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A multimodal ensemble
stacking model improves
brain age prediction and
reveals associations with
schizophrenia symptoms
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Sung Woo Joo3, Jungsun Lee3 and Won Hee Lee1,2*

1Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea,
2Department of Artificial Intelligence, Kyung Hee University, Yongin, Republic of Korea, 3Department
of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
Introduction: Brain age prediction using neuroimaging andmachine learning has

emerged as a promising approach to assess brain health and detect deviations

associated with neurological and psychiatric disorders. The difference between

chronological age and predicted brain age, known as brain-predicted age

difference (brainPAD), is considered a potential biomarker for advanced brain

aging. However, most studies rely on single-modality imaging, limiting predictive

accuracy and generalization. This study aimed to enhance brain age prediction

by integrating multimodal neuroimaging—structural MRI (sMRI) and diffusion

MRI-derived fractional anisotropy (FA)—and evaluating its effectiveness in both

healthy individuals and schizophrenia patients.

Methods: We analyzed a large, multi-site dataset of 2,558 healthy individuals

(aged 12–88 years) using machine learning approaches to assess the impact of

multimodal inputs on brain age prediction. A stackingmodel combining sMRI and

FA features was developed and validated. To evaluate cross-dataset

generalization, the model was tested on an independent dataset comprising 56

healthy individuals (aged 20–58 years) and 48 schizophrenia patients (aged 19–

65 years). Statistical analyses were conducted to compare brainPAD

scores between groups and assess correlations with clinical measures in

schizophrenia patients.

Results: The multimodal stacking model achieved superior prediction

performance compared to single-modality models, with a mean absolute error

(MAE) of 2.675 years and Pearson’s correlation (r) of 0.970 between predicted and

chronological age in the internal test set. External validation on the COBRE

dataset demonstrated MAE of 4.556 years (r = 0.877) for healthy controls and

6.189 years (r = 0.873) for patients with schizophrenia. Schizophrenia patients

exhibited significantly higher brainPAD scores compared to healthy controls (t =

3.857; p < 0.001; Cohen’s d = 0.769), suggesting advanced brain aging.

Additionally, brainPAD was significantly correlated with symptom severity

scores in schizophrenia (r = 0.331–0.337, p < 0.05).

Discussion: Our findings demonstrate that integrating sMRI and FA features

improves brain age prediction accuracy and generalization. Furthermore, the

correlation between brainPAD and clinical symptoms highlights its potential as a

biomarker for disease progression and treatment monitoring. These results
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underscore the value of multimodal neuroimaging and machine learning in

advancing psychiatric neuroimaging research and paving the way for clinical

applications in schizophrenia and related disorders. Further investigation with

larger sample sizes is required to validate and extend these findings.
KEYWORDS

machine learning, schizophrenia, brain age, magnetic resonance imaging, multimodal
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1 Introduction

Schizophrenia is a severe and chronic mental disorder

characterized by a constellation of positive (e.g., hallucinations,

delusions) and negative (e.g., social withdrawal, blunted affect)

symptoms, and cognitive impairments that significantly impact

daily functioning and quality of life (1–3). Despite decades of

research, the underlying neurobiological mechanisms driving

the development and progression of schizophrenia remain

incompletely understood. This lack of clear biological markers has

hindered efforts toward early detection, accurate diagnosis, and

targeted treatment interventions.

Emerging evidence suggests that individuals with schizophrenia

exhibit advanced brain aging compared to healthy controls (4–8).

The concept of “brain age” refers to a measure derived from

neuroimaging data that estimates the biological age of an

individual’s brain (9). While healthy brain aging is characterized

by gradual structural and functional changes, schizophrenia

patients tend to exhibit neuroanatomical and connectivity

patterns more akin to those of older individuals, even from the

early stages of the disorder (10, 11). Brain age prediction using

machine learning techniques applied to neuroimaging data, such as

structural magnetic resonance imaging (sMRI) and diffusion MRI

(dMRI), has shown promise in capturing this advanced brain aging

trajectory in schizophrenia (7, 8). The discrepancy between an

individual’s predicted brain age and their chronological age, termed

the “brainPAD”, has emerged as a potential transdiagnostic

biomarker reflecting advanced brain aging observed multiple

psychiatry disorders, including schizophrenia, bipolar disorder,

and other neuropsychiatric disorders (4, 5, 7, 12).

Elucidating the relationship between brain age and the clinical

manifestations of schizophrenia could provide valuable insights

into the underlying neurobiology and pathophysiological processes

involved (7, 8) Moreover, brain age prediction models may aid in

the development of objective diagnostic tools and facilitate early

intervention strategies, ultimately improving treatment outcomes

and quality of life for individuals with schizophrenia (4, 13, 14).

Correlations between brainPAD and symptom severity, cognitive

deficits, and functional impairment have been reported, suggesting

that brainPAD could serve as a potential biomarker of overall

disease burden (10, 11). For instance, a larger brainPAD in
02
schizophrenia is associated with greater cognitive impairments

and deficits (6, 10, 15). In first-episode schizophrenia patients, a

reduction in brainPAD was observed after a few months of

antipsychotic treatment, indicating brain age may track

treatment-related improvements in brain integrity and cognitive

functioning (10). Among unaffected relatives of schizophrenia

patients, a larger brainPAD was associated with lower cognitive

performance, suggesting advanced brain aging may relate to genetic

liability for cognitive deficits in psychosis (15). Multiple studies

converge on the finding that an increased brainPAD, reflecting

advanced brain aging, is associated with more severe cognitive

impairments in schizophrenia (7).

Several studies have investigated the accuracy of brain age

prediction in schizophrenia using multimodal neuroimaging data.

While it is well established that combining multiple modalities

improves age prediction accuracy compared to single-modality

models (13, 14, 16, 17), recent discussions in the literature

emphasize that predictive accuracy alone is not sufficient to

establish the utility of a brain age model in clinical populations

(18). In the context of schizophrenia, the key question is whether

multimodal models demonstrate greater sensitivity (or utility) in

capturing individual differences related to disease severity,

symptom profiles, or functional outcomes, beyond what is

achievable with single-modal approaches (18–21). As highlighted

by Jirsaraie et al. (19) in their systematic review, enhanced

prediction accuracy from multimodal integration is expected;

however, whether such models yield stronger associations with

clinically meaningful phenotypic variation remains an important

open question that requires direct investigation.

Our multimodal approach incorporates FA maps derived from

dMRI alongside sMRI data based on substantial evidence of white

matter abnormalities in schizophrenia (22–26). Previous research

has demonstrated altered white matter integrity in schizophrenia,

with FA reductions observed across multiple white matter tracts

(22). By incorporating this schizophrenia-relevant modality, our

model is designed to capture neuroanatomical variations potentially

more sensitive to the disease processes.

Building on prior research demonstrating the advantages of

multimodal neuroimaging for brain age prediction, the present

study aimed to (i) replicate previous findings that combining

structural and diffusion MRI features improves prediction
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accuracy in a large healthy control cohort, and (ii) apply the

resulting multimodal models to a schizophrenia (SZ) cohort to

investigate potential clinical relevance. Specifically, we assessed

whether integrating T1-weighted structural MRI (sMRI) and

fractional anisotropy (FA) maps from diffusion MRI (dMRI)

enhances brain age prediction accuracy relative to single-modality

models. Furthermore, we examined whether the brain-predicted age

difference (brainPAD) is associated with clinical symptom severity,

as measured by the Positive and Negative Syndrome Scale (PANSS)

(27, 28), in individuals with SZ (29).

We used sMRI and dMRI data from 2,558 healthy participants

(n = 2,558, female: 1,327; age range: 12–88 years) to train and

evaluate five representative machine learning models: support

vector regression (30), relevance vector regression (31), least

absolute shrinkage and selection operator (Lasso) regression (32),

Gaussian process regression (33), and random forest regression

(34). Feature matrices derived from preprocessed MRI scans were

standardized and reduced in dimensionality using principal
Frontiers in Psychiatry 03
component analysis (PCA) (35). After validating model

performance in healthy controls, we applied the best-performing

single-modal and multimodal models to a schizophrenia cohort (n

= 48) and assessed the relationship between brainPAD and

clinical symptoms.
2 Materials and methods

An overview of the workflow for brain age prediction using

multimodal neuroimaging data is shown in Figure 1.
2.1 Datasets

We employed structural, T1-weighted magnetic resonance

imaging (sMRI) and diffusion magnetic resonance imaging

(dMRI) data from a large, multi-site cohort of 2,558 healthy
FIGURE 1

Overview of the workflow for brain age prediction using multimodal neuroimaging data.
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participants (1,327 females, age range 12–88 years) for the training

dataset for our brain age prediction model. This data originated

from established studies including the Human Connectome Project

(HCP) S1200 release (n = 1,060, 574 females, age range 22–37 years)

(36), the Cambridge Center for Ageing and Neuroscience (Cam-

CAN; n = 638, 321 females, age range 18–88 years) (37), the

Southwest University Longitudinal Imaging Multimodal Brain

Data Repository (SLIM; n = 550, 298 females, age range 17–27

years) (38), and the Consortium for Reliability and Reproducibility

study (CoRR; n = 310, 134 females, age range 12–62 years) (39). All

subjects were confirmed to have no neurological or psychiatric

history and were cognitively healthy. To assess the generalization

performance and utility of the trained models, we utilized sMRI and

dMRI data from two separate groups: 56 healthy controls (HC) with

no history of major psychiatric disorders (15 females, age range 20–

58 years) and 48 schizophrenia patients meeting the DSM-IV

criteria (12 females, age range 19–65 years) (40). Both datasets

were provided by the Center of Biomedical Research Excellence

(COBRE) (40). While the original COBRE dataset included

approximately 100 HC and 100 SZ participants, the reduced

sample size in this study resulted from the exclusion of

participants with inadequate image quality, missing diffusion MRI

data, or incomplete clinical measures. We used deidentified data

from publicly available repositories. Ethical approvals and informed

consents were obtained locally for each study, covering both

participation and subsequent data sharing. Sample characteristics

of the datasets used in this study are shown in Table 1 (40).
2.2 Data processing

Structural T1-weighted images were preprocessed using the

Computational Anatomy Toolbox 12 (CAT12) for each subject

with default settings (41). Skull-stripping was performed to remove

non-brain tissues from the images, enhancing the focus on brain

structures. Intensity inhomogeneities due to magnetic field variations

were corrected to improve image quality and uniformity. This

correction was performed using the spatially adaptive non-local

means (SANLM) denoising filter. The preprocessed images were

normalized to the Montreal Neurological Institute (MNI) space

using DARTEL (Diffeomorphic Anatomical Registration using

Exponentiated Lie algebra) for inter-subject alignment.
Frontiers in Psychiatry 04
The normalization process included high-dimensional warping to

match the MNI template, ensuring precise anatomical

correspondence across subjects. The resulting preprocessed sMRI

images had a voxel size of 113×137×113 and isotropic spatial

resolution of 1.5 mm³. A quality check was performed on the

preprocessed images using the automated quality control measures

provided by CAT12, which include checking for artifacts,

homogeneity, and image resolution.

Diffusion-weighted MRI images were preprocessed using a

combination of DSI-Studio (42) and FSL (FMRIB Software

Library, version 6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) to

reconstruct diffusion tensor images (DTI) (14, 43). Eddy current-

induced distortions and subject motion were corrected using the

eddy tool in FSL. This step aligned all the diffusion-weighted

volumes to a common reference, correcting for motion and eddy

current-induced distortions. A brain mask was generated from the

b0 image using the Brain Extraction Tool (BET) in FSL to exclude

non-brain tissues. Susceptibility-induced distortions were corrected

using the FSL tool topup, which requires an additional field map or

phase-encoding reversed images if available. Fractional anisotropy

(FA) was computed using the dtifit tool in FSL. FA measures

directional diffusion, ranging from zero (isotropic) to one

(anisotropic), and is a commonly used quantitative dMRI metric

in the literature (33, 34). The FA map was then co-registered to the

corresponding structural MRI (sMRI) data using affine

transformation followed by symmetric normalization (SyN)

diffeomorphic transformation for optimal spatial alignment as

implemented in the Advanced Normalization Tools (ANTs) (36,

44). This ensured that the FA map had the same voxel size

(113×137×113 with 1.5 mm isotropic voxels) and spatial

orientation as the sMRI data. Quality control for the DTI data

was performed following the ENIGMA-DTI protocols (45). This

included visual inspection of the FA maps for any artifacts,

misregistration, or other anomalies. Moreover, standardized

scripts from ENIGMA were used to assess and report on image

quality metrics such as signal-to-noise ratio (SNR), outliers, and

other relevant QC measures (https://enigma.ini.usc.edu/protocols/

dti-protocols/).

Both the preprocessed sMRI and FA images were masked using

the MNI152 template and the FMRIB58 FA template masks,

respectively. The masked images were then vectorized (converted

into a single feature vector) and subsequently normalized using z-

scores. This resulted in the creation of individual feature matrices

for each subject. Each feature matrix included 600,556 features from

sMRI data and 615,179 features from FA data.
2.3 Principal component analysis

We employed principal component analysis (PCA) with

singular value decomposition (SVD) (35) to reduce the

dimensionality of the feature matrix. PCA is a linear

dimensionality reduction technique that transforms high-

dimensional data into a lower-dimensional space, capturing the

maximal variance in the data. We applied PCA to the feature matrix
TABLE 1 Demographics of datasets used in this study.

Dataset Group N
Male/
Female

Age range
(Mean ± SD)

HCP HC 1,060 486/574 22-37 (28.7 ± 3.7)

Cam-CAN HC 638 317/321 18-88 (54.5 ± 18.6)

SLIM HC 550 252/298 17-27 (20.0 ± 1.3)

CoRR HC 310 176/134 12-62 (22.5 ± 7.8)

COBRE HC 56 41/15 20-58 (37.4 ± 11.4)

SZ 48 36/12 19-65 (37.2 ± 13.5)
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before modeling, resulting in reduced dimensional data derived

from the original neuroimaging features. The selection of principal

components for retention was based on the explained variance ratio

in each model. In all models, including single-modality models

using only sMRI or FA data and the multimodal model combining

sMRI and FA data, we retained the top 700 principal components,

which explained 60% of the total variance observed in the dataset.

To assess the impact of dimensionality on prediction accuracy,

we further evaluated the influence of the number of retained

principal components on brain age prediction performance for

each model. We tested different scenarios by retaining components

representing 20%, 40%, 60%, 80%, and 90% of the total variance.

This allowed us to examine how the number of principal

components retained affects the accuracy of brain age prediction

for each model.
2.4 Machine learning algorithms

We utilized five widely used machine learning algorithms to

capture potential linear and non-linear relationships between

multimodal neuroimaging features (sMRI and FA) and brain age

(46–54). The linear regression models included support vector

regression (SVR) (30), relevance vector regression (RVR) (31),

and least absolute shrinkage and selection operator (Lasso)

regression (4, 32, 51, 53, 55). For non-linear modeling, we used

Gaussian process regression (GPR) (33) and random forest (RF)

regression (34). This selection of models allows us to investigate the

influence of both linear and non-linear relationships on the

prediction of brain age. Detailed descriptions of each method are

provided in the Supplementary Materials.
2.5 Brain age prediction

The data was randomly divided into a training set (80%) and an

internal test set (20%) to evaluate the model’s generalization to

unseen data. To mitigate potential bias due to age and gender

differences, we ensured statistically similar distributions of these

variables in both sets. To evaluate the model’s generalization to

unseen data, the dataset was randomly divided into a training set

(80%) and an internal test set (20%) using stratified sampling to

preserve the distributions of scanner site, sex, and age. To

statistically verify this balance, we conducted a Mann-Whitney U

test for age, which revealed no significant difference between the

training and test sets (U = 520570.5, p = 0.790). For categorical

variables, chi-square tests confirmed that the distributions of sex

(c2 = 0, p = 1.0) and scanner site (c2 = 0.23, p = 0.972) were not

significantly different across the two sets. These results indicate that

demographic and site-related confounds were adequately controlled

in the dataset split. Prior to model training, sMRI and FA features

were standardized using the robust scaler from scikit-learn (56),

which centers data around the median and scales it by the

interquartile range (IQR) to improve model performance by

reducing the influence of outliers.
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For single-modality brain age prediction, we explored five

widely-used regression algorithms with strengths in handling

different data characteristics: SVR (30) and RVR (31) for

handling high-dimensional data with potential sparsity, Lasso

regression (32) for feature selection and interpretability, GPR (33)

for non-parametric modeling of nonlinear relationships, and RF for

robustness to noise and overfitting. We trained separate models for

both sMRI and FA data using these algorithms.

For multimodal brain age prediction, we employed a stacking

framework to integrate information across modalities. This

approach aligns with recent studies that utilized model stacking

to combine features from different imaging modalities (57, 58).

Initially, single-modality models were trained using k-fold cross-

validation on the training set, generating brain age predictions for

each subject based on sMRI and FA features separately. These

predictions served as input features for a second-level model (i.e., an

RF regressor) that was trained to predict chronological age based on

the combined single-modality outputs. The same training/testing

splits used in the first-level models were maintained to ensure that

the stacked model was evaluated only on unseen internal test data.

The second-level RF model was optimized via grid search over two

hyperparameters: the number of trees (10, 50, or 100) and

maximum tree depth (5, 10, 20, or None, where None allows

trees to grow to full depth). Model performance was evaluated

using 5-fold cross-validation within the training set for

hyperparameter tuning and subsequently assessed on the internal

test set using two key metrics: mean absolute error (MAE), which

quantifies the average absolute difference between predicted and

actual age, and Pearson’s correlation coefficient (r), which measures

the linear association between predicted and chronological age.

Finally, the trained model was applied to an external validation

set (i.e., the COBRE dataset), which includes both healthy controls

and patients with schizophrenia. This allowed us to assess the

generalization of brain age predictions and to examine

associations between brainPAD and clinical symptom severity in

patients with schizophrenia.
2.6 Age-bias correction

BrainPAD was computed by subtracting an individual’s

chronological age from their predicted brain age. Positive

brainPAD values indicate a predicted brain age that is older than

the individual’s chronological age, while negative brainPAD values

suggest a predicted brain age that is younger. Due to the statistical

phenomenon of regression to the mean in regression analysis (59,

60), brainPAD values tend to be overestimated in younger

individuals and underestimated in older individuals. To address

this age-related bias in brain age prediction, we applied the age-level

correction method proposed by Zhang et al. (61). This method

involves fitting a linear regression model between brainPAD values

and chronological age using healthy control (HC) data from the

COBRE sample. The fitted model estimates the expected brainPAD

for each age, which is then subtracted from the original brainPAD

scores to yield age-corrected estimates. Unlike traditional sample-
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level correction approaches (60) that adjust only the overall mean

brainPAD to zero, Zhang et al.’s method corrects residual linear

biases at each individual age level. This ensures effective bias

removal across the entire age spectrum, providing unbiased

brainPAD estimates regardless of chronological age (61). For

samples of age a, the age-bias corrected brainPAD, brainPADac
i ,

was computed as follows:

brainPADac
i =

brainPADi −  ma

sa

where ma and sa denote the mean and standard deviation of

brainPAD over samples of age a, respectively. This correction can

eliminate the bias as it ensures that the mean of brainPADac
i of the

same age a is zero (61):

Εa brainPAD
ac
i½ � =   Εa brainPADi − ma)=sa½ �

=
Εa brainPADi½ � − ma

sa
= 0
2.7 Statistical analysis

Between-group differences in brainPAD were assessed using a

multiple regression model with age, sex, and diagnostic group (SZ

vs. HC) as covariates. This approach allows for the isolation of

diagnosis-specific effects on brain aging while controlling for

demographic variables that are known to influence brain

structure and brain age prediction accuracy. Effect sizes were

quantified using Cohen’s d, calculated directly from the regression

model’s t-statistics to provide a standardized measure of the

magnitude of group differences (63).

The COBRE sample provided a unique opportunity to explore

the functional significance of brain age prediction in schizophrenia

(40). This dataset includes MRI data from schizophrenia patients
Frontiers in Psychiatry 06
along with clinician-collected symptom severity scores using the

Positive and Negative Syndrome Scale (PANSS) (28). The PANSS

provides comprehensive assessment of schizophrenia symptoms,

including total scores and subscale scores for positive symptoms,

negative symptoms, and general psychopathology.

Prior to correlation analysis, Shapiro-Wilk normality tests were

performed to assess the distribution of all variables (Supplementary

Table S1). Based on these results, Spearman’s rank correlation

coefficient was used to assess these non-parametric associations

while controlling for chronological age and sex. A supplementary

analysis using Pearson’s correlation is provided in the supplement

(Supplementary Table S2). To account for multiple comparisons,

we employed false discovery rate (FDR) correction with a q-value

threshold of 0.05 (62). This approach helps to control potential

inflation of Type I errors arising from conducting numerous

statistical tests. All statistical analyses were performed using

Python, v. 3.8.16 with the statsmodels, v. 0.14.1 package.
3 Results

3.1 Brain age prediction performance

Table 2 presents the performance metrics of various machine

learning models for brain age prediction. The multimodal stacking

model combining sMRI and FA features with Lasso regression

demonstrated the lowest prediction error (MAE = 2.675, r = 0.974)

(Figure 2). sMRI-only models yielded MAE values ranging from

2.969 to 3.274, while FA-based models produced MAE values

between 3.552 and 3.925. The multimodal models that

incorporated both sMRI and FA data achieved MAE values

ranging from 2.675 to 3.191. Among the evaluated approaches,

the stacking method with Lasso regularization produced the most

accurate brain age predictions when combining multimodal

neuroimaging features.
TABLE 2 Performance comparison of different machine learning algorithms applied to single-modality (sMRI and FA) and multimodal (sMRI+FA)
neuroimaging data.

Model Data
sMRI FA sMRI+FA

MAE r MAE r MAE r

Linear Model

Support
Vector Regression

Train 1.848 0.983 2.171 0.976 1.622 0.989

Test 3.002 0.968 3.552 0.941 2.710 0.973

Relevance
Vector Regression

Train 2.097 0.986 2.497 0.980 1.702 0.990

Test 2.991 0.969 3.574 0.943 2.693 0.974

Lasso Regression
Train 2.050 0.986 2.425 0.980 1.695 0.990

Test 2.985 0.969 3.570 0.939 2.675 0.974

Non-Linear Model

Gaussian
Process Regression

Train 2.045 0.986 2.422 0.981 1.675 0.990

Test 2.969 0.969 3.555 0.940 2.677 0.974

Random
Forest Regression

Train 2.768 0.972 3.263 0.960 2.271 0.981

Test 3.274 0.955 3.925 0.924 3.191 0.956
The best and second-best results are marked in bold and underline on the unseen test set, respectively.
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We examined the relationship between the number of

principal components (PCs) retained from PCA and brain age

prediction performance using the best-performing models.

Models were evaluated using PCs that explained 20%, 40%,

60%, 80%, and 90% of the total variance in the original feature

set. Prediction performance varied with the amount of variance
Frontiers in Psychiatry 07
retained, with the lowest MAE observed when approximately 60%

of the variance was preserved (Table 3, Figure 3). Performance

remained stable or slightly decreased when additional

components beyond this point were included. These results

show that retaining 60% of the variance provided optimal

prediction accuracy in this dataset.
FIGURE 2

Scatter plots showing pairwise correlations between chronological age and predicted brain age for five machine learning algorithms applied to
single-modality (sMRI and FA) and multimodal (sMRI+FA) data: (a) support vector regression (SVR), (b) relevance vector regression (RVR), (c) least
absolute shrinkage and selection operator (Lasso) regression, (d) Gaussian process regression (GPR), and (e) random forest (RF) regression. Pearson
correlation coefficient (R) and mean absolute error (MAE) are shown for each association.
TABLE 3 Comparison of predictive performance in brain age prediction by the number of PCA components retained on the internal test set.

Explained
variance

Data
sMRI FA sMRI+FA

MAE r MAE r MAE r

20%
Train 3.632 0.956 5.687 0.894 2.859 0.972

Test 3.733 0.952 5.971 0.879 3.282 0.957

40%
Train 2.673 0.977 3.090 0.969 2.146 0.984

Test 3.242 0.964 3.920 0.947 2.778 0.970

60%
Train 2.050 0.986 2.425 0.980 1.695 0.990

Test 2.985 0.969 3.570 0.939 2.675 0.974

80%
Train 1.469 0.992 1.564 0.991 1.178 0.995

Test 2.887 0.971 3.417 0.950 2.755 0.972

90%
Train 1.059 0.996 1.101 0.995 0.837 0.997

Test 2.839 0.971 3.337 0.952 2.738 0.972
The best results are marked in bold.
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Notably, the stacking model that combined both sMRI and FA

features consistently achieved the best brain age prediction accuracy

across all tested proportions of explained variance (Table 3).

Figure 3 displays the performance metrics (MAE and correlation)

for each model configuration based on the proportion of variance

explained by the PCs. The multimodal stacking model maintained

superior performance (lowest MAE, highest correlation) regardless

of the specific variance threshold, demonstrating its robustness to

dimensionality reduction parameters. This consistent performance

advantage suggests that integrating complementary information

from both structural and diffusion imaging provides more stable

and accurate brain age predictions than either modality alone, even

under varying feature selection conditions.
3.2 Generalization performance and utility
in the COBRE sample

We evaluated the generalization of the best-performing

multimodal stacking model by testing it on independent test sets

within the COBRE sample. This involved testing the model on new

data that wasn’t used for training to evaluate its ability to predict

brain age in unseen subjects. The multimodal model maintained its

superior performance, achieving the lowest MAE compared to

single-modality models in the COBRE sample (Table 4). These
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results suggest that the multimodal model generalizes well for brain

age prediction on unseen data. The multimodal model achieved an

MAE of 4.556 and a correlation of 0.877 for healthy controls (HC)

and an MAE of 6.189 and a correlation of 0.873 for schizophrenia

(SZ) patients in the COBRE sample (Table 4).

We then computed brainPAD for each participant in the COBRE

sample (Figure 4a). To address potential age-bias, we applied age-bias

correction method using brain age predictions from the HC group

within COBRE. Table 5 presents mean brainPAD differences and

group comparison statistics for HC versus SZ across three imaging

modalities. SZ patients consistently demonstrated elevated brainPAD

values relative to HC across all modalities, with the multimodal model

showing the strongest group differences (t = 3.857; p < 0.001; Cohen’s d

= 0.769) (Figure 4b). Alternative age-bias correction results based on

the training sample are provided in the Supplementary Materials

(Supplementary Figure S1; Supplementary Table S3).

Figure 5 shows the association between age-corrected

brainPAD values and PANSS symptom scores (total and three

subscale scores) in individuals with schizophrenia. Significant

positive correlations were observed between brainPAD and

negative symptoms (r = 0.335, uncorrected p = 0.021, FDR-

corrected p = 0.030), general psychopathology symptoms (r =

0.337, uncorrected p = 0.020, FDR-corrected p = 0.030), and

overall PANSS total scores (r = 0.331, uncorrected p = 0.022,

FDR-corrected p = 0.030). In contrast, the correlation between

brainPAD and positive symptoms was not statistically significant (r
= 0.159, uncorrected p = 0.286, FDR-corrected p = 0.287). Both the

multimodal and sMRI-based models demonstrated comparable

correlation patterns with negative and general psychopathology

symptoms, as visualized in Figure 5.
4 Discussion

This study investigated the efficacy of multimodal neuroimaging

data (sMRI and FA) in predicting brain age using machine learning
FIGURE 3

(a) Mean absolute errors (MAE) and (b) correlation coefficients between predicted brain age and chronological age in singlemodality (sMRI and FA)
and multimodal (sMRI+FA) models.
TABLE 4 Generalization performance of brain age prediction models
using single-modality (sMRI or FA) and multimodal (sMRI+FA) data in the
COBRE sample.

Group
sMRI FA sMRI+FA

MAE r MAE r MAE r

HC 5.038 0.879 7.509 0.695 4.556 0.877

SZ 6.558 0.886 7.489 0.729 6.189 0.873
The best results are marked in bold.
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TABLE 5 Comparison of brainPAD values between healthy controls (HC) and patients with schizophrenia (SZ) for both uncorrected and age-bias
corrected estimates.

Modality Metric
Uncorrected brainPAD Corrected brainPAD

HC SZ HC SZ

sMRI

Mean (SD) 1.298 (5.813) 4.340 (6.568) -0.614 (1.378) 1.624 (4.210)

b (SE) 2.995 (0.825) 2.242 (0.605)

t 3.629 3.702

p < 0.001 < 0.001

d 0.728 0.739

FA

Mean (SD) -4.774 (8.357) -2.479 (9.289) -0.790 (1.252) 1.690 (6.872)

b (SE) 2.205 (1.006) 2.490 (0.948)

t 2.190 2.624

p 0.030 0.010

d 0.439 0.523

sMRI + FA

Mean (SD) 0.310 (5.626) 3.938 (6.597) -0.523 (1.322) 1.687 (3.988)

b (SE) 3.584 (0.939) 2.215 (0.574)

t 3.814 3.857

p < 0.001 < 0.001

d 0.765 0.769
F
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Group means and standard deviations (SD) are provided. Multiple regression models were used to adjust for chronological age and sex. The regression coefficient b with standard error (SE)
represents the unstandardized effect size (in years) for group differences estimated from the multiple regression model. Cohen’s d values represent the effect sizes for group differences.
FIGURE 4

Boxplots of the brain-predicted age difference (brainPAD) for HC and SZ in the COBRE sample: (a) Uncorrected brainPAD for HC and SZ. (b) Age-
corrected brainPAD for HC and SZ using predictions from the COBRE HC group.
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algorithms. We compared the performance of various models and

explored the relationship between predicted brain age and clinical

symptoms in schizophrenia. Our findings highlight the potential of

multimodal brain imaging for improved brain age prediction and its

association with clinical manifestations.
4.1 Multimodal advantage for brain age
prediction

Our findings support the use of multimodal data (sMRI and FA)

for brain age prediction. Our results show that the multimodal stacking

model with Lasso regression achieved superior performance compared

to single-modality models, highlighting the value of combining these

modalities for brain age prediction. Structural MRI provides detailed

anatomical information about gray and white matter distribution (64,

65), while FA offers insights into white matter microstructure and the

integrity of connecting pathways within the brain (22). Combining

these complementary pieces of information likely leads to a more

comprehensive representation of the brain and its age-related changes.
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Furthermore, these results support the notion that an integrative

approach leveraging multiple data sources can enhance the precision

and accuracy of brain age predictions (13, 51, 54, 58), which is crucial

for identifying deviations linked to neuropsychiatric disorders (4, 5, 7,

8). These findings encourage the adoption of multimodal

neuroimaging in clinical practice, where it could potentially enhance

diagnostic accuracy and individualized treatment planning (7, 8).

Relatively few studies have investigated brain age prediction

with multimodal brain features. Existing research highlights the

potential of combining different modalities. Rokicki et al. examined

the performance of brain age prediction models using various

combinations of MRI-derived features and cerebral blood flow

data, achieving high prediction accuracy (r² = 0.77, MAE = 6.4

years) when integrating all modalities in a healthy population (n =

750, aged 18–86 years) (13). Similarly, Liem et al. reported

improved prediction accuracy (MAE = 4.29 years) using

multimodal data that included cortical anatomy and whole-brain

functional connectivity in a healthy cohort (n = 2,354, aged 18–86

years) (58). Cole explored brain age prediction in a healthy

population (n = 2,205, aged 45–80 years) using six imaging
FIGURE 5

Associations between age-corrected brainPAD and PANSS scores. Scatter plots showing the correlations between age-corrected brainPAD
estimated from the Lasso regression models and each of the four PANSS symptom scores (positive, negative, general psychopathology, and total) in
patients with schizophrenia, controlling for chronological age and sex. The models are based on (a) structural MRI (sMRI) data only, (b) fractional
anisotropy (FA) data only, and (c) combined sMRI and FA data (stacking model). Higher brainPAD scores indicate greater predicted age difference
compared to chronological age.
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modalities (T1-weighted MRI, T2-FLAIR, T2*, diffusion MRI, task

functional MRI, and resting-state functional MR), achieving high

accuracy with T1-weighted and diffusion MRI (51).

Jirsaraie et al. (19) observed that multimodal brain age models

demonstrated the strongest effect sizes for chronic brain disorders,

including schizophrenia, with models using larger numbers of

features being more effective at detecting group differences in these

conditions. Our findings are consistent with this observation, as our

multimodal model yielded the largest effect size (Cohen’s d = 0.769)

for the group difference between schizophrenia patients and healthy

controls, compared to single-modality approaches (sMRI: d = 0.739;

FA: d = 0.523). Additionally, our results contribute to the literature by

demonstrating that multimodal integration can extend beyond

group-level discrimination to capture within-group clinical

variation, as evidenced by the associations between brainPAD

values and PANSS symptom scores. This suggests that carefully

optimized multimodal brain age models may provide clinical utility

not only for case-control discrimination but also for characterizing

symptom severity within patient populations. We acknowledge,

however, that further validation with larger and more diverse

clinical samples is needed to confirm these observations.
4.2 Generalization and robustness

The multimodal model demonstrated good performance when

evaluated on the independent COBRE sample, suggesting potential

for application to unseen data from external sources. While this

result is encouraging, we acknowledge that true generalization

cannot be fully assessed using a single external dataset, especially

one with a limited sample size and an age range that does not span

the full range used for model training. Therefore, future studies

involving diverse, multi-site datasets and broader age distributions

are necessary to more rigorously evaluate the model’s generalization

across different clinical and demographic populations.

In addition to external validation, we also assessed the

robustness of the model with respect to dimensionality reduction

using PCA. The model exhibited consistent prediction performance

across different PCA settings, particularly when components

explaining up to 60% of the variance were retained. This stability

suggests that the model is not overly sensitive to the specific number

of components selected and can reliably extract relevant

information from both sMRI and FA modalities. Such robustness

enhances the model’s practical utility, as it indicates resilience to

variation in preprocessing choices, thereby reducing the risk of

overfitting and improving reliability in applied contexts.

While the multimodal model demonstrated promising

performance when applied to an independent subset within the

COBRE dataset, it is important to acknowledge that true

generalization cannot be fully established based on a single

dataset with a limited sample size and age range. Moreover, PCA

is a widely used technique to reduce the dimensionality of high-

dimensional data such as neuroimaging features (35), the number

of retained components can substantially impact model

performance. Our results demonstrate that the model’s prediction
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accuracy varies across PCA settings, with performance improving

as more variance is retained, and reaching an optimal point around

60% explained variance. Beyond this point, additional components

did not lead to further improvements and sometimes slightly

degraded performance. This suggests that the model is robust

within a certain range of dimensionality reduction, effectively

extracting meaningful information from both sMRI and FA data

when an appropriate balance between variance preservation and

noise reduction is maintained. Therefore, rather than being

uniformly stable across all PCA settings, the model shows reliable

performance when the retained components capture sufficient but

not excessive variance. This property helps reduce the risk of

overfitting and enhances the model’s potential for real-world

application. This robustness is encouraging for real-world

applications, though further validation is needed across more

diverse external datasets, clinical sites, and demographic groups

to comprehensively evaluate the model’s generalization and

clinical utility.
4.3 Brain age acceleration and clinical
correlates in schizophrenia

Our study observed significantly higher brainPAD values in

schizophrenia patients compared to healthy controls, suggesting an

“older than chronological age” brain signature in this population.

This finding aligns with previous research that has documented

neuroanatomical abnormalities and advanced brain aging in

schizophrenia (5, 66–68). Furthermore, the positive correlations

between brainPAD and symptom severity (negative symptoms,

general psychopathology, and overall PANSS scores) provide

evidence for a link between advanced brain aging and increased

symptom severity in schizophrenia.

These findings contribute to the heterogenous literature on

brainPAD-symptom associations in schizophrenia. While large-

scale ENIGMA consortium studies using T1-weighted MRI

reported elevated brainPAD in schizophrenia, they found no

significant associations with clinical symptom measures (PANSS,

SANS, or SAPS scores) (5). Similarly, Joo et al. observed a negative

association between brainPAD and Full-scale Intelligence Quotient

(FSIQ) in chronic schizophrenia patients, though this correlation

did not survive multiple comparison correction (66). In contrast,

Kim et al. identified significant associations between brainPAD and

positive, negative, and total PANSS symptom scores in

schizophrenia patients (67), and Chen et al. found that white

matter-derived brainPAD correlated positively with negative

symptoms and negatively with FSIQ (68). Our findings align with

these latter studies, demonstrating positive correlations between

brainPAD and PANSS negative, general psychopathology, and total

scores. While the multimodal model produced the strongest

correlations overall, the sMRI model also demonstrated

comparable brainPAD associations with PANSS negative and

general psychopathology symptoms (Figure 5), suggesting clinical

relevance of sMRI features, even when used in isolation. These

findings indicate that structural brain measures may be sufficient for
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capturing brain age-symptom relationships, while the addition of

diffusion tensor imaging primarily enhances age prediction

accuracy rather than clinical sensitivity to symptom severity.

These results provide preliminary evidence for brain age

prediction as a potential biomarker for disease severity, though

validation in larger longitudinal cohorts is needed given our

relatively small sample size and cross-sectional design. Future

research should investigate whether brainPAD can predict

treatment response or track disease progression over time, while

exploring the underlying neurobiological mechanisms linking

brain-predicted age to symptom severity in schizophrenia.
5 Limitations and future directions

While this study provides encouraging results, some limitations

need to be addressed in future work. First, the current sample size

can be expanded to further improve the generalizability and

robustness of the findings. Larger datasets would allow for more

robust statistical analyses and potentially reveal even more subtle

relationships between brain age and clinical features. Second,

validation on entirely independent datasets from different

populations is crucial to confirm the generalization of the

multimodal brain age prediction model. Generalization across

populations is essential for ensuring the model’s applicability in

diverse clinical settings. A further limitation of this study is that

brain age prediction was based only on two imaging modalities

(sMRI and FA). While these modalities capture key aspects of brain

structure and white matter integrity, previous studies have

demonstrated that incorporating additional neuroimaging

features, such as resting-state functional connectivity or cerebral

blood flow (16, 69), can enhance prediction accuracy by providing

complementary functional or physiological information. Our

decision to focus on sMRI and FA was guided by their availability

and relevance in clinical and research settings. Future work should

explore the integration of a broader range of modalities to further

improve the precision and biological interpretability of brain age

models. Finally, exploring the clinical utility of brainPAD through

longitudinal studies is warranted. Longitudinal studies track

participants over time, allowing researchers to investigate how

brain age prediction changes with disease progression and

treatment. Investigating the relationship between brainPAD and

cognitive function could be another avenue for future research.

Understanding how brain age prediction relates to cognitive

performance in schizophrenia could provide valuable insights into

the underlying neurocognitive mechanisms of the disease. By

addressing these limitations, future research can solidify the

potential of brain age prediction as a valuable tool for

understanding and managing brain disorders like schizophrenia.
6 Conclusion

This study demonstrated the significant advantages of

multimodal neuroimaging data (sMRI and FA) for brain age
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prediction using machine learning approaches. The multimodal

stacking model achieved superior performance and generalization

compared to single-modality models. Furthermore, the observed

link between brainPAD and symptom severity in schizophrenia

patients suggests a potential clinical utility for brain age prediction

in disease assessment. Future research with larger samples, external

validation, and exploration of clinical utility is warranted to further

elucidate the potential of brain age prediction for improving our

understanding and treatment of neuropsychiatric disorders

like schizophrenia.
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