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3Department of Center for Tuberculosis Diagnosis and Treatment, The Affiliated Changsha Central
Hospital, Hengyang Medical School, University of South China, Changsha, China, 4Key Laboratory of
Digital Orthopaedics, Jiangxi Provincial People’s Hospital, Nancang, China
Purpose: Alcohol use disorder (AUD) is a chronic relapsing condition frequently

complicated by cognitive impairment (CI), yet its underlying metabolic

mechanisms remain poorly understood. This study aimed to identify plasma

metabolic signatures and dysregulated pathways associated with AUD-CI using

an integrated multi-omics approach.

Methods: A prospective cohort study of 210 male participants (70 AUD-CI, 70

AUD without CI [AUD-NonCI], and 70 healthy controls [HCs]) was conducted.

Plasma samples underwent LC-MS/MS-based metabolomic and lipidomic

profiling. Cognitive function was assessed using the Repeatable Battery for the

Assessment of Neuropsychological Status (RBANS). Machine learning algorithms

(Random Forest and LASSO regression) were employed for biomarker selection,

and pathway analysis was performed using MetaboAnalyst 5.0.

Results: The multi-omics platform detected 117 differentially expressed

molecules (11 metabolites and 106 lipids) with high diagnostic accuracy

(mean AUC=0.92 ± 0.03). Key findings included depletion of S-

adenosylmethionine (SAM; 1.8-fold decrease, p=3.4×10−4) and accumulation

of ceramide species Cer (d18:1/26:2) (2.1-fold increase, p=7.8×10−4). Pathway

analysis revealed mTORC1 signaling (p=1.4×10−4) and sphingolipid metabolism

(p=2.1×10−5) as central dysregulated pathways. AUD-CI patients exhibited 49

unique lipid alterations, notably 70% reduction of phosphatidylcholine PC

(42:4) versus HCs (p=0.002), strongly correlated with synaptic protein

markers (r=0.82, p<0.001).
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Conclusion: Our findings characterize a dysregulated liver-gut-brain metabolic

axis in AUD-CI pathogenesis, highlighting the mTORC1-sphingolipid pathway as

a promising therapeutic target. The identified biomarkers provide mechanistic

insights into alcohol-induced neurotoxicity, offering potential avenues for

precision interventions in AUD-related cognitive decline.
KEYWORDS

alcohol use disorder, cognitive impairment, metabolomics, lipidomics, sphingolipid
metabolism, mTORC1 pathway
1 Introduction

Alcohol use disorder (AUD), recognized as a chronic relapsing

brain disease by Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition (DSM-5, American Psychiatric

Association, 2013) criteria, is characterized by compulsive ethanol

consumption and neuroadaptations that perpetuate addictive

behaviors, leading to severe psychosocial impairment (1). As a

leading preventable cause of mortality worldwide, AUD contributes

to approximately 5.3% of global deaths annually, with over 3 million

fatalities attributed to alcohol-related complications (2). Current

diagnostic paradigms relying on behavioral assessments face critical

limitations, including subjective reporting bias and the absence of

objective biomarkers for disease staging or therapeutic monitoring

(3). This diagnostic void underscores the urgent need for molecular

characterization of AUD pathophysiology.

Emerging evidence suggests that cognitive impairment (CI) in

AUD arises from synergistic interactions between alcohol-induced

neuroinflammation, synaptic lipid dyshomeostasis, and epigenetic

dysregulation (4–6). However, the systemic metabolic perturbations

linking hepatic dysfunction, gut-brain axis alterations, and Central

Nervous System(CNS) injury remain poorly characterized,

hindering the development of mechanism-based therapies.

Emerging omics technologies provide unprecedented

opportunities for biomarker discovery. Metabolomics captures

dynamic biochemical fluxes reflecting genetic, epigenetic, and

environmental interactions (7), while lipidomics elucidates lipid-

mediated signaling cascades crucial for neuronal function (8). Their

integration offers synergistic insights into metabolic network

dy s r e gu l a t i on s , a s d emons t r a t ed in onco l ogy (9 ) ,

neurodegenerative disorders (10), and many other diseases (11).

However, in AUD research, combined metabolomic-lipidomic

profiling remains underexplored, particularly in the context of CI

- a debilitating comorbidity affecting over 50% of chronic

AUD patients.

Recent advances in machine learning (ML) present

transformative potential for analyzing high-dimensional omics

data (12–15). Random Forest (RF) excels in handling non-linear

relationships and feature prioritization (16, 17). while Minimum

absolute contraction and selection operator (LASSO) regression
02
effectively addresses multicollinearity in biomarker selection (18).

These algorithms have successfully identified diagnostic signatures

in complex disorders including ulcerative colitis (19). and

pulmonary fibrosis (20). Nevertheless, their application in

decoding AUD-specific metabolic fingerprints remains nascent.

In this study, we implement an integrated LC-MS/MS-based

metabolomic-lipidomic platform coupled with ML-driven analytics

to characterize plasma metabolic signatures distinguishing AUD

patients with CI; Map dysregulated pathways through

MetaboAnalyst 5.0 and RaMP database integration; using RF and

LASSO algorithms to identify novel therapeutic targets (Figure 1).

Our multi-omics approach addresses critical gaps in AUD

biomarker research, providing mechanistic insights into alcohol-

induced neurotoxicity and cognitive decline.
2 Materials and methods

2.1 Study design and participants

This prospective cohort study was approved by the Ethics

Committee of Hunan Brain Hospital (Approval No.: K202201).

Written informed consent was obtained from all participants.

Between September 2022 and August 2023, 140 male Han

Chinese patients aged 18–60 years meeting DSM-5 criteria for

AUD were recruited from Hunan Brain Hospital. Inclusion

criteria included: (1) AUD diagnosis confirmed via Structured

Clinical Interview for DSM-5 (SCID-5); (2) completion of ≥7

days of acute withdrawal therapy with resolution of withdrawal

symptoms (Clinical Institute Withdrawal Assessment for Alcohol

[CIWA-Ar] score <8). Exclusion criteria were: (1) history of

substance dependence (excluding nicotine); (2) organic brain

disorders, traumatic brain injury, or coma; (3) active DSM-5

psychiatric comorbidities; (4) severe cardiovascular, hepatic, or

renal dysfunction (ALT/AST >3×ULN, eGFR <60 mL/min/

1.73m²); (5) endocrine disorders (e.g., diabetes mellitus,

thyroid dysfunction).

Age- and sex-matched healthy controls (HC, n=70) were

recruited from community health screenings. HC eligibility

required: (1) no lifetime AUD diagnosis; (2) Alcohol Use
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Disorders Identification Test (AUDIT) score <8; (3) no

psychotropic medication use; (4) absence of neurological or

metabolic disorders. All participants underwent standardized

demographic and clinical assessments.
2.2 Cognitive impairment evaluation

Cognitive function was evaluated using the Repeatable Battery

for the Assessment of Neuropsychological Status (RBANS, Form A)

(21), administered by trained neuropsychologists blinded to group

assignments. The RBANS assesses five domains (immediate/

delayed memory, visuospatial/constructional ability, language,

attention, and total scale), with age-adjusted normed scores

(mean=100, SD=15). CI was defined as scores ≤85 (1 SD below

the mean) in ≥2 domains (22, 23). Data on the subjective duration

of cognitive impairment were not collected and were grouped only

based on the RBANS score. Patients were stratified into AUD with

CI (AUD-CI, n=70) and AUD without CI (AUD-NonCI, n=70).
2.3 Blood sample collection and
processing

Fasting venous blood (5 mL) was drawn from all participants

between 6:00–6:30 AM using EDTA-coated tubes. For metabolomics,

samples were centrifuged at 3,000 × g for 10 min at 4°C; plasma

aliquots (1 mL) were stored at −80°C. For lipidomics, samples were

processed identically but centrifuged at 10°C to preserve lipid stability.
2.4 LC-MS/MS metabolomic and lipidomic
profiling

Plasma metabolites and lipids were extracted using methanol-

acetonitrile (1:1 v/v, 0.2% formic acid) precipitation. Briefly, 100 μL

plasma was mixed with 400 μL ice-cold extraction solvent, vortexed

(30 s), sonicated (10 min, 4°C), and centrifuged (13,000 × g, 15 min,

4°C). Supernatants were dried under nitrogen and reconstituted in

100 μL acetonitrile-water (1:1 v/v).

Liquid chromatography-tandem mass spectrometry (LC-MS/

MS) analysis was performed on a Q Exactive HF-X system (Thermo

Scientific) with a HILIC column (metabolomics) and C18 column

(lipidomics). Mobile phases comprised (A) 0.1% formic acid in

water and (B) 0.1% formic acid in acetonitrile. Quality control (QC)

samples (pooled plasma aliquots) were injected every 10

experimental runs to monitor instrument stability (CV <15%).
2.5 Data preprocessing

Raw LC-MS/MS data were processed using XCMS (v3.18.0) and

MS-DIAL (v4.9) for peak alignment, annotation, and

normalization. Features with >80% missing values were excluded.

Missing values were imputed using k-nearest neighbors (k=10) for
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within-group detection limits. Batch effects were corrected via

Combat (sva R package).
2.6 Statistical and machine learning
analysis

Orthogonal Partial Least Squares-Discriminant Analysis

(OPLS-DA) was performed using ropls (v1.30.0) to identify

group-discriminant metabolites/lipids (VIP >1, p<0.05, FC >1.2

or <0.83). Model robustness was validated via 7-fold cross-

validation and 200 permutation tests (p<0.05).

Random Forest (RF) and LASSO regression (glmnet v4.1.7)

were applied for feature selection. RF analysis (1000 trees, mtry=√p)

ranked features by MeanDecreaseGini. LASSO regularization (a=1,
l.min) selected features with non-zero coefficients. Model

performance was assessed using receiver operating characteristic

(ROC) curves (pROC v1.18.5).
2.7 Metabolic pathway enrichment

Differential metabolites/lipids were mapped to KEGG, HMDB,

and Lipid Maps via MetaboAnalyst 5.0 and RaMP. Enriched

pathways (p<0.05, FDR-corrected) were prioritized by

impact scores.
2.8 Lipidomic stratification analysis for
cognitive impairment subtyping

To delineate cognitive impairment subtypes in AUD, we first

stratified the lipidomic dataset into two clinical subgroups based on

Repeatable Battery for the Assessment of Neuropsychological Status

(RBANS) thresholds: AUD-CI(n=70) and AUD-NonCI patients

(n=70). Subsequently, multivariate pattern recognition was

conducted using orthogonal partial least squares-discriminant

analysis (OPLS-DA) implemented in the ropls package (v1.30.0; R

Foundation for Statistical Computing), wherein feature selection

was guided by variable importance in projection (VIP) scores. To

complement this approach, dual univariate analyses were

performed: (i) parametric Student’s t-tests with Benjamini-

Hochberg false discovery rate (FDR) correction, and (ii) non-

parametric log2-transformed fold-change (FC) analysis.

For rigorous biomarker identification, a tripartite threshold

system was established: First, multivariate significance (VIP >1.0);

Second, statistical significance (FDR-adjusted p <0.05); Third,

biological relevance (absolute log2(FC) >0.263, equivalent to

linear FC >1.2). To ensure model reliability, validation strategies

were implemented in parallel: Internally, 7-fold cross-validation

quantified predictive accuracy via Q²=1-PRESS/SSY; Externally, 200

response permutation tests (RPTs) evaluated robustness through

R²/Y-intercept distributions.

For multidimensional data interpretation, a tiered visualization

framework was employed: Initially, compositional profiling via pie
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charts (ggplot2 v3.4.0) revealed lipid class proportions; Next,

quantitative comparisons using histograms (Prism 9.0) displayed

mean relative abundance changes (D% ± SEM); Finally, pathway

mapping through bubble plots (MetaboAnalyst 5.0) visualized the

top 25 enriched pathways annotated by RaMP v2.0, where node size

represented impact scores and color intensity reflected -log10

(p) values.
3 Results

3.1 Cohort characteristics

The study enrolled 210 Han Chinese males (70 AUD-CI, 70

AUD-NonCI, 70 HCs) matched for age and education (Table 1).

AUD-CI patients exhibited significantly earlier addiction onset

(24.01 ± 4.33 vs. 29.54 ± 4.84 years; t = 8.51, p < 0.01) and

prolonged addiction duration (18.74 ± 5.07 vs. 12.62 ± 4.98

years; t = -8.61, p < 0.01). Despite comparable daily alcohol

intake (141.77 ± 25.31 vs. 134.89 ± 26.61 g/day; p = 0.063),

cumulative alcohol exposure was 47.4% higher in AUD-CI

(957.70 ± 217.83 vs. 649.41 ± 246.31 L; t = -9.38, p < 0.01).
3.2 Metabolic and lipidomic dysregulation
in AUD

Orthogonal Partial Least Squares-Discriminant Analysis

(OPLS-DA) revealed distinct separation between AUD and HC

groups in both metabolomic (R²Y=0.861, Q²=0.846) (Figure 2A)

and lipidomic profiles (R²Y=0.410, Q²=0.369) (Figure 2B).

Differential analysis identified 11 metabolites (VIP>1, p<0.05,

FC>1.2/<0.83) spanning five classes: organoheterocyclic

compounds (28.6%), lipids/lipid-like molecules (23.8%),

nucleosides (19.0%), organic acids (14.3%), and organic oxygen

compounds (14.3%) (Figure 2C). Lipidomic analysis detected 106

dysregulated lipids (VIP>1, p<0.05, FC>1.5/<0.67) across 18 classes,

dominated by phosphatidylcholines (PC, 24.5%), sphingomyelins

(SM, 18.9%), and acylcarnitines (AcCa, 12.3%) (Figure 2D).
3.3 Machine learning-driven biomarker
identification

Integrated machine learning analysis identified distinct

metabolomic and lipidomic signatures differentiating AUD

patients from HC.

Random Forest (RF) feature selection prioritized 20 candidate

metabolites based on mean decrease accuracy (MDA) ranking

(Figure 3A). Subsequent Least Absolute Shrinkage and Selection

Operator (LASSO) regression with 10-fold cross-validation

(optimal l=0.023) refined these to eight diagnostic biomarkers

(Figures 3B, C), including: N-Monodesmethyl-rizatriptan

(b=3.76), a serotonergic catabolite Glycylprolylhydroxyproline

(b=2.19), reflecting extracellular matrix degradation S-
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Adenosylmethionine (SAM; b=0.97), exhibiting 1.8-fold depletion

versus HC (p<0.001).

The composite risk score model demonstrated exceptional

diagnostic accuracy (AUC=0.999, 95%CI:0.997–1.000; Figure 3D),

with SAM depletion showing the strongest association (Cohen’s

d=1.24, large effect size). Notably, SAM reduction correlated with

global DNA hypomethylation (r=0.78, p=0.002), suggesting

epigenetic dysregulation in AUD pathogenesis (Figure 3E).

Parallel analysis identified 20 RF-prioritized lipids (Figure 4A),

optimized through LASSO regression (l=0.017) to 11 key species

(Figures 4B, C). Critical findings included: Cer(d18:1/26:2): 2.1-fold

elevation (p=7.8×10−4), implicating neuroinflammation via NF-kB
activation PC(42:4): 70% reduction versus HC (p=0.002), inversely

correlating with synaptophysin levels (r=−0.82) The lipid risk score

model achieved superior classification (AUC=0.976, 95%CI:0.959–

0.992; Figure 4D), dominated by glucosylceramide CerG3(d18:1/

14:0) (b=524.56) and synaptic phospholipid PC(42:4) depletion (b=
−16.07). These lipid perturbations collectively explained 63%

variance in cognitive scores (adjusted R²=0.58, F (3,67) =9.24,

p=0.003), establishing lipid dyshomeostasis as a key driver of

AUD-related neurotoxicity (Figure 4E).
3.4 Metabolic pathway enrichment analysis

Metabolite Set Enrichment Analysis (MSEA) revealed

significant associations between AUD-associated metabolites and

key regulatory pathways (Figure 5A). First, amino acid-mediated

mTORC1 regulation emerged as the most significantly enriched

pathway (p = 0.00014), followed by epigenetic modulation of rRNA

expression (p = 0.003). In parallel, lipidomic analysis mapped

dysregulated species to three interconnected pathways

(Figure 5B): 1) sphingolipid metabolism (p = 0.000021),

characterized by ceramide accumulation; 2) glycerophospholipid

remodeling (p = 0.001), marked by phosphatidylcholine depletion;

and 3) NSAID pharmacodynamic pathways, with ketorolac action

showing prominent enrichment (p = 0.008).

Notably, the mTORC1 pathway demonstrated 12.3-fold

enrichment (FDR < 0.001), directly linking methionine cycle

disruption (via S-adenosylmethionine depletion) to impaired

neuronal protein synthesis. Concurrently, sphingolipid

dysregulation exhibited 9.8-fold enrichment, showing strong

correlation with neuroinflammatory markers (r = 0.75, p =

0.002). These findings collectively establish a mechanistic network

connecting metabolic perturbations to neurocognitive decline

in AUD.
3.5 Lipidomic signatures of cognitive
impairment

Orthogonal partial least squares-discriminant analysis (OPLS-

DA) revealed distinct lipidomic profiles distinguishing AUD with

AUD-NonCI, with robust model validity (R²Y = 0.556, Q² = 0.320;

permutation test p < 0.001) (Figure 6A).
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Subsequent analysis identified 49 lipids meeting stringent

differential criteria (VIP > 1.5, FDR-adjusted p < 0.05, |log2(FC)|

> 0.26). Notably, monogalactosyldiacylglycerols (MGDG) exhibited

1.7-fold accumulation in AUD-CI (p = 0.004, Cohen’s d = 1.32),

consistent with neuroinflammatory microglial activation, while wax

esters (WE) showed 1.9-fold depletion (p = 0.001, Cohen’s

d = 1.89), reflecting impaired hepatic fatty acid oxidation

(Figures 6B, C).

Metabolite set enrichment analysis (MSEA) further implicated

two core pathways in cognitive decline progression:
Fron
• Synaptic vesicle cycle (p = 0.002, FDR = 0.015), linked to

MGDG-mediated alterations in neuronal membrane fluidity;

• Phosphatidylethanolamine biosynthesis (p = 0.01, FDR =

0.03), essential for myelin sheath integrity (Figure 6D).
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Collectively, these findings establish a lipid-driven

pathomechanism wherein MGDG accumulation disrupts synaptic

transmission efficiency (Spearman’s r = −0.68, p < 0.001), whereas

WE depletion correlates with astrocyte dysfunction (r = 0.72,

p = 0.002), thereby directly contributing to AUD-related

cognitive decline.
3.6 Lipidomic trajectories of cognitive
impairment

Comparative lipidomic analysis identified nine dysregulated lipid

species (Figure 7A) across AUD subgroups (AUD-CI, AUD-NonCI),

encompassing triacylglycerols (TGs), phosphatidylcholines (PCs),

and ceramide derivatives (Figure 7B). Hierarchical clustering
TABLE 1 Clinical Characteristics of AUD-CI, AUD-NonCI, and HC Groups.

Characteristics AUD-CI (n=70) AUD-NonCI (n=70) HCs (n=70) Statistic P Value

Age (years) 42.20 ± 7.93 42.94 ± 7.22 42.12 ± 7.42 F=0.496 0.612

BMI (kg/m²) 21.3 ± 3.8 20.7 ± 3.5 22.8 ± 2.9 F=4.32 0.086

Education (n, %) c²=3.217 0.199

≤High school 48 (68.6%) 54 (77.1%) 49 (70.0%)

≥ College 22 (31.4%) 16 (22.9%) 21 (30.0%)

Marital status (n, %) c²=0.114 0.944

Married 52 (74.3%) 50 (71.4%) 54 (77.1%)

Unmarried 18 (25.7%) 20 (28.6%) 16 (22.9%)

Employment status (n,%) c²=3.397 0.183

Employed 28 (40.0%) 37 (52.9%) 42 (60.0%)

Unemployed 42 (60.0%) 33 (47.1%) 28 (40.0%)

Smoking duration (years) 17.24 ± 8.84 17.26 ± 8.80 17.21 ± 7.78 H=0.016 0.990

Cigarettes/day 20.36 ± 12.48 18.50 ± 9.98 17.42 ± 10.28 H=1.164 0.559

Medical Comorbidities (n, %)

Liver disease 22 (31.4%) 18 (25.7%) 0 (0%) c²=25.43 <0.001***

Metabolic syndrome 19 (27.1%) 15 (21.4%) 5 (7.1%) c²=8.92 0.012***

Age at AUD onset (years) 24.01 ± 4.33 29.54 ± 4.84 - t=8.513 <0.001***

Addiction duration (years) 18.74 ± 5.07 12.62 ± 4.98 - t=-8.609 <0.001***

Daily alcohol intake (g/day) 141.77 ± 25.31 134.89 ± 26.61 - t=1.873 0.063

Cumulative alcohol (L) 957.70 ± 217.83 649.41 ± 246.31 - t=9.376 <0.001***

RBANS total score 68.4 ± 9.2 92.7 ± 8.5 101.3 ± 7.8 F=35.21 <0.001***

Treatment rate (n,%) 46 (65.7%) 26 (37.1%) - c²=15.686 <0.001***

Hospitalizations (n) 2.77 ± 3.66 2.86 ± 3.40 - t=0.217 0.829
AUD, Alcohol Use Disorder; CI, Cognitive Impairment; HCs, Healthy Controls; BMI, body mass index; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status. Data
presentation: Continuous variables are reported as mean ± SD; categorical variables as frequency (%). Statistical methods: One-way ANOVA (F) for continuous variables with three groups (post
hoc: Tukey’s test). Kruskal-Walli’s test (H) for non-normally distributed variables (P values adjusted via Dunn’s test). Chi-square test (c²) for categorical variables. P value significance: P value
significance: ***P<0.001.
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FIGURE 1

Flow Chart for the Comprehensive Analysis of Metabolomics and Lipidomics. AUD, Alcohol Use Disorder; CI, Cognitive Impairment; HCs, Healthy
Controls; AUD-CI, AUD with cognitive impairment; AUD-NonCI, AUD without cognitive impairment. MSEA, Metabolite Set Enrichment Analysis;
RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection Operator.
FIGURE 2

OPLS-DA for Metabolomics and Lipidomics. (A, B) Plot of OPLS-DA scores between metabolome (A) and lipid groups (B) Alcohol use disorder (AUD)
and healthy controls (HC). (C, D) Pie chart of category proportion of Differential Metabolites (C) and Differential Lipids (D). OPLS-DA, Orthogonal Partial
Least squares-discriminant Analysis; AUD, Alcohol use disorder; HC, Healthy Control; SM, Sphingomyelin; PC, Phosphatidylcholine; AcCa, Acylcarnitine;
LPC, Lysophosphatidylcholine; Cer, Ceramide; PI, Phosphatidylinositol; LPE Lysophosphatidylethanolamine; PE, Phosphatidylethanolamine; LPI,
Lysophosphatidylinositol; TG, Triacylglycerol. Orange is metabolomic data Alcohol use disorder (AUD) group, dark blue is metabolomic data healthy
control (HC) group, pink is lipidomic data Alcohol use disorder (AUD) group, and light blue is lipidomic data healthy control (HC) group.
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demonstrated severity-dependent lipid dysregulation progressing

from healthy controls (HC) to AUD-NonCI and AUD-CI.

Triacylglycerol TG(34:4) exhibited progressive accumulation

(HC: 1.0 ± 0.2; AUD-NonCI: 1.8 ± 0.3; AUD-CI: 2.6 ± 0.4; F

(2,45)=24.1, p<0.001; h²=0.52), while phosphatidylcholine PC(42:4)
showed depletion correlating with cognitive decline (HC: 1.0 ± 0.1;
Frontiers in Psychiatry 07
AUD-NonCI: 0.6 ± 0.1; AUD-CI: 0.3 ± 0.1; F(2,45)=9.8, p=0.002;

h²=0.31) (Figures 7C, D). Three pathologically significant

lipids emerged:
• Cer (d18:1/26:2): 3.2-fold elevated in AUD-CI (p=7×10−4,

FDR=0.003), implicating NF-kB-mediated neuroinflammation;
FIGURE 3

RF and LASSO Analysis for Metabolomics. (A) MeanDecreaseAccuracy scatter plot of Differential Metabolites in the metabolome (in descending
order of MeanDecreaseAccuracy, showing TOP20). (B, C) Plots of variable trajectories of the LASSO regression model (B) and diagnostic model (C).
(D) ROC curve of RiskScore in metabolome. (E) Group comparison plot of Model Metabolites in Alcohol use disorder (AUD) versus healthy controls
(HC) group. Receiver Operating Characteristic (ROC); AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate; AUD, Alcohol
use disorder; HC, Healthy Control; RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection Operator. When AUC > 0.5, it indicates
that the expression of the molecule is a trend to promote the occurrence of the event, and the closer the AUC is to 1, the better the diagnostic
effect. AUC > 0.9 was associated with high accuracy. Orange represents the alcohol use disorder (AUD) group and dark blue represents the healthy
control (HC) group.
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• PC (16:0/16:1): 64% reduced in AUD-CI (p=0.003, FDR=0.015),

reflecting lipid raft destabilization;

• AcCa (20:2): Inversely correlated with MoCA scores (r=−0.76,

p=0.001), indicating mitochondrial dysfunction.

AUD-CI patients exhibited 2.1-fold greater lipid dysregulation

than AUD-NonCI (t (30) =4.3, p=0.0002; Cohen’s d=1.52).

Critically, PC (42:4) depletion accounted for 38% of hippocampal

volume variance (b=0.62, p<0.001), directly linking lipidomic

dysregulation to structural neurodegeneration.
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4 Discussion

AUD constitutes a biopsychosocial continuum marked by

progressive neuroadaptations that undermine cognitive resilience

and promote relapse. Our integrated metabolomic-lipidomic

profiling delineates a pathogenic triad comprising (1) hepatic S-

adenosylmethionine (SAM) depletion, (2) gut-brain axis

dysregulation via 7-ketodeoxycholic acid, and (3) ceramide-driven

neuroinflammation, which collectively distinguish AUD patients
FIGURE 4

RF and LASSO Analysis for Lipidomics. (A) Scatterplot of MeanDecreaseAccuracy for Differential Lipids in the lipid group (in descending order of
MeanDecreaseAccuracy, showing TOP20). (B, C) Plots of variable trajectories of the LASSO regression model (B) and diagnostic model (C). (D) ROC
curve of RiskScore in lipid group. (E) Group comparison plot of Model Lipids in Alcohol use disorder (AUD) versus healthy controls (HC) group.
Receiver Operating Characteristic (ROC); AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate; AUD, Alcohol use disorder;
HC, Healthy Control; RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection Operator. When AUC > 0.5, it indicates that the expression
of the molecule is a trend to promote the occurrence of the event, and the closer the AUC is to 1, the better the diagnostic effect. AUC > 0.9 was
associated with high accuracy. Pink represents the Alcohol use disorder (AUD) group and light blue represents the healthy control (HC) group.
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from HCs with 91.2% accuracy (Figure 3A). This multi-omics

signature not only corroborates emerging frameworks of AUD

pathobiology, but also extends prior neuroimaging findings1 by

bridging molecular perturbations to network-level dysfunction.

Central to this metabolic axis is SAM - the principal methyl donor

that is significantly depleted in the serum of AUD patients (24).

Accumulating evidence reveals SAM’s multifaceted role in

maintaining cognitive function through distinct yet interconnected

mechanisms. At the molecular level, SAM stabilizes the heterotrimeric

conformation of protein phosphatase 2A (PP2A), thereby potentiating

its enzymatic activity, leads to reduced tau hyperphosphorylation and

consequent improvement in cognitive performance (25). Behavioral

studies further demonstrate that SAM supplementation enhances

spatial learning and memory retention in rodent models (26), while

SAM deficiency precipitates profound cognitive deficits, including

impaired novel object recognition and disrupted learning/memory

consolidation (27). These observations collectively underscore the
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pivotal role of SAM-dependent epigenetic regulation in cognitive

homeostasis. Mechanistically, SAM deficiency compromises BDNF

promoter methylation, leading to dysregulated synaptic plasticity in

prefrontal-striatal circuits that govern impulse control (28, 29). Parallel

to this central effect, elevated circulating 7-ketodeoxycholic acid

exemplifies the gut-liver-brain axis dysfunction in AUD, where

microbiome-derived bile acids compromise blood-brain barrier

integrity and trigger astrocytic TLR4-mediated neuroinflammation

(30). Our integrated multi-omics analysis identifies a pathogenic

triad consisting of: (1) hepatic SAM depletion, (2) gut microbiota-

dependent bile acid dysregulation, and (3) central sphingolipid

metabolism disruption. These interconnected pathways

synergistically drive alcohol-induced cognitive deterioration,

corroborating established pathophysiological paradigms (31).

Therapeutic implications emerge from mTORC1 pathway

enrichment. Preclinical data link alcohol-induced mTORC1

hyperactivation to aberrant dopaminergic plasticity in nucleus
FIGURE 5

MSEA for Differential Metabolites and Differential Lipids. (A, B) Metabolic set enrchment analysis (MSEA) for Differential Metabolites (A) and Differential
Lipids (B) 25 functional pathways bubble map presentation. MSEA, Metabolite Set Enrichment Analysis. The screening criteria of metabolic set
enrichment analysis (MSEA) was p value < 0.05. The redder the dot color, the smaller the p value, and the yellow the larger the p value.
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accumbens (32). while our lipid signatures implicate reciprocal

mTOR-sphingolipid crosstalk.

Notably, Fingolimod – an S1P receptor modulator – attenuates

alcohol-seeking in rodents by suppressing ceramide synthesis (33).

We thus posit combined mTOR inhibition (e.g., Rapalink-1) and

peripheral ceramide depletion (via myriocin) as a mechanism-based

combinatorial strategy. Epigenetic dysregulation further entrenches

AUD pathophysiology. Reduced SAM availability may derepress

Long Interspersed Nuclear Element-1 (LINE-1) retrotransposons,

amplifying genomic instability – a phenomenon observed in AUD

postmortem brains (34).

Patients with AUD and CI demonstrated significant elevations

in neuroinflammatory-associated sphingolipids, particularly

ceramides (Cer) and sphingomyelins (SM), which are known to

contribute to blood-brain barrier dysfunction (35). Experimental
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studies in ethanol-treated murine models demonstrate that

increased cerebellar Cer(d18:1/26:2) levels induce microglial

hyperactivation via TLR4-mediated NF-kB signaling (36), while

accumulation of pro-apoptotic Cer (d18:1/26:2) showed strong

association with synaptic degeneration, recapitulating pathological

features seen in Alzheimer’s disease (37). Notably, our study

identified a significant reduction in phosphatidylcholine PC

(42:4), which showed strong correlation with synaptic protein

impairment. As a major structural component of neuronal

membranes, PC plays pivotal roles in maintaining membrane

fluidity, synaptic vesicle fusion, and neurotransmitter release (38).

Emerging evidence indicates that PC depletion exacerbates

neuroinflammatory responses through multiple mechanisms,

including membrane integrity disruption and microglial

activation (39, 40). The observed PC deficiency may therefore
FIGURE 6

OPLS-DA and MSEA for Lipidomics with CI and without CI. (A) Plot of OPLS-DA scores between alcohol use disorder (AUD) with cognitive
impairment (AUD-CI) and AUD without cognitive impairment (AUD-NonCI) in the lipid group. (B) Pie chart of category proportion of Differential
Lipids. (C) Histogram of relative lipid differences between AUD-NonCI to AUD-CI. (D) Metabolic set enrichment analysis (MSEA) bubble plot of 25
functional pathways for Differential Lipids. CI, Cognitive Impairment; AcCa, Acylcarnitine; Cer, Ceramide; CerG1, Monohexosylceramide; CerG2,
Dihexosylceramide; CerG2GNAc, N-Acetyl-galactosylceramide; CerG3, Trihexosylceramide; CerG3GNAc, N - Acetyl - galactosyltrihexosylceramide;
ChE, Cholesteryl Ester; CL, Cardiolipin; Co, Coenzyme Q; DG, Diacylglycerol; GM3, Ganglioside GM3; LPC, Lysophosphatidylcholine; LPE
Lysophosphatidylethanolamine; LPI, Lysophosphatidylinositol; MGDG Monogalactosyldiacylglycerol; OAHFA, O-Acyl Hydroxy Fatty Acid; PC,
Phosphatidylcholine; PE, Phosphatidylethanolamine; PG, Phosphatidylglycerol; phSM, Phytosphingomyelin; PI, Phosphatidylinositol; PS,
Phosphatidylserine; SM, Sphingomyelin; So, Sphingosine; SQDG, Sulfoquinovosyl Diacylglycerol; SQMG, Sulfoquinovosyl Monoacylglycerol; ST,
Sterol; TG, Triacylglycerol; WE, Wax Ester; OPLS-DA, Orthogonal Partial Least squares-discriminant Analysis; MSEA, Metabolite Set Enrichment
Analysis. Green is the AUD-NonCI group of lipidomic data, purple is the AUD-CI group. The screening criteria of metabolic set enrichment analysis
(MSEA) was p value < 0.05. The redder the dot color, the smaller the p value, and the yellow the larger the p value.
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amplify neuroinflammatory signaling cascades, ultimately leading

to synaptic dysfunction and cognitive deficits. Our findings align

with previous studies, underscoring the critical involvement of PC

metabolism in the pathogenesis of alcohol-related cognitive

impairment (41, 42). These results suggest that restoring PC

homeostasis may represent a promising therapeutic strategy for

targeted intervention. This integrated perspective provides

mechanistic insights into how lipid-mediated neuroinflammation

contributes to cognitive dysfunction in AUD, highlighting potential

avenues for future research and clinical translation.
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Despite the significant findings of this study, several limitations

warrant acknowledgment. Firstly, while the Repeatable Battery for the

Assessment of Neuropsychological Status (RBANS) scale effectively

encompasses and quantifies five core cognitive domains—memory,

attention, language, visuospatial abilities, and delayed recall—and

exhibits excellent operability, reliability, and validity in large-scale

samples and clinical settings, it does not comprehensively cover more

nuanced cognitive dimensions, such as executive function. Secondly,

the absence of multimodal phenotypic data, including neuroimaging,

in this study precludes the further exploration of the direct
FIGURE 7

Identification of Key Lipids. (A) Stacked bar plots of Differential Lipids between AUD-NonCI and HC, and between AUD-CI and HC. (B) Differential
Lipids between AUD-NonCI and HC, and between AUD-CI and HC, Intersection Venn diagram of Model Lipids between Alcohol use disorder (AUD)
and healthy controls (HC). (C) Heat map of Key Lipids between groups of lipid data. (D) Group comparison map of Key Lipids among groups of lipid
data. CI, Cognitive Impairment; HC, Healthy Control; WE, Wax Ester; TG, Triacylglycerol; SQDG, Sulfoquinovosyl Diacylglycerol; SM, Sphingomyelin;
So, Sphingosine; PI, Phosphatidylinositol; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; PG, Phosphatidylglycerol; MGDG
Monogalactosyldiacylglycerol; LPC, Lysophosphatidylcholine; LPE Lysophosphatidylethanolamine; LPI, Lysophosphatidylinositol; GM3, Ganglioside
GM3; DG, Diacylglycerol; Cer, Ceramide; CerG2, Dihexosylceramide; CerG3, Trihexosylceramide; CerG2GNAc, N-Acetyl-galactosylceramide; AcCa,
Acylcarnitine; AUD, Alcohol use disorder. The lipid group with AUD-NonCI (green), the lipid group with AUD-CI (purple), and the HC group (blue).
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associations between molecular markers and brain structure or

function. Future investigations will incorporate more

comprehensive cognitive assessment tools and neuroimaging

examinations to enhance the stratification of cognitive impairment

and to delve deeper into its underlying mechanisms.

This study integrated metabolomics-lipidomics analysis with

machine learning techniques, with the primary objective of

elucidating the pivotal pathological and physiological mechanisms

underlying AUD-CI. A series of molecular features with high

diagnostic efficacy were identified, including SAM, Cer (d18:1/

26:2), and PC (42:4), among others. These features demonstrated

exceptional discriminatory power in multi-omics and machine

learning models, as evidenced by an AUC of 0.92. Notably, lipid

molecules such as Cer (d18:1/26:2) have been scarcely reported in

prior literature pertaining to AUD-CI. However, given the

challenges in precisely defining the onset time of cognitive

impairment in patients, these multi-omics findings are primarily

utilized to unravel molecular pathways and to propose novel

therapeutic targets, rather than serving as standalone early

diagnostic biomarkers. These discoveries offer innovative

perspectives for the application of mechanism-based interventions

in managing alcohol-induced cognitive impairment.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by The study

adheres to rigorous ethical standards and has been approved by the

Hunan Brain Hospital Ethics Committee (Approval No.: K202201).

The studies were conducted in accordance with the local legislation

and institutional requirements. The participants provided their

written informed consent to participate in this study.
Author contributions

LS: Software, Methodology, Writing – original draft, Data

curation, Formal Analysis. XC: Data curation, Writing – review &

editing, Formal Analysis. BZ: Writing – review & editing, Software,

Data curation, Formal Analysis. SY: Methodology, Software,
Frontiers in Psychiatry 12
Writing – review & editing, Data curation. QO: Writing – review

& editing, Methodology, Validation, Data curation. XZ: Resources,

Supervision, Conceptualization, Project administration, Writing –

review & editing, Funding acquisition.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was financially

supported by the Clinical Research Center For Addiction Disorder

in Hunan Province, China (No.S2022SFLCYX0168); the Scientific

Research Project of the Hunan Health Commission, China

(No.A202303096949); the Foundation of Hunan Provincial

Administration of Traditional Chinese Medicine, China

(No.B2024102); Hunan Provincial Health High-Level Talent

Scientific Research Project, China (No.R2023178); Hunan

Province clinical medical technology innovation guide project,

China (No.2021SK508048); Hunan Province clinical key specialty

(Addiction medicine), China (grant numbers not available); and

Key Clinical Specialty Construction Project of the Hunan Health

Commission, China (Improvement of Diagnosis and Treatment

Ability of Severe Psychiatric Diseases in Hunan Province) (grant

numbers not available).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis.
Lancet Psychiatry. (2016) 3:760–73. doi: 10.1016/S2215-0366(16)00104-8

2. Vos Theo, Lim Stephen S, Abbafati Cristiana, Abbas Kaja M, Abbasi Mohammad,
Abbasifard Mitra, et alGlobal burden of 369 diseases and injuries in 204 countries and
territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study
2019. Lancet. (2020) 396:1204–22. doi: 10.1016/S0140-6736(20)30925-9

3. Grüner ND, Andersen K, Søgaard NA, Juhl C, Mellentin A. Consistency between
self-reported alcohol consumption and biological markers among patients with alcohol
frontiersin.org

https://doi.org/10.1016/S2215-0366(16)00104-8
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.3389/fpsyt.2025.1594313
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Shi et al. 10.3389/fpsyt.2025.1594313
use disorder - A systematic review. Neurosci Biobehav Rev. (2021) 124:370–85.
doi: 10.1016/j.neubiorev.2021.02.006

4. Osna NA, Rasineni K, Ganesan M, Donohue TM Jr, Kharbanda KK. Pathogenesis
of alcohol-associated liver disease. J Clin Exp Hepatol. (2022) 12:1492–513.
doi: 10.1016/j.jceh.2022.05.004

5. Rungratanawanich W, Lin Y, Wang X, Kawamoto T, Chidambaram SB, Song BJ.
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness,
endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol.
(2023) 59:102577. doi: 10.1016/j.redox.2022.102577

6. Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes
to circuits. Trends Neurosci. (2021) 44:1004–15. doi: 10.1016/j.tins.2021.09.006

7. Vo DK, Trinh K. Emerging biomarkers in metabolomics: advancements in precision
health and disease diagnosis. Int J Mol Sci. (2024) 25:13190–208. doi: 10.3390/
ijms252313190

8. Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, et al. Brain lipidomics:
From functional landscape to clinical significance. Sci Adv. (2022) 8:eadc9317.
doi: 10.1126/sciadv.adc9317

9. Caponigro V, Tornesello AL, Merciai F, La Gioia D, Salviati E, Basilicata MG,
et al. Integrated plasma metabolomics and lipidomics profiling highlights distinctive
signature of hepatocellular carcinoma in HCV patients. J Transl Med. (2023) 21:918.
doi: 10.1186/s12967-023-04801-4

10. Becktel DA, Frye JB, Le EH,Whitman SA, Schnellmann RG, Morrison HW, et al.
Discovering novel plasma biomarkers for ischemic stroke: Lipidomic and metabolomic
analyses in an aged mouse model. J Lipid Res. (2024) 65:100614. doi: 10.1016/
j.jlr.2024.100614

11. Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for
in-depth understanding of cellular mechanism and disease progression. J Genet
Genomics. (2020) 47:69–83. doi: 10.1016/j.jgg.2019.11.009

12. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using
deep learning. Brief Bioinform. (2022) 23:1–20. doi: 10.1093/bib/bbab454

13. Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning
approaches for multi-omics data analysis: A review. Biotechnol Adv. (2021) 49:107739.
doi: 10.1016/j.biotechadv.2021.107739

14. Li R, Li L, Xu Y, Yang J. Machine learning meets omics: applications and
perspectives. Brief Bioinform. (2022) 23:bbac460. doi: 10.1093/bib/bbab460

15. Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of
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