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Introduction

Schizophrenia is a multifactorial chronic and frequently disabling mental disorder that

reportedly affects about one percent of the world’s population (1, 2). Until recently, the

pharmacological treatment of schizophrenia was almost entirely based on blocking brain

dopamine D2 receptor signaling (2). While the approved therapeutics that act through this

mechanism are efficacious in improving the positive symptoms in schizophrenia, they have

considerable side effects including sedation, weight gain and motor impairment (2). They

also have limited effectiveness in improving the negative and cognitive symptoms in

patients with this disease (3). In addition to dopaminergic mechanisms, abundant

experimental evidence reveals the important role of the brain cholinergic system and

muscarinic acetylcholine receptors (mAChRs) as a therapeutic target in schizophrenia (4–

6). Xanomeline is a centrally acting agonist of the M1 and M4 subtype of mAChRs with

beneficial antipsychotic and cognitive effects (6, 7). Decades of research in preclinical and

clinical settings and a series of recent clinical trials led to the FDA approval in September

2024 of xanomeline together with trospium for the treatment of schizophrenia (8).

Trospium is a peripherally restricted nonspecific mAChR antagonist, which when given

together with xanomeline mitigates the undesirable peripheral, mainly gastrointestinal

effects of xanomeline. A recent review summarized the chronology and major findings from

the clinical trials with xanomeline/trospium in schizophrenia (9). The approval of

xanomeline/trospium is paradigm shifting, because for the first time in over 70 years a

novel treatment which is not based on the mainstream concept of modulating D2

dopamine receptor signaling is available for schizophrenia. These recent developments

may have broader implications: for reasons we summarize and discuss below, this drug

combination can be explored in the future treatment of other complex neuropsychiatric

and neurocognitive conditions such as Alzheimer’s disease (AD) and sepsis-associated

encephalopathy (SAE) and long-term cognitive impairment.
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Xanomeline in the treatment of
schizophrenia

There has been a substantial interest during the last few decades in

studying the role of brain mAChRs in the pathogenesis of

schizophrenia and targeting these receptors using pharmacological

modalities for therapeutic benefit. Accumulated experimental

evidence from preclinical and human brain imaging and post

mortem studies was summarized in 2007 as a “muscarinic

hypothesis of schizophrenia” (5). Studies in murine and non-

human primate models have indicated the therapeutic potential of

the centrally acting M1/M4 mAChR agonist xanomeline for treating

psychosis and the mediating role of brain mAChRs (10–12). A small

double-blind, placebo-controlled pilot study published in 2008,

demonstrated the effectiveness of xanomeline in improving multiple

symptom domains in patients with schizophrenia (13). However, side

effects associated with xanomeline treatment, including

gastrointestinal disturbances were also reported in this study. More

recently, to mitigate these peripheral side effects in clinical studies with

schizophrenia patients, xanomeline was combined with the

peripherally acting mAChR antagonist trospium. A series of Phase

2 (14) and Phase 3 clinical trials (15, 16) demonstrated that treatment

with xanomeline/trospium significantly decreased the positive and

negative symptoms in people with schizophrenia who experience

acute psychosis. These successful clinical trials led to the approval of

xanomeline/trospium by the FDA for the treatment of adult patients

with schizophrenia. Cognitive impairment, which may precede the

onset of psychosis, is a core feature of schizophrenia (17).

Importantly, xanomeline/trospium treatment significantly improved

cognitive deficits in patients with acute schizophrenia who had

preexisting cognitive deterioration as revealed by analysis of data

pulled from the Phase 3 trials (18). These observations revealing the

cognitive benefit of xanomeline/trospium among participants who

had substantial impairment at baseline are consistent with the Phase 2

study data. Of note, as in the Phase 2 study, the beneficial cognitive

effects of xanomeline/trospium were independent of changes in

positive and negative symptoms, indicating that the cognitive

improvements were not pseudo-specific (18).
Xanomeline in the treatment of
Alzheimer’s disease

The brain cholinergic system plays a key role in the regulation

of attention, learning and memory (19). Characteristic

neurodegeneration of brain (forebrain) neurons, with associated

cognitive impairment is one of the cardinal features of AD, a

debi l i tat ing and letha l bra in neurodegenerat ive and

neuropsychiatric disease and the most prevalent form of dementia

(20, 21). In addition to schizophrenia, xanomeline has also been

explored in the treatment of patients with AD. Almost 30 years ago

(in 1997), in a large-scale multicenter, 6-month placebo-controlled

clinical trial, xanomeline was found to significantly improve the
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cognitive function in AD patients (22). Intriguingly, xanomeline

also improved psychosis in these patients (22). However, adverse,

predominantly gastrointestinal events of xanomeline resulted in

discontinued treatment of 52% of patients (22). Therefore, because

of its peripheral side effects no further studies with xanomeline were

performed despite its significant efficacy in counteracting the

cognitive decline and neuropsychiatric symptoms in patients

with AD.

Brain functional impairment during
sepsis

Sepsis is a multifactorial disorder that remains a number one

killer in the intensive care units. According to its latest 2016

definition, sepsis is life-threatening organ dysfunction caused by a

dysregulated host response to infection (23). One organ that is

frequently, profoundly, and progressively affected during sepsis is

the brain. The brain functional impairment and neuropsychiatric

manifestations during sepsis, which include cognitive impairment

and progression into delirium and coma, are characterized as

sepsis-associated encephalopathy (SAE) (24–27). SAE can be

defined as a diffuse cerebral dysfunction due to the dysregulated

host response during sepsis secondary to infection which does not

directly involve the central nervous system (24, 27). Brain

alterations, including cognitive impairment and delirium occur

very early during sepsis and are associated with increased hospital

mortality (27–30). While the pathogenesis of SAE is not well

understood, there is evidence from preclinical (31–33) and

clinical studies for brain cholinergic alterations and hypofunction

among the brain neurotransmitter changes that occur during sepsis

(32, 34). As the brain cholinergic system plays a key role in the

regulation of cognition, this cholinergic hypofunction may play a

causative role in the severe cognitive impairment and delirium

during sepsis (35).

Brain dysfunction and persistent cognitive impairment are also

profound manifestations of sepsis long-term sequelae (36–38).

Findings from a multicenter prospective cohort study revealed that

one in four patients had cognitive impairment 12 months after critical

illness comparable to that of mild AD (39). There is a correlation

between SAE and especially delirium and the development of long-

term cognitive dysfunction following hospital discharge (39, 40).

Neuropsychiatric symptoms, including depression, anxiety, and post-

traumatic stress disorder have also been documented in sepsis survivors

(41, 42). In addition, an increased risk of suicide has been revealed in

patients with prior hospitalization with infection, including sepsis (43).

The long-term cognitive impairment and neuropsychiatric symptoms

are key components of functional disability of sepsis survivors severely

worsening their quality of life and associated with increased morbidity

and mortality (38). While treating SAE encephalopathy and preventing

and treating long-term cognitive impairment and neuropsychiatric

manifestations in sepsis survivors are of fundamental value, there is a

lack of targeted pharmacological modalities, and no specific guidelines

have been currently implemented.
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Discussion of possibilities for using
xanomeline/trospium in the treatment
of AD and SAE

Psychosis and agitation are major and challenging to manage

neuropsychiatric symptoms in AD (44, 45). Therefore, it is not

surprising that based on accumulated evidence for its antipsychotic

effects, clinical trials exploring the efficacy of xanomeline/trospium

in treating AD psychosis are underway (46). Also, very recently, the

emergence of psychosis in AD was correlated with increased plasma

levels of p-tau phosphorylated at threonine 181 (p-tau181) and

neurofilament light chain protein (NfL) and their utility as

biomarkers of neuropsychiatric illness in AD was suggested (47).

Therefore, it would be intriguing to determine whether plasma p-

tau181 and NfL levels are altered in AD patients treated with

xanomeline/trospium and corelate with antipsychotic drug effects

in these trials.

The effects of xanomeline/trospium in AD might be far

reaching and not just restricted to treating psychosis. This

speculation is strongly supported by the prior study which

showed that xanomeline monotherapy significantly improved

cognitive domains in AD patients (22). It appears that the main

obstacle for its use, i.e., severe peripheral side effects that for a

long-time hampered progress, can now be addressed by including

trospium. Hence, evaluating the effects of xanomeline on cognitive

function in patients with AD, utilizing the double-blind placebo-

controlled design in the 1997 study but with the addition of

trospium is warranted. The use of this therapy can also be

considered for treating cognitive impairment in the context of

other disorders.

As previously noted, xanomeline is an M1/M4 m AChR agonist.

It is not clear whether xanomeline beneficial effects in schizophrenia

are due to the action on the brain M1 or the M4 subtype or both.

The brain M1 andM4mAChRs have different synaptic location and

different function (48–50). The M1 subtype is predominantly

postsynaptic and plays a major role in processing cholinergic

neurotransmission in the cortex and the hippocampus with an

essential function in the regulation of cognition (48). Of note,

studies with mice lacking specific mAChR subtypes have shown

no direct involvement of the M1 subtype in the control of brain

(striatal) dopamine release (51). The brain M4 subtype is

predominantly presynaptic and associated with modulation of

neurotransmitter, including dopaminergic system (50–53). There

is some evidence linking the antipsychotic-like effects of xanomeline

and its efficacy in treating positive and negative symptoms in

patients with schizophrenia to its action on the M4 subtype, while

the cognitive effects might be mainly associated with activation of

M1 mAChR signaling (6, 54).

The postsynaptically located M1 mAChR is largely preserved

during the neurodegenerative alterations in AD (21, 55, 56). Thus,

the M1 mAChR presents a viable target for therapeutic strategies

aimed at counteracting cognitive impairment in AD by activating

M1 mAChR signaling (21, 48, 57, 58). Preclinical studies have also

demonstrated a role for activation of M1 mAChR signaling in
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reducing other characteristic features of AD pathology, including

amyloid plaques, mainly composed of the amyloid-b peptide and

neurofibrillary tangles, comprised of hyperphosphorylated

aggregates of the tau protein (59, 60). These findings have a

provided a rationale for proposing the use of M1 mAChR

agonists in potentially disease-modifying therapies for AD (57,

58). Therefore, xanomeline acting on the brain M1 mAChR may

have additional beneficial effects in AD.

In addition to regulation of cognition, brain (forebrain)

mAChR and specifically the M1 mAChR are implicated in the

regulation of peripheral cytokine levels and inflammation (61–66).

Administration of xanomeline or BQCA, a selective positive

allosteric modulator of the M1 mAChR with demonstrated pro-

cognitive effects (67) significantly suppresses circulating pro-

inflammatory cytokine levels in mice with endotoxemia (62, 65).

Xanomeline reduces serum pro-inflammatory cytokine levels,

ameliorates sickness behavior, and improves survival in

endotoxemia and in a preclinical mouse model of sepsis (62, 68).

The anti-inflammatory effects of xanomeline are mediated through

brain mAChRs, because they are inhibited in mice with

pharmacological blockade of these receptors (62). These effects

also require signaling through the vagus nerve (62). The vagus

nerve is a key constituent of a major physiological mechanism

termed the inflammatory reflex that links the brain and the immune

system and controls peripheral cytokine responses (62, 69, 70).

Accumulated experimental evidence during the last 20 years has

revealed a role for systemic inflammation in the pathogenesis of

schizophrenia and as a new therapeutic target in the treatment of

this disease (7, 71). As we have recently proposed, the anti-

inflammatory activity of xanomeline may contribute to its

remarkable efficacy in alleviating multiple symptoms in patients

with schizophrenia (7). Such a possibility can be evaluated in future

clinical studies in which subclusters of patients with increased

inflammation can be reliably identified using machine learning,

and additional analysis of xanomeline anti-inflammatory effects in

this subset of patients is performed (7).

There is also evidence for systemic inflammation that is linked

with brain inflammation in the pathophysiology of AD (72–74). It

has also been reported that both acute and chronic inflammation

and increased levels of pro-inflammatory cytokines are associated

with exacerbated cognitive decline in patients with AD (75).

Therefore, it is intriguing to consider that the beneficial effects of

xanomeline on cognition in patients with AD will be amplified by

its anti-inflammatory effects. Such a possibility can be

experimentally and more specifically tested in AD patients with

increased peripheral cytokine levels by implementing the same

approach as proposed for patients with schizophrenia.

Increased circulating pro-inflammatory cytokine levels and

systemic inflammation l inked to brain inflammation

(neuroinflammation) and brain cholinergic hypofunction have

been implicated in SAE (25, 32, 76, 77). Of note, administration

of xanomeline in a murine model of sepsis improves survival and

ameliorates markers of immune dysregulation and inflammation

(62, 68). There is also evidence for immune dysregulation and

increased levels of pro-inflammatory cytokines and inflammation in
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sepsis survivors (31, 78, 79). Long-term cognitive impairment with

symptoms that are similar to those in patients with mild AD has

also been reported in sepsis survivors (38, 39). Importantly, for

most patients, this profound cognitive deterioration in sepsis

survivors was not related to cognitive impairment before their

admission to the intensive care unit (39). It was also documented

in both old and young patients, regardless of the burden of

coexisting conditions at baseline (39). While of primary clinical

significance, treating SAE is challenging as no targeted treatments

are currently available. The anti-inflammatory and beneficial

cognitive efficacy of xanomeline (together with trospium) can be

explored in new therapies for SAE and the long-term cognitive

impairment in sepsis survivors.

In conclusion, based on evidence and reasoning we outline here,

xanomeline/trospium - a therapeutic modality that was very

recently approved for schizophrenia - can also be considered in

novel therapeutic strategies for AD and SAE and long-term

cognitive deficits.
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