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Background: Psycho-linguistic and audio data derived from speech may be useful

in screening and monitoring cognitive aging. However, there are gaps in

understanding the predictive value of different prompts (e.g., open ended or

structured) and the relationship of features to subjective versus objective cognition.

Objective: To advance understanding of method variation in speech-analysis

based psychometry, we evaluated targeted prompts for classification of impaired

cognition and cognitive complaints.

Method: A sample of 49 older participants (mean age: 76.9, SD: 8.5) completed

short interview questions and cognitive assessments. Acoustic and Linguistic

Inquiry through Word Counting i.e., LIWC (verbal content-based) features were

derived from answers to open ended questions about aging (AG) and the Cookie

Theft task (CT). Outcomes were objective cognitive ability measured using

Telephone Interview for Cognitive Status (TICS-m), and subjective cognition

using Cognitive Failures Questionnaire (CFQ).

Results: A combined feature set including acoustic and LIWC (verbal content)

yielded excellent classification results for both CFQ and TICS-m. The F1,

precision and recall for CFQ elevation was 0.83, 0.85 and 0.82, and for TICS-m

cutoff was 0.92, 0.92 and 0.92 respectively (using single learners). Features

derived from CT task were of greater relevance to TICS-m classification, while

the features from the AG task were of greater relevance to the CFQ classification.

Conclusion: Acoustic and psycholinguistic features are relevant to assessment of

cognition and subjective cognitive complaints, with combined features

performing best. However, subjective and objective cognitions were predicted

to differing extents by the different tasks, and the feature sets.
KEYWORDS

acoustic, psycholinguistic, cognitive impairment, dementia, machine learning,
NLP, Alzheimer’s
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1 Introduction

It is well established that age-related cognitive decline co-occurs

with changes detectable in speech (1). Changes in speech appear

also to be associated with risk of Alzheimer’s disease (2). Speech

analysis has primarily derived from samples of responses to

structured prompts, but audio and psycho-linguistic analysis of

verbal responses in open ended conversation may also predict

objective cognitive performance (3). In addition to prediction of

objective cognitive impairments, the application of speech analysis

to prediction about subjective cognitive complaints or SCC (e.g.

concerns about memory or slow thinking) has received little study

(4). SCC are a key component of screening and diagnosis of Mild

Cognitive Impairment (MCI). SCC remain unexplored through

automatic voice and speech-analysis based techniques, leaving a

gap in how speech task variants correlate with subjective cognition.

Although both relevant and common, SCC (5–9) are distinct

from cognitive impairments (10). SCC is positively correlated with

depressive symptoms (11), more so than are objective measures of

cognition (12–15). Identifying which features from audio-based

samples predict subjective, objective cognition, and both, could be

helpful in understanding the potential utility of speech analysis.

The type of conducted dialogue (e.g., unstructured interviews vs.

directed instructions) and the topic may influence not only the

sentiment and non-verbal vocalizations, but also the content and

framing of responses (16–18). Cognitive impairment has been

explored through automated speech analysis using several kinds of

dialogues with humans or software agents. Some of these dialogues

are everyday conversation with humanoid robot (19), computer

avatar based conversations (20), casual conversation (21–23), story

retelling (24), recalling content of film (25), picture description task

(26) and directed questions such as birthplace, name of elementary

school, time orientation and backward recitation of three digit

numbers (27). Among these, the Cookie Theft task (28, 29), which

is a directed picture description task, has been a popular choice (30–

34). To our knowledge, few or no studies have evaluated differences in

prediction from different speech data sources within the same sample.

Recorded conversational speech offers a variety of features:

acoustic, linguistic and verbal content; each offering a different

insight (18). These layers often intertwine and influence each other;

for example, a speaker’s voice acoustics may betray underlying

emotions that can significantly impact the interpretation of the

information (content) as well as speaker’s age and health. Acoustic

feature sets are often large, openSMILE (35–37) comprises a set of

88 features, some of which have been related to psychological

processes. In speech analysis, “shimmer” is a measured acoustic

feature that quantifies the cycle-to-cycle variation in the amplitude

(volume) of a voice signal, as to how much the loudness fluctuates

between each vocal fold vibration. Shimmer features studies (38, 39)

suggest a link with emotions, and as indicators of cognition decline

(40). More recently, formant frequencies were shown to undergo a

predictable change under cognitive load (41). Linguistic Inquiry and

Word Count (LIWC) (42) counts words which are assigned into

various psychological and linguistic categories (43). Speech

transcribed through text can be effectively processed using LIWC
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for content analysis (44) for mood (45) as well as objective cognition

(46) and other constructs (47). Although we could find no studies

on subjective cognition using LIWC, it is a strong candidate feature

set for such analyses.

A recent comprehensive review of NLP and audio based studies

on detection of cognitive impairment (48) summarized that most

prior work included both NLP and audio analyses in the same

sample. Among studies reviewed, speech elicitation methods varied

from spontaneous speech, clinical interviews, and conversations

with virtual agents. The analysis for the CT task mostly relied upon

NLP based techniques using n-grams, BERT-embeddings,

Transformer encodings, GPT encodings; only three combined

both NLP and acoustic features. Another review focused only on

automated speech recognition based methods (49) included only

three studies combining NLP and audio features, one included

immediate and delayed recall of a short film and two using cookie

theft task. Techniques combing NLP and speech performed

generally better than either one separately. No study to our

knowledge addressed both objective cognition and subjective

cognitive complaints while combining NLP and audio features.

In this study, we contrast two approaches to speech data

collection: the Cookie theft picture description task that invokes

cognitive processing, and the other more open-ended prompting to

describe individual experiences of aging. The choice of prompts

(Cookie Theft Task, successful aging questions) in this pilot study

were partially dictated by the prevalent norms, especially the cookie

theft prompt. The Cookie Theft Task (28) has a long history in

aphasia diagnosis (29), with as well as in research on Alzheimer’s

(50). The task was also selected because it has been extensively

evaluated using speech analysis (31, 48, 49, 51, 52). The aging

questions were chosen as a complementary task because they were

previously evaluated in other studies of healthy aging (53) and has

been subjected to linguistic and voice analyses (3, 54, 55), Finally,

both the Cookie Theft task and successful aging questions can be

delivered by remote means making them scalable.

We also evaluated the association of these modalities with

differential prediction of subjective cognitive ability and objective

impairment. We hypothesized (based on prior literature) that both

speech elicitation prompts would yield data that would result in

reasonable levels of accuracy in discriminating individuals above the

cutoffs from those below, for subjective as well as objective measures.

We also hypothesized that acoustic and linguistic features could attain

good performance (F1>0.75) in predicting both subjective and objective

cognitive abilities. We explored the variation in contribution of acoustic

versus linguistic features to integrated models, and then contrasted

features derived from the different speech elicitation methods in

predicting subjective versus objective cognitive impairments.
2 Materials and methods

2.1 Participants and procedures

The participants were drawn from a previously engaged large

sample of 1300 community -dwelling residents of San Diego
frontiersin.org
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County for the parent study, the Successful AGing Evaluation

(SAGE) (56). That project is detailed elsewhere, and briefly, used

random digit dialing to recruit a sample of 1006 persons.

Participants completed a baseline assessment consisting of a set of

survey instruments and thereafter participants were followed on an

annual basis with some exceptional years. A subsample (n=311)

that had expressed interest in future studies on aging were contacted

via mail with a pamphlet describing the goals of this study.

We augmented the SAGE survey (56) to include brief telephone

or Zoom interviews of SAGE participants. The SAGE study (56)

had the following inclusion criteria: (1) age 50–99 years, (2) having

a (landline) telephone at home, (3) physical and mental ability to

participate in a telephone interview and to complete a paper and

pencil mail survey, (4) informed consent for study participation,

and (5) English fluency and the exclusion criteria w: (1) residence in

a nursing home, or requiring daily skilled nursing care, and (2) self-

reported prior diagnosis of dementia, (3) terminal illness, or

requiring hospice care. The study protocol was approved by the

IRB of the University of California San Diego.

A subsample (n=311) that had expressed interest in future

studies on aging were contacted via mail with a pamphlet

describing the goals of this study of which 49 participated in the

study. The severe attrition of the sample was attributed to several
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reasons, some of which are detailed as follows (Figure 1). Some of

the phones were out of service or incorrect numbers (68), some did

not pick up the phone and no voicemail could be left (35). One or

more voicemails was left for some individuals (100). Many of those

contacted had lost interest due to illness, scheduling or age (52). Six

interviews were cancelled or withdrawn. No contact could be

established with the remainder. Of the 49 who consented and

interviewed, 40 were interviewed over Zoom and 9 over the

phone. All recordings were of acceptable audio quality and were

transcribed for use in analysis.

The interview contained three parts, 1) the Cookie Theft task

(CT) from the Boston Diagnostic Aphasia Examination (28, 29)

(Supplementary, Appendix A). 2) three open ended questions about

aging (AG) (Supplementary, Appendix A) and 3) two structured

questionnaires, the 12 -item Modified Telephone Interview for

Cognitive Status (TICS-m) (57) and the 25-item Cognitive

Failures Questionnaire (CFQ) (58, 59). The interviewer was

trained to administer the TICS-m and CFQ tasks by a licensed

staff psychologist who was also available to answer scoring related

questions. Interviews were conducted over Zoom or phone between

June 2024 and December 2024 and study data were managed and

collected using REDCap electronic data capture tools hosted at UC

San Diego (60–62).
FIGURE 1

Flowchart of participant retention through the study.
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2.2 Sociodemographic and clinical
neuropsychological measures

Socio Demographic: Sociodemographic information was made

available from participant details in the parent survey (56) which

included age, sex, race, marital-status and education.

Cognitive Failures Questionnaire (CFQ) (58) is a 25-item

questionnaire of self-reported failures in perception, memory, and

motor function. Responses are stable over a long period, tend to

show positive correlation among questions, and positively

correlated with the number of psychiatric symptoms reported on

the Mental Health Quotient (MHQ). A high CFQ score was defined

as greater than or equal to 43, which was associated previously with

neurosarcoidosis (63).

The Modified Telephone Interview for Cognitive Status (TICS-

m) (57, 64) is a concise questionnaire adapted to be used over the

phone for screening dementia or mild cognitive impairment (MCI).

The questions on TICS-m target attention, orientation, language,

and learning and memory like the Mini-Mental Status Exam

(MMSE). The modified version includes delayed recall for better

detection of memory deficits compared to the original. We

administered the 12 -item Telephone Interview of Cognitive

Status (TICS-m) (57) which is a modified version of 11-item

Telephone Interview of Cognitive Status (TICS) (65). Item 10 of

TICS and TICS-m which is “With your finger tap five times on the

part of the phone you speak into”, was replaced by “Clap your hands

five times” where the interviewer could see or hear the participant

clapping on the Zoom/phone. Two studies offer detailed

comparison of various versions of TICS to assess consistency of

cutoffs (66, 67). A meta-analysis recommended a cut-off score of

<31 on the TICS, providing 92% sensitivity and 66% specificity for

detecting dementia (68). A cut-off score of 30/31 with 85%

sensitivity and 83% specificity was suggested for the TICS-m

assessment (57) and goes on to suggest that cutoff of 31/32

produces similar discrimination. This is also supported by (69).
2.3 Audio preprocessing

The audio recordings were converted to.wav format. These

recordings were used in entirety to extract acoustic features with

an assumption that interviewer utterances comprised of only a

small part of the recording and were consistent. Digital recordings

of Zoom or phone-based interviews were obtained in.m4a or mp3

formats respectively and then converted to.wav format using ffmpeg

(70). The audio recordings included the interviewer’s prompts

which were short and generally uniform across the sample.
2.4 Features

Acoustic Features: We used the concise and curated feature set

“eGeMAPSv02” suitable for clinical speech analysis, and described

in Geneva minimalistic acoustic parameter set (GeMAPS) for voice

research and affective computing (71). The GeMAPS is a minimal
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set of voice acoustic features that are deemed suitable for both voice

(trait) and mood (state) related research (3) and made accessible

through the Python openSMILE library (audEERING GmbH), and

validated for this purpose (35–37) relevant among these are features

of successive formants, F0, F1, and F2, the successive peaks in the

frequency spectrum, and voice shimmer. Details on the acoustic

features can be found in (71, 72), (Supplementary, Appendix B).

Psycholinguistic Features: The recordings were transcribed

using whisper (https://whisperapi.com/speech-to-text-free-tool).

The transcribed text was then manually tagged with “Q:” tags for

interviewer utterances and “A:” for the participant utterances. These

tags were used to extract participant utterances for further LIWC

analysis. LIWC uses a word spotting paradigm as used in Linguistic

Inquiry through Word Counting (LIWC) (43), considered to be the

gold standard in NLP for psychology applications. The approach

emphasizes content over syntax. The technique typically uses a

handcrafted dictionary, that has assigned words to categories, to

count words in the text that fall in each category, We extracted the

full set of 119 LIWC 2022 features described by (43) for each

transcript in our dataset. Transformer based approaches such as

BERT (73) or large language models (LLMs) require large to huge

amounts of data while offering little insights into the relevance of

features. Further, they use only textual data and do not incorporate

audio features. Finally, the performance as assessed through F1-

score was low (74). Therefore, these approaches were

not investigated.

Demographic Features: Age, sex, race and years of education

were considered in the feature set.
2.5 Feature ranking

Gini ranking (75) was used to rank top 20 features. The

contribution of the features in discriminating the cognitively

impaired (TICS-m <= 31) from those who were not, and those with

significant self-assessed cognitive complaints (CFQ >42) from those

without, was assessed by first limiting the feature set to include only

the top 20 features. The vast total number of features (119 linguistic

features, 88 acoustic features from derived from each of the two tasks

(Supplementary Figure A1) and 5 demographic features) far exceed

the sample size (n=49), creating a strong likelihood of overfitting.
2.6 Machine learning models

We used ANN with ReLU, logistic and tanh activation

functions, Support vector machine (SVM) and k neighbors (kNN)

based models with specified hyperparameters (Supplementary,

Appendix C). The aim was to assess features and tasks in their

utility, rather than to obtain the best fine-tuned classification model.

Transformer based approaches such as BERT (73) or large language

models (LLMs) require larger data sets and are also limited in

respect to interpretability of features. Further, they use only textual

data and do not incorporate audio features. Therefore, these

approaches were not applied in the current study.
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Several model performance metrics were evaluated such as Area

Under the Curve (AUC), F1 score, precision, recall and specificity

and the details on how these measures are computed are available in

the supplementary material (Supplementary, Appendix D). AUC

provides an overall picture of model’s ability to classify beyond

randomness on a range on operating points, precision and recall

may provide a direct measure for comparison in specific

applications (e.g. higher recall may be desirable over precision in

medical screening applications). We use the harmonic mean of

precision and recall, the F1-score, to rate feature-set and

model performances.
3 Results

The sample ranged from 61 to 93 years in age at the time of

interviews (Table 1). Participants were mostly white 42(85.7%),

female 26(53.1%) and married or cohabitating (n=33, 67.3%), with

high education (mean years15.6, SD 2.2). Cognitive functioning

varied among participants as indicated by TICS-m scores in the

range 27–45 with a mean score 35.1 (SD=4.1), with 10 (or 20.4%)

falling below the cutoff (<=31). Subjective failures of cognition as

reported in the CFQ were in the range 31-81, with a mean score 55.5

(SD=11.5), with 43 (or 87.8%) reporting above the cutoff (>42). The

Zoom recordings were compared with phone recordings and no

discernible differences in quality were observed. No recording got

excluded from analysis due to poor quality. The CT task duration

was unimodal, lasting a minute in most cases (Mean= 1.0 minutes,

SD=0.5), while the AG task duration was bimodal with one peak a

little over a minute and the other about two and a half minutes

(Mean=2.2 minutes. SD=1.0) (Figure 2). Supplementary Figure B1

shows effect of computing features on longer time scales may cause
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some loss of momentary information. CFQ and TICS-m scores for

individuals were not correlated (Figure 3).

When predicting subjective cognition based on elevated CFQ

score, ML models performed best with all combined features

including acoustic and content-based features were combined

from CT and AG tasks. Using single-learner models an F1-score

of 0.83, precision of 0.85 with an AUC of 0.88 was achieved

(Table 2A). Similarly, when predicting objective cognition based

on TICS-m cutoff, ML models performed best with all combined

features including acoustic and content-based features from both

CT and AG tasks. We achieved an F1-score and precision of 0.92

with an AUC of 0.90 (Table 2A). Performance improved for some

targets when ensemble methods were used (Table 2B). All models

and targets yielded AUC equal to or above 0.76, with TICS-m

classification approaching 0.90; these values are sufficiently higher

than 0.5 (random) suggesting the identified features have great

value in classification. Precision, recall and their harmonic mean,

the F1 score, too, support our claim of excellent classification.

Tables 3, 4 show the best features identified through GINI-index

that were used for classification.

The AG and CT tasks, however, contributed differently to

discrimination of elevation in subjective cognitive complaints as

well as low scores on objective cognition measure. In predicting

CFQ, seven of the top 10 features were derived from the AG instead

of the CT task. In contrast, when predicting TICS-m scores, seven of

the top 10 features were derived from the CT instead of the AG task.

Further, the specificity for CFQ target was poor with features

derived only from the CT task, suggesting limited suitability of

the task for the CFQ classification. The generally lower specificity

for the CFQ target, we believe, stems from the fact that 87.76% of

our sample had CFQ above the cutoff (Table 1), and the models

were eager to classify samples into the category. As expected, using
TABLE 1 Demographic and clinical characteristics.

Characteristics Specification Mean (Std. Dev); Min-Max N(%)

Age 76.9(8.5); 61.2-93.8

Sex Female 26(53.1%)

Race White 42(85.7%)

Hispanic 4(8.16%)

Other 3(6.12%)

Education Number of years 15.6(2.2); 11.0-18.0

Marital Status Currently Married/Cohabitating 33(67.3%)

Never married/divorced/separated 8(16.33%)

Widowed 7(14.29%)

Other 1(2.04%)

CFQ score 55.5(11.5);31.0-81.0

CFQ > 42 43(87.8%)

TICS-m score 35.1(4.1);27.0-45.0

TICS-m <=31 10(20.4%)
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FIGURE 2

Distribution of task durations in minutes. CT task was generally completed within a minute, while AG task durations were bi-modal, approximately
one half taking a little over a minute, and the other about twice as much.
FIGURE 3

Objective cognition as measured using TICS-m and subjective cognition as measured using CFQ show no correlation.
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the top ranked features from combined set yielded the best

classification; F1 of 0.92 for the TICS-m target and 0.83 for the

CFQ (Table 2A). Demographic features (age, sex, race, education

and marital status) were of little consequence (Tables 3, 4). CT

derived features were more relevant to TICS-m classification while

AG derived features were of greater value to the CFQ classification.

Importance by the type of features, openSMILE (acoustic) vs.

LIWC (content) as represented among top 10, in prediction of the

two targets were split evenly. When predicting CFQ based

subjective cognition, five were derived from openSMILE. Of these

five, three acoustic features were loudness and shimmer (changes in

loudness) related (Table 3). The LIWC features derived from AG

task encoded tentativeness and leisure in the reminiscence. The CT

task derived LIWC features encoded tone and negation

(Supplementary, Figure B2). When predicting TICS-m based

objective cognition, four features were derived from openSMILE,

three of which encode aspects of formant frequencies, F0 (lowest) to

F2 (highest). The AG task derived LIWC features encoded work and

affiliation (Supplementary, Figure B3). The remaining features

encoded negative emotion and anxiety.
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4 Discussion

Notwithstanding limitations, we found several potentially

important aspects of different speech collection modalities and

predictive accuracy across subjective and objective cognition in

older adults. Our hypotheses were supported; acoustic and linguistic

markers derived from either the cookie theft and open-ended

modalities achieved acceptable accuracy in predicting objective

and subjective cognition. However, the features derived from the

cookie theft task were more predictive of objective measure of

cognition, whereas the more open ended successful aging questions

derived features were more predictive of subjective complaints. In

all models, there was a relatively balanced proportion of acoustic

versus linguistic markers in prediction of both objective and

subjective cognition, with little overlap in top features across

prediction of subjective or objective cognition. Therefore, different

speech elicitation modalities (cookie theft, open-ended etc.) may

have different strengths in predicting objective and subjective

cognition, and the combination of acoustic and linguistic markers

may be optimal in predicting either outcome.
TABLE 2A Best performing single estimators/learners.

Target Features Model AUC F1 Precision Recall Specificity

CFQ All ANN 0.88 0.83 0.85 0.82 0.54

CFQ AG and CT ANN 0.86 0.82 0.83 0.82 0.40

CFQ AG ANN 0.76 0.82 0.83 0.82 0.40

CFQ CT kNN 0.80 0.82 0.77 0.88 0.12

Tics-m All ANN 0.90 0.92 0.92 0.92 0.83

Tics-m AG and CT ANN 0.90 0.90 0.90 0.90 0.82

Tics-m AG ANN 0.76 0.76 0.76 0.80 0.35

Tics-m CT ANN 0.88 0.80 0.81 0.80 0.65
TABLE 2B Best performing models when ensemble methods were included.

Target Features Model AUC F1 Precision Recall Specificity

CFQ All AdaBoost 0.81 0.92 0.92 0.92 0.70

CFQ AG and CT AdaBoost 0.71 0.88 0.88 0.88 0.55

CFQ AG AdaBoost 0.71 0.88 0.88 0.88 0.55

CFQ CT Random Forest 0.80 0.89 0.89 0.89 0.56

Tics-m All ANN 0.90 0.92 0.92 0.92 0.83

Tics-m AG and CT ANN 0.90 0.90 0.90 0.90 0.82

Tics-m AG XGBoost 0.83 0.81 0.82 0.84 0.44

Tics-m CT ANN 0.88 0.80 0.81 0.80 0.65
AG- Acoustic, linguistic features related to aging related questions.
CT- Acoustic, linguistic features related to Cookie Theft picture description.
ALL- All combined features (AG, CT and Demographics).
AUC-Area under the curve.
F1-F score.
ANN-Artificial neural network, ReLu.
kNN- k nearest neighbour.
XGBoost-Gradient Boosting.
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Our study contributes to a growing literature evaluating the

linguistic and audio features derived specifically from the cookie

theft picture description task as well as other brief structured

cognitive tasks (77). Our study was different from many in that

included people who were randomly selected from a population and

evaluated the link to task performance rather than diagnostic

characterization (e.g., MCI). A focused review on cookie theft task

studies suggested richness of content words, conciseness of expression,

and quantity of expression were greater among the control (31). A

recent review proceeded to harmonize the linguistic feature

nomenclature that abounds (into several 100s) in the literature,

found that linguistic feature categories such as phonetic-prosody

(breaks and repetitions in connected speech), lexical-semantic

(meaning and grammar), speed, coherence and cohesion were very

relevant in screening (78), these reviews did not include acoustic
Frontiers in Psychiatry 08
features. We found that language suggestive of negative tone, use of

numbers from the CT task, and work and affiliation from the AG task

were relevant linguistic features. Acoustic features that captured

formant frequencies were also discriminative. Our study evaluated

the prediction of a global cognitive screeningmeasures across domains

(3), and future studies might employ a comprehensive

neuropsychological battery to evaluate which acoustic and linguistic

features align with different cognitive domains.

Our study is consistent with recent studies on speech analysis and

objective cognition. A study (77) used audio features extracted using

openSMILE and Wave2Vec2.0 (79) which is an alternative audio

feature representation. The highest accuracies reported (84.8%) were

from the interference and the number reading task while the

interview and reading task provided lower accuracies in the 67%-

78% range. While the performance of openSMILE and Wave2Vec
TABLE 3 Top features for predicting Cognitive Failures Questionnaire (CFQ) score > 42.

CFQ (Subjective experience of cognitive aging)

Feature
rank

Task type Feature name - description Information
gain

Gini Student’s t P value

1 AG OpenSmile shimmerLocaldB_sma3nz_amean – Loudness (Variation) 0.195 0.058 [+] 3.062 0.004*

2 AG OpenSmile spectralFluxV_sma3nz_amean 0.195 0.058 [+] 2.973 0.005*

3 AG LIWC Tentat - Tentative (E.g. if, or, any, something) 0.195 0.058 [+] 1.919 0.063

4 CT LIWC Tone - Emotional tone (Degree of positive (negative) tone) 0.144 0.043 [-] 0.895 0.388

5 CT LIWC Comm - Communication (E.g. said, say, tell, thank) 0.116 0.043 [-] 1.665 0.150

6 CT LIWC Negate - Negations (E.g. not, no, never, nothing) 0.167 0.040 [-]1.796 0.125

7 AG LIWC Leisure - (E.g. game, fun, play, party) 0.114 0.040 [-] 0.997 0.348

8 AG OpenSmile loudness_sma3_percentile20.0 – Loudness (Baseline) 0.152 0.038 [+] 3.084 0.003*

9 AG OpenSmile loudness_sma3_stddevFallingSlope – Loudness (Rolloff) 0.152 0.038 [+] 2.810 0.009*

10 AG OpenSmile mfcc2_sma3_stddevNorm 0.152 0.038 [-] 0.743 0.462

11 CT OpenSmile F0semitoneFrom27.5Hz_sma3nz_percentile20.0 – Formant 0
(Baseline frequency)

0.152 0.038 [+] 0.414 0.688

12 CT OpenSmile shimmerLocaldB_sma3nz_amean –Loudness (Variation) 0.152 0.038 [+] 1.089 0.291

13 CT OpenSmile MeanVoicedSegmentLengthSec – Voiced Speech
length (mean)

0.152 0.038 [+] 0.631 0.533

14 CT LIWC Analytic - Analytical thinking (Metric of logical,
formal thinking)

0.152 0.038 [+] 2.578 0.026*

15 CT OpenSmile jitterLocal_sma3nz_amean – Frequency (Shifts) 0.147 0.037 [-] 0.728 0.488

16 CT LIWC Health - (E.g. medic, patients, physician, health) 0.101 0.034 [-] 0.129 0.900

17 AG OpenSmile mfcc2_sma3_amean – 2nd Mel Cepstrum (Voice Timber) 0.141 0.034 [-] 4.946 0.001*

18 AG OpenSmile mfcc2V_sma3nz_amean – 2nd Mel Cepstrum (Voice Timber) 0.141 0.034 [-] 0.4531 0.001*

19 AG LIWC Allure - words commonly used in successful ads and persuasive
communications (76).

0.141 0.034 [-] 1.200 0.267

20 CT OpenSmile mfcc2_sma3_amean – 2nd Mel Cepstrum (Voice Timber) 0.141 0.034 [-] 4.783 0.001*
AG: Aging questions.
CT: Cookie Theft picture description.
[+]: positively related to CFQ score > 42.
[-]: negatively related to CFQ score > 42.
Feature names are in bold and a short description is provided in normal text.
*: Significant p-values < .05.
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derived features were identical for the best case of interference task.

These accuracies are about 5% lower than our best performances

which we attribute to their simpler model choice of Support Vector

Machine (SVM), and a lack of feature selection. The feature relevance

was not examined, but the study reinforces our finding on different

speech elicitation modalities where features derived from tasks of

cognition are better predictors of objective cognition. Accuracies like

ours were achieved in Chinese language Cookie Theft task with

simpler audio features that encoded pauses and hesitation but

included visual facial features (80). BERT based models that used

transcriptions (only) of the cookie theft task achieved lower

accuracies of about 84.8% for non-controls (81), suggesting

acoustic features have additional and relevant information besides

transcriptions only processing by BERT, a notion also embraced by a

recently proposed dementia screening system (82).
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Our study was novel in evaluating and applying speech analysis

to the prediction of subjective cognition. Acoustic and linguistic

markers were able to predict subjective cognition. Notably, the

markers were generally different from those of objective cognition,

with some overlap of linguistic markers of negative emotions. Recent

reviews of longitudinal studies suggest a higher symptom burden on

subjective cognition has predictive value for mild cognitive

impairment (MCI) and dementia (83), while the symptoms

themselves were associated with quality of life (84). Conversely, a

younger subjective age was related to higher cognitive performance,

and reduced depressive symptoms (85) (86), suggesting subjective

cognition, quality of life, subjective age, depressive symptoms and

longer term cognitive outcomes remain enmeshed (87). Other studies

provide evidence that subjective cognition and depressive

symptomology may be directly linked as higher cognitive failure
TABLE 4 Top features for Modified Telephone Interview for Cognitive Status (Tics-m) score <=31.

TICS-m (Objective assessment of cognitive aging)

Feature
rank

Task type Feature name-description Information
gain

Gini Student’s t P value

1 CT LIWC Number - (E.g. one, two, first, once) 0.154 0.074 [+] 0.980 0.338

2 AG LIWC Affiliation - (E.g. we, our, us, help) 0.183 0.073 [-] 2.311 0.032*

3 CT LIWC Feeling - (E.g. feel, hard, cool, felt) 0.126 0.067 [+] 1.671 0.125

4 CT LIWC emo_neg - negative emotion 0.132 0.066 [+] 0.747 0.467

5 CT OpenSmile F2frequency_sma3nz_amean – Formant 2 (frequency) 0.166 0.064 [+] 1.935 0.073

6 CT OpenSmile F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope –
Formant 0 (rolloff variation)

0.166 0.064 [+] 2.957 0.013*

7 CT OpenSmile F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope –
Formant 0 (rolloff mean)

0.166 0.064 [+] 2.729 0.021*

8 AG LIWC emo_anx - anxiety 0.120 0.061 [+] 1.744 0.111

9 AG LIWC Work - (E.g. work, school, working, class) 0.155 0.060 [-] 3.267 0.003*

10 CT OpenSmile slopeV0-500_sma3nz_amean 0.164 0.060 [-] 1.600 0.134

11 CT OpenSmile F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2 – Formant
0 (range)

0.161 0.059 [+] 0.498 0.629

12 AG OpenSmile F1bandwidth_sma3nz_stddevNorm – Formant 1 (bandwidth) 0.118 0.059 [-] 0.384 0.706

13 AG LIWC Perception - (E.g. in, out, up, there) 0.152 0.055 [-] 0.214 0.835

14 AG OpenSmile mfcc2V_sma3nz_amean - 2nd Mel Cepstrum (Voice Timber) 0.149 0.053 [+] 0.876 0.399

15 AG OpenSmile F3frequency_sma3nz_amean - Formant 3 (frequency) 0.149 0.053 [+] 1.066 0.304

16 CT LIWC Space - E.g. in, out, up, there) 0.132 0.046 [-] 3.105 0.005*

17 CT LIWC BigWords - Percent words 7 letters or longer 0.132 0.046 [-] 2.663 0.020*

18 CT LIWC Allnone - (E.g. all, no, never, always) 0.110 0.045 [+] 1.893 0.082

19 AG OpenSmile mfcc2_sma3_stddevNorm - 2nd Mel Cepstrum (Voice
Timber variation)

0.127 0.045 [+] 0.337 0.738

20 AG LIWC Conj - (E.g. and, but, so, as) 0.124 0.044 [-] 1.069 0.307
AG: Aging questions.
CT: Cookie Theft picture description.
[+]: positively related to Tics-m score <=31.
[-]: negatively related to Tics-m score <=31.
Feature names are in bold and a short description is provided in normal text.
*: Significant p-values < .05.
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scores are associated with greater perceived psychological distress and

affective disorders (13, 58, 88, 89), and momentary affect among

healthy individuals (90). The association of negative emotions with

subjective cognition is therefore not surprising. Subjective cognitive

complaints are a component of MCI diagnoses, but a challenge is in

potentially understanding the specificity of these experiences beyond

affective symptoms. Furthermore, since our open-ended question

likely elicited more affectively linked content, it is perhaps not

surprising that open ended questions content was more linked to

subjective compared to objective cognition. In the future, sentiment

fromNLP and audio features that encode emotions, such as shimmer,

could play a role is disentangling symptoms from subjective

complaints. The use of multimodal speech elicitation paradigms

may help tease apart the subjective complaints tied to objective

decline from that tied to affective symptoms. In the future, it would

be important to understand the within person trajectories of acoustic

and linguistic features and how they might change with subjective

and objective cognition. Other linguistic features such as sentence

complexity, vocabulary richness and attributes of grammar might be

more stable and linked to crystallized knowledge, whereas features

that are related to vocalization and sentiment may vary within people,

and perhaps in conjunction with affective states.

Acoustic features implicated in subjective cognitive complaints

in our study were shimmer, spectral flux and loudness, all derived

from the AG task (among top 10, Table 3). In speech analysis,

“shimmer” is an acoustic feature that quantifies the cycle-to-cycle

variation in the amplitude (loudness) of a voice signal, as how much

the loudness fluctuates between each vocal fold vibration. This is in

accordance with other studies that have linked shimmer and

loudness with emotions (38, 39, 91); and emotions having

established link to SCC is in alignment with our previous finding

that such complaints are mood dependent (90).

In contrast, key audio features implicated in objective cognition

were all related to base and higher formant frequencies derived

from the CT task. Formant frequencies were shown to undergo a

predictable change under cognitive load (41). Such formant shifts

(at a gross level) are manifested as a shift in pitch and Mel-

frequency cepstral coefficients (mfcc), which was described as an

invariant pattern of cognitive decline (92). There is a greater body of

evidence supporting this finding (3, 93, 94). The probable

explanation for fundamental frequency (F0) and resonant

frequencies (Formants) to encode information about an

individual’s cognition stems from the mechanics of phonological

motor planning and control of vocal speech production apparatus

(95). Inclusion of F0, F1, and F2 formant features in analysis of

interview prompts that require cognitive processing can be helpful

in assessing individual cognitive capacities and as indicators of

cognition decline (40).

Our study had several strengths including the focus on multiple

modes of speech elicitation, prediction of both objective and

subjective cognition, and inclusion of both acoustic and linguistic

markers. There are some important limitations and, as such, this

study’s findings should be considered preliminary and require

replication. For one, the sample size was small, and the

demographic make-up of the sample was skewed toward white and
Frontiers in Psychiatry 10
persons with high education. The sampling approach employed

random-digital dialing (56) but we note that this is a subset of the

original sample. Our study’s outcomes included brief global

screenings of cognitive ability and subjective cognition and so does

not speak to the prediction of specific cognitive impairments or

diagnoses (e.g., MCI). There is a myriad of potential prompts for

elicitation of speech. In the future, data from a larger more diverse

population (or integrable data sets from different populations)

alongside a wider variety of prompts that are parameterized for

variation in subjective or objective cognitive levels derived from

normed data would help to specify prompts that produce audio

and linguistic patterns linked to either subjective, objective cognition

or both. The study is also cross sectional and does not speak to the

stability of these findings, and did not include independent validation.

In our current survey we did not have questions about subjective

cognition from the perspective of caregivers. As such replication

would be required to understand the robustness of these findings.

Finally, NLP models used supervised approaches and generative or

transformer models could provide additional accuracy.

As a basis for future work, next steps would include replication

in larger sample and designing of prompts that elicit content

predictive of objective versus subjective cognition. It would be

helpful also to contrast people with and without objective

cognitive impairments on the acoustic and linguistic predictors of

subjective complaints. Further, the influence of mood and other

factors on the stability of speech features would be useful, in

particular via longitudinal study that might evaluate MCI

conversion as an endpoint. A larger study sample on casual

conversation would facilitate topic-modelling and clustering

approaches for thematic analysis. Furthermore, understanding

how speech markers evolve over time in concert with subjective

and objective cognitive, as well as brain and other biological

markers, would be highly informative. Analyzing such

conversations using LLMs with ingrained reasoning and BERT

based classification are natural next steps. Together, these findings

are consistent with recent reviews indicating the protentional for

speech analysis in understanding cognitive aging, with our study

indicating that this also extends to subjective cognitive decline.
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67. Chappelle SD, Gigliotti C, Léger GC, Peavy GM, Jacobs DM, Banks SJ, et al.
Comparison of the telephone-Montreal Cognitive Assessment (T-MoCA) and
Telephone Interview for Cognitive Status (TICS) as screening tests for early
Alzheimer’s disease. Alzheimer’s Dementia. (2023) 19:4599–608. doi: 10.1002/
alz.v19.10

68. Elliott E, Green C, Llewellyn DJ, Quinn TJ. Accuracy of telephone-based
cognitive screening tests: systematic review and meta-analysis. Curr Alzheimer Res.
(2020) 17:460–71. doi: 10.2174/1567205017999200626201121

69. Knopman DS, Roberts RO, Geda YE, Pankratz VS, Christianson TJ, Petersen
RC, et al. Validation of the telephone interview for cognitive status-modified in subjects
with normal cognition, mild cognitive impairment, or dementia. Neuroepidemiology.
(2010) 34:34–42. doi: 10.1159/000255464

70. Developers, F. ffmpeg tool (Version be1d324)(2016). Available online at: http://
ffmpeg.org (Accessed February 1, 2025).

71. Eyben F, Scherer KR, Schuller BW, Sundberg J, André E, Busso C, et al. The Geneva
minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing.
IEEE Trans Affect computing. (2015) 7:190–202. doi: 10.1109/TAFFC.2015.2457417
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