducted two experiments (winter and summer 2023) with 82

participants who wore Samsung Galaxy Watch Active 2 devices during

wakefulness. Biometric data including HRV signals, daily step counts, and

physiological indicators were collected alongside subjective questionnaire

responses (PHQ-9, GAD-7, ISI, KNHANES, WHOQOL-BREF) and daily sleep

logs. We analyzed seven days of preceding data to predict next-day WASO

using various machine learning approaches including ARIMA, Random Forest,

XGBoost, GRU, TCN, Transformers, and LSTM models.

Results: AmongHRV features, the low-frequency to high-frequency (LF/HF) ratio

emerged as the strongest correlate with WASO, showing statistically significant

differences between groups (Lower LF/HF: 7.5±2.0 min vs. Higher LF/HF: 14.9

±3.0 min, p=0.012). LSTM demonstrated superior predictive performance with

90.4% accuracy, 91.3% precision, and 89.9% recall for binary WASO classification.

LIME analysis confirmed that LF/HF ratio, along with ISI and WHOQOL-BREF

scores, were the most influential features for model predictions.

Discussion: This work introduces a novel approach for managing sleep health

through continuous HRV monitoring and predictive modeling using wearable

devices. The findings highlight the potential of the LF/HF ratio as a digital
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biomarker for sleep quality prediction, offering promise for personalized, data-

driven healthcare interventions. The superior performance of deep learning

methods underscores the value of temporal pattern recognition in sleep quality

assessment, paving the way for proactive sleep health management in

everyday life.
KEYWORDS

wearable devices, digital biomarkers, heart rate variability (HRV), sleep quality, artificial
neural networks, explainable AI
1 Introduction

Modern society, characterized by rapid technological

advancements, heightened stress, irregular lifestyles, and excessive

workloads, has led to a significant increase in the prevalence of

insomnia among individuals (1, 2). According to the American

Academy of Sleep Medicine (AASM), approximately 33% to 50% of

adults have experienced symptoms of insomnia, with 6% to 10%

showing clinically significant symptoms of insomnia (3, 4).

Insomnia can considerably affect both an individual’s health and

societal well-being. Prolonged sleep deprivation could induce a

variety of physical and mental health problems, including chronic

fatigue, an increased risk of cardiovascular disease, impaired

cognitive performance (e.g., reduced concentration and memory),

and depression (5, 6). Furthermore, difficulty sleeping is associated

with higher healthcare expenditures than those who never

experienced sleep issues, leading to an escalation in societal costs

(7). As a result, many efforts have been made to alleviate

insomnia symptoms.

Recent studies focus on tracking sleep quality and insomnia

using wearable devices, such as smartwatches, to inform potential

interventions. Wearable devices can continuously track vital signs,

including heart rate (hereafter HR), activity levels, and sleep

patterns, as part of a user’s daily routine. This ongoing data

collection enables more accurate data-driven sleep analysis (8, 9).

Data collected through photoplethysmography (hereafter PPG)

sensors, a technology that detects changes in blood flow by

shining light on the skin based on the principle that light

absorption varies with blood flow during each heartbeat, can

provide important physiological indicators, such as heart rate

variability (hereafter HRV) (10). HRV reflects stress levels and

autonomic nervous system activity and is used as an important

indicator to assess the relationship between stress and sleep quality,

which allows for the analysis of sleep status (11). Previous research

reported that sleep deprivation adversely affects HRV, reflecting

autonomic nervous system imbalance. A study showed a decline in

HF (high-frequency band) associated with an increase in nLF

(normalized low-frequency band) after partial sleep deprivation,

indicating a decreased parasympathetic and increased sympathetic

activity (12). HRV can be affected by stress and the balance of the
02
autonomic nervous system. A study revealing how stress alters HRV

during each sleep stage was conducted on healthy adults. When

acute stress was given, levels of the LF/HF ratio increased during

NREM sleep, implying a significant decrease in sleep maintenance.

In the absence of stress, parasympathetic activity increased,

particularly during successive NREM cycles. Whereas acute stress

was associated with a decrease in parasympathetic activity.

Researchers have suggested the need for further research into the

relationships between HRV, psychological stress, and sleep (13).

There are several sleep measurement indices, including wake-

after-sleep-onset (hereafter WASO), sleep latency, sleep efficiency,

and total sleep time. Among these sleep measurements, WASO is

widely recognized as one of the most reliable indicators of sleep

quality, particularly in identifying sleep fragmentation and

disturbances (14). It measures the total time a person spends

awake after initially falling asleep, making it a crucial marker for

assessing conditions. As WASO increases, it typically correlates

with lower sleep efficiency and overall poorer sleep quality (15).

WASO has shown a significant difference between the non-

insomnia and insomnia groups. A study by Kristin et al. reported

that people with insomnia had higher minutes of WASO than

normal people on both sleep diary and actigraphy (16). Other

research demonstrated that an increase in WASO was highly

correlated with an increase in insomnia symptoms, including

sleep maintenance and sleep quality (15).

Furthermore, few studies have researched how night-to-night

variability affects sleep measurement indices, including WASO and

sleep efficiency. Research conducted by Buysse et al. indicated that

chronic insomnia subjects exhibited greater variability in WASO

and sleep efficiency compared to non-insomnia subjects. Notably,

while no correlation was found with values from the previous night,

positive correlations were observed with the values from the two

nights prior. However, evidence for positive correlation was weak,

suggesting a need to track a greater number of nights to estimate

stably. The results suggest that continuous tracking of sleep could

enhance insomnia interventions (17).

In this study, we performed a statistical analysis of various HRV

characteristics to identify factors that are significantly associated

with WASO. Among the features examined, the low-frequency to

high-frequency ratio (LF/HF ratio) demonstrated a statistically
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significant correlation with WASO. Based on this result, we utilized

existing predictive models to estimate WASO, leveraging the LF/HF

ratio as a key predictor.

The goal of our study is to predict WASO based on HRV data

and biosignal data collected through wearable devices. We propose

a model to predict the next day’s WASO using HRV data from the

previous seven days and investigate the impact of HRV on the

assessment of sleep quality. In addition, this study explores the

possibility of providing personalized healthcare advice to people

with insomnia in the future and aims to present a new paradigm for

the management of sleep health through wearable devices.
2 Methods

2.1 Experimental setup

This study analyzed the relationship between sleep quality and

vital sign data by conducting two experiments in 2023. The first

experiment was the winter experiment, which lasted 28 days from

January 5 to February 1, 2023, and the second was the summer

experiment, which lasted 26 days from June 26 to July 21, 2023. All

experiments were assessed and approved by the first author’s

university’s Institutional Review Board (IRB). A total of 82

participants participated in the experiments, including 24 males

and 17 females in the winter experiment and 21 males and 20

females in the summer experiment. The average age of the

participants in each experiment was 26.3 ± 6.7 years and 24.2 ±

6.5 years, respectively; in this work, all reported values are in the

form of ‘mean ± standard deviation (SD),’ providing a statistical

summary of central tendency and variability. Among the 82

participants, 67 were undergraduate students and 15 were non-

student adults. All participants were recruited through on-campus

advertisements and flyers.

During the experiment, participants wore wearable devices,

Samsung Galaxy Watch Active 2, that measured real-time vital

signs, such as HR and PPG signals and activity levels. Participants

were instructed to remove the smartwatch at bedtime to charge it

and to re-wear the fully charged device after waking up; therefore,

biometric data were collected exclusively during daytime

wakefulness. Participants also periodically completed various

clinical mental disorder questionnaires, together with a sleep-

related log to rate sleep quality subjectively. The participants’

demographics and the experiment’s timeline are shown in

Table 1. While the full experiment periods were 28 days (winter)

and 26 days (summer), the actual data collection period varied by

participant due to individual circumstances and technical issues. In

total, 10 participants took part in both the winter and

summer experiments.
1 HeartPy. https://python-heart-rate-analysis-toolkit.readthedocs.io/en/
2.2 System design

The system design of this study consists of three phases: data

collection, data storage structure, and database structure. Figure 1
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provides a visual representation of the entire process. This structure

was designed to manage and analyze various vital signs and

questionnaire data efficiently, establishing a comprehensive

framework for data integration. It laid the foundation for the

researcher to combine and explore the objective vital signs data

alongside the participants’ subjective questionnaire data, enabling a

holistic approach to data analysis.
2.3 Data collection

Data collection can be divided into two parts: collecting

biometric data via wearable devices and collecting questionnaire

data provided by participants. This dual approach combines

objective, quantitative physiological data with subjective, self-

reported data to better understand participants’ physical and

psychological states.

2.3.1 Biometric data collection
For the biometric data collection process, wearable devices that

monitor various physiological signals were used. The data collected

included Heart Rate (HR), Photoplethysmography (PPG), Steps,

Distance Traveled, Accelerometer, Gyroscope, and Luminosity,

each providing insights into participants’ physiological and daily

activity patterns. The sampling rates for each biometric signal were

as follows: heart rate at 1 Hz, photoplethysmography (PPG) at 10

Hz, acceleration and gyroscope at 50 Hz, and luminosity at 1 Hz.

Heart Rate (HR) refers to the number of beats per minute

(BPM) and is an important indicator of cardiovascular activity. It is

a direct measure of physical stress and provides real-time insights

into a participant’s physiological state (18). For example, heart rate

increases during exercise or stressful situations, making it a useful

metric for monitoring physical stress levels. Heart Rate Variability

(HRV) features were computed based on data collected from the

PPG sensor, one of the sensors used in wearable devices. The

resulting HRV data serve as a valuable metric for assessing the

balance of the autonomic nervous system, which can be used to

evaluate stress levels and recovery ability. By analyzing changes

between heartbeats, HRV reflects the activity of the sympathetic and

parasympathetic nerves (11, 12). Note that all HR and HRV data

were computed from the target devices’ same PPG signals using the

HeartPy library1 in Python.

Steps were used to represent the participant’s daily physical

activity level. Distance Traveled was calculated based on the step

count and provides valuable information for assessing mobility and

overall activity levels. Together, these metrics offer a comprehensive

understanding of participants’ physical activity and energy

expenditure. Acceleration was derived from the accelerometer

sensor and reflects the intensity and frequency of body

movements. It can be used to analyze the intensity of different

physical activities, such as walking, running, or more vigorous

actions. Similarly, the Gyroscope Rate, measured by the gyroscope
latest/.
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sensor, captures the angular velocity of movements and is used to

analyze posture changes and movement patterns on a per-second

basis. Luminosity, measured as illuminance, represents the amount

of light in a participant’s environment.

In addition to physiological and activity data, these wearable

devices automatically transmit data to a central server every 30

minutes for storage and analysis. This facilitates the examination of

relationships between physical activity patterns, environmental

factors, and vital signs, allowing for a deeper understanding of

participants’ daily lives and overall well-being.
Frontiers in Psychiatry 04
2.3.2 Questionnaire data collection
In addition to the biometric data, participants completed

questionnaires at regular intervals throughout the experiment to

report their subjective mental states. This questionnaire cycle

enabled regular monitoring of the participants’ psychological and

physical conditions, as well as their lifestyle patterns, while

systematically collecting the data. Figure 2 shows the weekly

protocol of the questionnaires administered, including the

frequency of the self-report questionnaires used throughout

the experiment.
TABLE 1 Demographics of the participants and the timeline of the experiment.

Experiment Duration Participants Male/Female Average Age

Winter 2023 28 days (Jan 5-Feb 1, 2023) 41 24/17 26.3 ± 6.8

Summer 2023 26 days (Jun 26-Jul 21, 2023) 41 21/20 24.2 ± 6.5

Total 54 days 82 45/37 25.3 ± 6.7
Bold is the aggregated value of the two experiments.
FIGURE 1

Overall data storage structure. PHQ-9, Patient Health Questionnaire-9; GAD-7, Generalized Anxiety Disorder-7; ISI, Insomnia Severity Index;
KNHANES, Stress Questionnaire for Korea National Health and Nutrition Examination Survey; WHOQOL-BREF, World Health Organization Quality-
of-Life Brief Version; HR, Heart Rate; PPG, photoplethysmography; RMSSD, Root Mean Square of the Successive Differences; LF/HF, Low Frequency/
High Frequency (ratio of HRV metrics); WASO, Wake After Sleep Onset; ARIMA, Autoregressive Integrated Moving Average; GRU, Gated Recurrent
Unit; TCN, Temporal Convolutional Network; LSTM, Long Short-Term Memory; and LIME, Local Interpretable Model-Agnostic Explanations.
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Specifically, the PHQ-9, GAD-7, ISI, KNHANES, and

WHOQOL-BREF were administered during the initial visit. After

that, PHQ-9 and GAD-7 were administered weekly, while ISI and

KNHANES were administered every two weeks. The data collected

from the questionnaires included information on participants’ sleep

experiences, including the number and total duration of WASOs as

a proxy of sleep quality; the sleep logs were recorded daily. These

questionnaire data play an important role in gaining a more

comprehensive understanding of the interaction between

participants’ mental and emotional states and their vital signs

(19). Then, all types of data were unified and stored in a

structured database, MongoDB (20) (for the detailed data storage

structure, see the Integrated Data and Database Structure section in

the Supplementary Material).

2.3.3 Data pre-processing
HRV data was extracted every five minutes throughout each

day. If a given day contained fewer than 12 valid HRV entries

(equivalent to one hour of data), that day was excluded from the

analysis to ensure data quality. Only for days with sufficient data, to

handle missing values in the time-series data, we applied a

structured imputation strategy based on the k-nearest neighbors

(KNN) algorithm, which estimates each missing value by averaging

the values from the most similar neighbors, i.e., rows composed of

five-minute chunks in the case of the HRV features and rows

composed of daily chunks in the case of all other features, including

activity, sleep, and questionnaires, where those neighbors are

decided based on the smallest Euclidean distance among other

features except the target one. We empirically set the number of

neighbors k = 3, considering both performance and data stability.

This approach allowed us to preserve signal consistency and avoid

potential biases from arbitrary assumptions.

Especially with the HRV features, their imputation for the five-

minute chunks impacts relatively less, as they are averaged to be

daily chunks in the forthcoming analysis. For sleep logs, we confirm
Frontiers in Psychiatry 05
that there are fewer missing values (see Supplementary Figure S4) as

we daily monitored during the experiment and asked 82

participants to answer if they had not input sleep logs within a

certain period. To prevent data leakage, all imputation steps were

strictly performed on the training and testing sets separately.
2.4 Statistical analysis

To analyze the relationship between WASO and HRV, we

divided the LF/HF ratio data, one type of HRV variable, based on

a cutoff value of 0.58; this value was set based on the median of the

LF/HF ratio across all participants to achieve a balanced grouping.

As a consequence, the participants were divided into two groups:

Lower LF/HF ratio (n=40, 0.5 ± 0.1) and Higher (n=42, 0.7 ± 0.1).

The LF/HF ratio, an established indicator of autonomic nervous

system balance, reflects the interplay between sympathetic (low

frequency) and parasympathetic (high frequency) activities (21). A

lower ratio indicates parasympathetic dominance, while a higher

ratio reflects sympathetic dominance.

We then analyzed whether there was any difference between the

LF/HF ratio-based groupings on WASO. After checking the

distribution of each feature using the Kolmogorov-Smirnov (K-S)

test, we found that both WASO and LF/HF ratios deviated from a

normal distribution (p < 0.05). Based on these results, we used a

non-parametric approach, the Wilcoxon Rank-Sum Test.

Next, we performed a Pearson correlation coefficient analysis to

analyze the correlation between the biosignals collected in the

experiment. The correlation matrix (see the Supplementary

Figures for the entire correlation matrix) provides a visual

representation of the correlation between each biosignal, allowing

us to address multicollinearity. If the correlation coefficient was

relatively high, it was considered to contribute to redundancy in

representation or potentially degrade model performance and was

excluded as a feature. After excluding the strongly correlated
FIGURE 2

Collection frequency for the self-reported questionnaire data. PHQ-9, Patient Health Questionnaire-9; GAD-7, Generalized Anxiety Disorder-7; ISI,
Insomnia Severity Index; KNHANES, Stress Questionnaire for Korea National Health and Nutrition Examination Survey; and WHOQOL-BREF, World
Health Organization Quality-of-Life Brief Version.
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signals, the remained ones were selected to be used as input

variables for the forthcoming machine-learning model.
2.5 Modeling methods for predictive
analytics

Based on the correlation coefficients and variance inflation

factor (VIF) analysis (22), we selected a range of features (X) to

predict WASO (y) of the next day. These features were carefully

selected based on their correlation with the target variable (y) and

with the LF/HF ratio, as well as their VIF scores, to minimize

multicollinearity. Variables with VIF values greater than five were

considered to indicate multicollinearity, and we implemented

procedures to ensure that these variables were not included as

features (i.e., independent variables) in the modeling process. To

prevent data leakage, we performed feature selection process within

the training/testing cross-validation folds using a nested cross-

validation approach. This ensures that test data does not

influence feature selection, enhancing model validity and

reliability (23).

The modeling process leveraged the most appropriate

combinations of features to ensure optimal predictive

performance. For the prediction of WASO, we employed a variety

of time-series analysis models and machine learning models,

including Autoregressive Integrated Moving Average (ARIMA),

Random Forest, XGBoost, Gated Recurrent Unit (GRU),

Temporal Convolutional Network (TCN), Transformers, and

Long Short-Term Memory (LSTM).

Each model was chosen based on the characteristics of the data

and its unique strengths for predicting WASO. ARIMA is widely

used for analyzing and forecasting time-series data, excelling at

capturing trends and seasonality effectively, which is crucial for

modeling temporal changes in WASO (24). Random Forest is an

ensemble model capable of learning complex non-linear

relationships while being robust to overfitting, making it suitable
Frontiers in Psychiatry 06
for handling diverse feature sets (25). XGBoost is a high-

performance machine learning model that improves on the

Gradient Boosting algorithm, providing fast learning speed and

high prediction performance. It combines multiple weak learners

based on a Decision Tree to create a strong predictive model (26).

GRU, a type of recurrent neural network, efficiently captures long-

term dependencies in sequential data with lower computational cost

compared to other RNN variants (27). TCN leverages convolutional

layers to model temporal dependencies in a highly parallelized

manner, enabling efficient handling of time-series data (28). With

their attention mechanisms, the Transformers model captures

complex relationships within long sequences, offering flexibility in

modeling intricate temporal patterns (29). Lastly, LSTM networks

are designed to learn long-term dependencies and are particularly

effective at modeling the persistent patterns in time-series data,

making them a natural fit for WASO prediction (30).

The target variable, WASO, was categorized into two classes: 0

(Lower WASO) and 1 (Higher WASO). This binary classification

was established due to the nature of sleep interruption. A WASO

value of 0 indicates that the subject had uninterrupted sleep with no

awakening episodes during the night, representing ideal sleep

quality. On the other hand, any non-zero WASO value (i.e., 1)

indicates certain degrees of wakefulness during the night (Min

value: 2 min, Max: 38 min, Mean: 13.1 min; see Supplementary

Figure S2 for the frequency distribution). The distribution of the

two classes is as follows: 0 (LowerWASO) accounts for 41.5%, while

1 (Higher WASO) represents 58.5%. Since the data is relatively

evenly distributed between the two classes, it is appropriate to use

the dataset as-is for classification modelling without additional

adjustments for class imbalance.

For the problem formulation, data from t −6 days to t day (a

total of seven days) were used to predict the WASO on t +1 day.

Fixing seven days as a window size and moving windows with

stride=1 means that each user from the first (winter) experiment is

represented by 22 sets of feature vectors (28 days – 7 win size + 1 =

22) and 20 sets (26 - 7 + 1 = 20) from the second (summer)
BA

FIGURE 3

Overview of HRV data availability. (A) illustrates the distribution of the number of valid days per participant contributing HRV data, binned in 3-day
intervals. Note: the maximum number of valid days was 28 for the first experiment and 26 for the second; only days with at least one hour of HRV
data (i.e., 12 or more five-minute samples) were considered valid. (B) presents the average number of valid 5-minute HRV chunks collected per day
across the week. Error bars indicate the standard deviation across subjects.
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experiment. The total number of possible input feature vectors (X)

for the model is 1,722 (41 users × 22 sets + 41 users × 20 sets = 1722,

note that we got WASO (y) until the day after the experiment, so we

could use until the very last input feature vector for each subject)

with batch size=32. This temporal window was selected to capture a

full weekly cycle, as modern people often exhibit similar behavioral

patterns on a weekly basis (31). Specifically, the inclusion of seven

days ensures that the model incorporates weekend data, which may

differ significantly from weekday patterns. People’s activity levels

and sleep routines can vary between weekdays and weekends, so

using a full week’s worth of data allows for more accurate modeling

of these cyclical patterns in sleep behavior and their influence

on wakefulness.

In summary, we tried to predict WASO using ARIMA, Random

Forest, XGBoost, GRU, TCN, Transformers, and LSTM, with input

data spanning from t −6 days to a t day. The binary classification of

WASO, 0 (Lower WASO), and 1 (Higher WASO) was chosen based

on its practical relevance, as it differentiates between uninterrupted

and disturbed sleep. For ARIMA, classification was performed by
Frontiers in Psychiatry 07
setting a threshold based on the ROC curve, allowing us to determine

the optimal cutoff point for distinguishing between the two classes.

The use of a full week’s worth of data enhances the model’s ability to

capture weekend effects, which may differ from weekday patterns.
3 Results

3.1 Comprehensive data overview

In the current work, experiments were conducted to monitor

participants’ physiological, physical activity, and psychological

states. The number of days of data collected per participant is

summarized in Figure 3; (A) the majority of the participants

participated on most days of the experiment, and (B) the average

number of the retrieved five-minute HRV chunks is relatively

steady across a week, so we conjecture less bias based on a certain

day of the week. Data collected from wearable devices and self-

reported questionnaires were analyzed to provide insights into
TABLE 2 User biometric and questionnaire data with Mean ± SD values and data counts.

Data Type Description Mean ± SD (n = 82) Count

Through smartwatch (passive data)

HR Daily average of heart rate, calculated based on data collected every second during wakefulness,
excluding sleep intervals.

83.4 ± 11.2
(bpm)

2,214

RMSSD Daily average of RMSSD, calculated from 5minute intervals based on PPG data collected at 10 Hz,
limited to periods of wakefulness.

135.4 ± 37.9
(ms)

2,214

LF/HF Ratio Daily average of LF/HF ratio, derived from frequency-domain analysis of HRV data using PPG,
limited to periods of wakefulness.

0.6 ± 0.2
(ms)

2,214

Steps Daily cumulative step count, calculated from step data recorded every second, excluding
sleep periods.

4953.8 ± 10200.8
(step)

2,214

Distance Daily cumulative distance traveled, derived from data collected every second using a pedometer,
excluding sleep periods.

3746.8 ± 7673.8
(m)

2,214

Accelerometer Daily average of acceleration, computed from data collected every second, restricted to
wakeful periods.

X: 1.2 ± 34.9
Y: -4.0 ± 24.9 Z: 3.6 ± 34.5
(m/s2)

1,621

Gyroscope Daily average of rotational movement, computed from gyroscope readings collected every second,
excluding sleep intervals.

X: -0.2 ± 36.7
Y: -0.0 ± 18.7
Z: -0.2 ± 26.3
(deg/s)

1,616

Luminosity Daily average of brightness level, calculated from ambient light sensor readings collected every
second, excluding sleep intervals.

716.5 ± 1023.0
(lux)

2,214

Through self-reported survey (active data)

Questionnaire Weekly responses from five questionnaires (PHQ-9, GAD-7, ISI, KNHANES, WHOQOL-BREF),
providing insights into participants’ psychological and behavioral states.

PHQ-9: 1.7 ± 2.6
GAD-7: 1.1 ± 2.3
ISI: 5.8 ± 4.2
KNHANES: 28.7 ± 10.3
WHOQOL-BREF: 99.4 ± 13.3
(score)

1,394

Sleep Log Daily records of wakefulness after sleep onset
(WASO)

13.1 ± 6.5
(min)

2,296
fron
Data collection times are specified, with measurements taken only during on-wrist periods. Participants removed the smartwatch at bedtime to charge it and re-wore the fully charged device after
waking up; All units are daily-basis except for the questionnaire responses; Biometric data were collected through a smartwatch, while self-reported survey data were submitted by participants via
a web-based interface.
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participants’ daily patterns and overall health status. The results are

summarized in Table 2.

The physiological data included Heart Rate (HR), Root Mean

Square of the Successive Differences (RMSSD), and the LF/HF ratio.

The daily average HR was 83.4 ± 11.2 bpm, reflecting participants’

baseline cardiovascular activity. RMSSD, an indicator of

parasympathetic nervous system regulation, had a daily average of

135.4 ± 37.9 ms. The LF/HF ratio, which assesses the balance between

sympathetic and parasympathetic nervous system activity, was

measured at 0.6 ± 0.2 ms. Physical activities included steps and

distance traveled data. The daily cumulative step count was 4953.8 ±

10200.8 steps, while the daily cumulative distance traveled was 3746.8 ±

7673.8 meters, both reflecting participants’ mobility and physical

activity levels. The statistics of the full features, such as acceleration,

gyroscope for physical activities, and luminosity for environmental

traits, are listed in Table 2. Self-reported questionnaire data provided

valuable insights into participants’ psychological and behavioral states.

The mean scores for each questionnaire were as follows: PHQ-9 at

1.7 ± 2.6, GAD-7 at 1.1 ± 2.3, ISI at 5.8 ± 4.2, KNHANES at 28.7 ± 10.3,

and WHOQOL-BREF at 99.4 ± 13.3. These scores reflect variations in

mental health and overall quality of life among participants. Lastly, the

sleep log data captured participants’ wakefulness after sleep onset

(WASO), with an average of 13.1 ± 6.5 minutes per day. This metric

provides a quantitative assessment of sleep quality and fragmentation.

Also, we visualize the weekly distribution of the LF/HF ratio and

WASO features to depict potential differences in weekdays and

weekends (see Supplementary Figure S5); while LF/HF ratio is

relatively steady, the WASO values tend to be greater on weekends.
3.2 Exploratory data analysis

The Wilcoxon Rank-Sum Test revealed a statistically significant

difference in the distribution of WASO between groups categorized
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by the LF/HF ratio (Lower LF/HF ratio: 7.5 ± 2.0 min and Higher

LF/HF ratio: 14.9 ± 3.0 min with W = −5.0, p = 0.012).Figure 4

depicts the mean WASO values for each LF/HF ratio group (Lower,

Higher). The bars represent the mean WASO value for each group,

and the error bars show the standard deviation, providing a visual

indication of the data variability between groups.

The Lower group had a lower WASO than the Higher group,

suggesting that the group with a lower LF/HF ratio has better sleep

quality. The dashed line represents the average WASO value across

all participants, highlighting the difference between the two groups.

We then check the pairwise correlation coefficients across

features to reduce the complexity of the prediction model. For

instance, the correlation analysis revealed a relatively high

correlation between distance traveled and steps, with a correlation

coefficient of about 0.3. This suggests that the two variables are

likely to provide some similar information. As a consequence, steps

were selected and included in the list of independent variables. To

further filter out features, we set up a threshold of the correlation

coefficient of 0.2 and discarded one of the pairs that exceeded the

threshold. As a consequence, a few features, including distance

traveled and HR, were dropped.
3.3 Predictive analytics

Based on the significant results from the LF/HF ratio analysis in

the previous section, we extended our analysis to include additional

features for predictive modeling. Since LF/HF ratio was correlated

with WASO (r = 0.22, p < 0.05; Supplementary Figure S6 also

presents a scatter plot of continuous WASO values against LF/HF

ratio to illustrate their relationship, including a regression line with

R2 = 0.23), we wanted to use LF/HF ratio as a core feature and

evaluate its interaction with other physiological variables to

improve the model’s predictive capabilities. The goal was to
FIGURE 4

Mean WASO by LF/HF ratio groups. The error bar stands for standard deviation.
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explore which other variables, when combined with LF/HF ratio,

could improve the accuracy of WASO prediction.

3.3.1 Optimal variable set via correlation
coefficients and VIF analysis

After the filtering process from the correlation analysis, we

further checked for multicollinearity issues by performing a VIF

analysis. Based on the VIF analysis results, the optimized variable

combinations were set according to three criteria: correlation

coefficients less than 0.1, 0.2, and 0.3, each consisting of a specific

combination of variables. In the < 0.1 correlation criterion, two

combinations were set: the first combination A1 included LF/HF

ratio, and steps variables; and the second combination A2 included

RMSSD, steps, light level, and GAD-7 variables. These

combinations were constructed so that the contribution of each

variable could be analyzed independently while the correlation

between the variables was very low. Predictions were made from

different aspects, with combination A1 using the LF/HF ratio, which

represents the balance of the autonomic nervous system, and

combination A2 using RMSSD, which reflects the stability of the

autonomic nervous system.

Combinations B1, B2, and B3 were set based on a correlation

coefficient of less than 0.2. Combination B1 included LF/HF ratio,

RMSSD, steps, acceleration, gyroscope, and WHOQOL-BREF;

combination B2 included LF/HF ratio, RMSSD, steps,

acceleration, gyroscope, ISI, and WHOQOLBREF variables; and

combination B3 included LF/HF ratio, RMSSD, steps, acceleration,

gyroscope, PHQ-9, and KNHANES variables. These combinations

aimed to provide a more comprehensive prediction of awakenings

during sleep by combining physiological and physical activity data

and to further analyze the psychological factors of awakenings by

including psychological variables such as anxiety and insomnia.

Finally, based on a correlation coefficient of less than 0.3, we

constructed a single combination C that included LF/HF ratio,

RMSSD, steps, acceleration, gyroscope, GAD-7, ISI, and

WHOQOL-BREF variables. This combination was an approach to

increase the precision of the prediction model by covering as many

different vital signs and psychological factors as possible. Although

the correlation coefficient may be somewhat high, the intention was

to maximize the performance of the WASO prediction by
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incorporating more variables. Based on these six variable

combinations, we evaluated the contribution of each variable to

WASO prediction. From this analysis, we selected the optimal

combination of variables for modeling.

3.3.2 Predictive modeling results
Based on the combination of variables (A1,A2,B1,B2,B3, and C),

we applied various machine learning models to evaluate the

performance of the WASO prediction model. The models used

were Autoregressive Integrated Moving Average (ARIMA),

Random Forest, XGBoost, Gated Recurrent Unit (GRU),

Temporal Convolutional Network (TCN), Transformers, and

Long Short-Term Memory (LSTM). Since binary classification is

impossible for ARIMA models, we used ROC curves to determine

the optimal threshold and then performed classification. The

performance of each model was evaluated based on Accuracy,

Precision, Recall, AUROC, and Loss. This performance evaluation

aimed to understand how much each combination of variables

contributes to the prediction and optimize the WASO prediction

(see the Supplementary Tables for prediction of other target

variables y).

Among the various combinations of variables, we present the

results for Combination B2, as it demonstrated the best overall

performance across all evaluation metrics. The results for the

second best performing combination A1 can be found in the

Supplementary Tables. We compared the performance among

other prediction models based on B2 as presented in Table 3. The

Random Forest model had an accuracy of 0.846 and provided

stability in prediction by evaluating a wide range of variables. The

XGBoost model performed favorably in predicting specific

wakefulness states, with an Accuracy of 0.848 and Precision of

0.860, indicating that the XGBoost model is strong at reducing

unnecessary false positives. The Gated Recurrent Unit (GRU)

model had an accuracy of 0.831, lower than the LSTM. Still, its

simple structure and low computational cost make it suitable for

real-time prediction. The Long Short-TermMemory (LSTM) model

performed best in Combination B2, with an Accuracy of 0.904,

Precision of 0.913, and Recall of 0.899. The combination B2 includes

LF/HF ratio, RMSSD, steps, acceleration, gyroscope, ISI, and

WHOQOL-BREF, and comprehensively considers autonomic
TABLE 3 Performance of the various models to predict WASO (as a binary classification) based on the independent variable combination B2.

Model Accuracy Precision Recall AUROC Loss

ARIMA 0.810 0.822 0.809 0.781 0.401

Random Forest 0.846 0.851 0.840 0.851 0.419

XGBoost 0.848 0.860 0.842 0.866 0.423

GRU 0.831 0.813 0.809 0.802 0.455

TCN 0.832 0.826 0.810 0.811 0.322

Transformers 0.843 0.820 0.801 0.834 0.399

LSTM 0.904 0.913 0.899 0.901 0.263
Bold is the best value, and underlining is the second best. The classification threshold was determined based on ROC curve analysis.
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nervous system and physical activity data and psychological factors.

By combining these variables, the LSTM model was able to

accurately predict wakefulness during sleep by effectively

reflecting time-dependent physiological changes.

Moreover, the physical activity level can be a potential

confounder, as our experiment allowed participants to do

anything freely. To address this, we stratified participants into

three groups based on their average daily step counts: Low (n=27,

3314.4 steps in average), Middle (n=28, 5005.1 steps), and High

(n=27, 7452.7 steps). We then compared model performance across

these groups using the same evaluation process with our main

model; for each group, we divided the data into 8:2 for train and

test, then we trained and tested the LSTM model. The first to the

third rows of Table 4 summarize that the prediction performance

showed marginal variation across groups. These results may

indicate that the physical activity level, as quantified by steps
Frontiers in Psychiatry 10
counted, did not significantly affect the model performance, and

our model is robust across different activity levels.

Additionally, to account for temporal behavioral differences, we

conducted a subgroup analysis by training separate models for

weekday and weekend data and evaluating separate models using

the same feature set and model architecture but different input

window size (X), such as 5 (Monday to Friday) for the weekday

model trained to predict WASO on Saturday night and 2 (Saturday

to Sunday) for the weekend to predict Monday night; since the

number of weekdays was larger than that of weekends (each

weekday occurred eight times during the study period, while each

weekend day occurred seven times), we randomly sampled

workdays (evenly from Monday to Friday) to be the same volume

of weekends. As presented in the fourth to the fifth rows of Table 4,

we found that as variable distributions differ, the overall model

performance of weekdays was slightly better than that of weekends,
TABLE 4 First-third rows: Performance of the different steps groups to predict WASO (as a binary classification) based on the independent variable
combination B2 and the LSTM model.

Group Accuracy Precision Recall AUROC Loss

Low 0.899 0.931 0.908 0.905 0.249

Middle 0.890 0.895 0.914 0.905 0.271

High 0.885 0.932 0.912 0.889 0.250

Weekday 0.820 0.845 0.780 0.825 0.300

Weekend 0.800 0.825 0.790 0.805 0.310

Our model 0.904 0.913 0.899 0.901 0.263
Fourth-fifth rows: Performance of the different weekday-weekend groups based on the same evaluation setting. Bold is the best value, and underlining is the second best. The classification
threshold was determined based on ROC curve analysis.
FIGURE 5

LIME analysis depicts important features contributing to the model’s inference. LF/HF, Low Frequency to High Frequency ratio (one of HRV metrics);
ISI, Insomnia Severity Index; WHOQOLBREF, World Health Organization Quality-of-Life Brief Version; and RMSSD, Root Mean Square of the
Successive Differences.
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although their performance was worse than other results in the

same table, maybe linked to the relatively small input window size.
3.3.3 Explainable LIME analysis and forecast
results

To increase the interpretability of the model, we analyzed the

predicted WASO results based on the combination B2 using the

Local Interpretable Model-Agnostic Explanations (LIME)

technique. The LIME analysis provides a visual representation of

which variables were dominant when the model made a particular

prediction, allowing researchers to better understand the model’s

decision-making process. Figure 5 shows the results of the LIME

analysis, highlighting that the LF/HF ratio was a key predictor,

suggesting that the balance and stability of the autonomic nervous

system influence wakefulness during sleep. Additionally, the ISI

metric for insomnia and the WHOQOL-BREF for quality of life

were also found to be significant variables. ISI metrics reflect the

impact of a user’s insomnia symptoms on wakefulness during sleep,

and the LIME analysis showed that WASO values tended to

increase with higher levels of insomnia, indicating that more

severe insomnia symptoms are likely to result in longer

wakefulness during sleep. The WHOQOL-BREF metrics also

showed that a user’s overall life satisfaction is an important

psychological factor that affects sleep quality. Suppose the

WHOQOL-BREF metric is low. In that case, the user’s stress level

may be higher, or quality of life may be lower, resulting in more

frequent awakenings during sleep, which was visually confirmed by

the LIME analysis in Figure 5. These findings suggest that

physiological indicators (LF/HF ratio) and psychological

indicators (ISI, WHOQOL-BREF) interact to play an important

role in predicting awakening times during sleep. In particular, ISI

and WHOQOL-BREF indicators, in addition to the autonomic

nervous system and physical activity data, contributed to explaining

the impact of psychological state on sleep quality. As a result, the

model was able to predict users’ sleep status more accurately,

providing useful information for developing personalized sleep

management and intervention strategies.
4 Discussion

About the daily average heart rate, 83.4 bpm, the value appears

to be slightly higher compared to a previous study using ECG (32).

However, our data were collected not only during resting conditions

but also during daily activities, such as walking or exercising. A

recent study using PPG signals reported real-world heart rate norms

in healthy individuals (33); in that study, the median value of the

average heart rate in individuals in their early 20s was around 80

bpm, which is similar to our findings.

We then showed that the low and high groups of the LF/HF

ratio are significantly different in terms of the extent of the WASO.

The result suggests that the dominance of the sympathetic nervous

system is strongly associated with increased wakefulness during

sleep, resulting in poorer sleep quality. In contrast, in the Lower
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group, where the parasympathetic activity is relatively dominant,

wakefulness is shorter, indicating better sleep quality. Based on this

statistical testing, we conducted predictive analyses, and as a

consequence, the LF/HF ratio emerged as a significant HRV

variable predicting WASO among healthy subjects. Individuals

with a low LF/HF ratio showed lower WASO compared to those

with a high LF/HF ratio. Our results suggest that an increase in the

LF/HF ratio, reflecting greater dominance of the sympathetic

activity, may result in poorer sleep quality. Additionally,

incorporating the LF/HF ratio alongside self-reported symptom

measures, such as the ISI, could enhance the predictive power of the

model. These findings indicate that certain HRV measures, such as

the LF/HF ratio obtained through continuous monitoring of PPG

signals, could be used to predict sleep quality metrics like WASO.

For the predictive modeling results, recurrent neural networks-

based LSTM showed the best performance across all metrics

(Table 3) compared to more conventional time series analysis

methods, such as ARIMA, as well as conventional machine-

learning methods, such as Random Forest and XGBoost. In the

current study, the deep-learning approach showed supremacy

aligned with the results from other similar studies (34). However,

due to the black-box nature of the deep-learning methods, we

further used an explainable method, LIME, and presented that the

LF/HF ratio was more crucial than other features – including

questionnaires, other HRV features, and sensor data from the

wearable devices – in inferring future sleep quality.

The results of the LF/HF ratio could be interpreted in two ways:

direct and indirect. Although some controversies exist, the LF/HF

ratio is commonly used as a measure of sympathetic to

parasympathetic autonomic balance (21, 35, 36). Therefore, an

increased LF/HF ratio could, firstly, be related to stressful events

in daily life, which might indirectly affect sleep quality. Many

studies have shown that chronic stress increases sympathetic

activity and decreases parasympathetic activity, implying

autonomic imbalance (3, 13, 37). Acute stress reduces

parasympathetic activity during NREM and REM sleep, impairing

sleep maintenance while increasing sympathetic activity and the LF/

HF ratio during NREM. In contrast, the non-stress group shows

enhanced parasympathetic activity (13). A recent study

continuously using portable electrocardiography reported a

relationship between subjective well-being and the LF/HF ratio

(38). Additionally, sleep-related stressors, such as sleep deprivation,

could be associated with the LF/HF ratio. A previous study showed

that sleep deprivation leads to a decline in HF, associated with an

increase in LF (12). In another study by Holmes et al., acute sleep

deprivation led to an increase in sympathetic activity (39). However,

interpretation should be cautious as several studies have reported

different results (40, 41). Secondly, there was a direct relationship

between HRV metrics, particularly LF/HF ratio, and WASO,

although the evidence is limited. A previous study assessed the

autonomic nervous system changes in participants with increased

sleep onset latency and WASO, respectively. The normalized LF

and LF/HF ratio increased in the longer WASO group, while

normalized HF decreased. Participants with longer sleep onset

latency showed higher normalized LF, particularly in young
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adults. These findings suggest that the autonomic nervous system

can serve as a predictive marker for sleep indices related to sleep

onset and maintenance (42).

In this study, the LF/HF ratio showed the most significant

correlation with WASO, followed by the ISI and WHOQOL-BREF.

The ISI is one of the most reliable and widely used indices for

evaluating the severity of insomnia. It enables clinicians to diagnose

insomnia using brief questions (43). However, the ISI was not the

most significantly correlated variable in our study, and we believe

there are several reasons for this. First, daily continuous HRV

metrics related to the autonomic nervous system were more

appropriate for predicting the next day’s WASO compared to

weekly self-reported measurements, such as the ISI. Second, the

ISI is more appropriate to predict sleep efficiency rather than

WASO. Previous studies reported a moderately positive

correlation between WASO and ISI, which was weaker than the

correlation with sleep efficiency (44, 45).

Meanwhile, we acknowledge some weaknesses in the current

work. First, since each feature has a different granularity, e.g., HRV

features are aggregated daily while self-reported questionnaire data

are gathered weekly or bi-weekly, the same values from questionnaire

data are injected into the daily predictive models and may affect the

predictive performance. Second, our subjects reported only a few

sleep problems. For example, the low LF/HF ratio group showed

shorter WASO (7.5 min) compared to the high LF/HF ratio group

with longer WASO (15.0 min), but the overall mean value (13.1 min)

was lower than the most commonly used WASO cutoff value (30.0

min) (42, 46). It indicates that the sleep traits of the subjects in our

study were relatively healthier than those of the sleep disorder

sufferers. Because of this distribution, we set the prediction

problem formulation not as regression but as classification because

a small value difference of WASO among healthy participants does

not matter much in the current study. Third, it is hard to generalize

our prediction results. It is because, also related to the second point,

the cohort in the current study is young and healthy, lacking diversity

and the full range of WASO and HRV. In that sense, we can propose

future hypotheses based on our outcomes, such as considering the

relationship between the LF/HF ratio and WASO in older

individuals. In general, both the LF/HF ratio (47) and WASO (48)

increase with age, and therefore, the relationship between the LF/HF

ratio and WASO may vary across age groups. Last, in the current

work, the sleep-related features, including WASO, are retrieved

manually rather than through polysomnography or actigraphy.

Therefore, human bias or subjectivity may be a confounding factor

in our study (49). In that sense, we would expand the work by

recruiting more diverse participants and sensing sleep data more

passively from wearable devices.
5 Concluding remark

Unlike conventional short-term HRV features retrieved under

lab or clinical settings, it has been reported that continuous HRV is

capable of capturing aggregated levels of psychological traits such as
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daily wellbeing or mood (38, 50). To the best of our knowledge, this

is the first line of work to utilize continuous HRV to learn and

predict sleep quality. We first explored the associations between

HRV and sleep features and then successfully inferred the next day’s

sleep quality (WASO) with an accuracy of 90.4% in terms of the

binary classification setting. We shed light on how continuous

monitoring of HRV features can help enhance the quality of sleep

in everyday life.
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