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University, Kanazawa, Japan, 2Research Center for Child Mental Development, Kanazawa University, 
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Background/aims: Neuroimaging studies suggest altered functional brain 
organization in children with autism spectrum disorder (ASD), particularly in 
response to visual stimulation. However, how transitions between different visual 
states modulate brain network in ASD remains unclear. This study aimed to 
investigate how transitioning from minimal visual input (fixation in a dark room, 
DR) to a silent video (eyes open, EO) alters functional brain networks in children 
with ASD compared with their typically developing (TD) peers. 

Methods: We analyzed magnetoencephalography (MEG) data from children with 
ASD (n=23) and TD children (n=31), aged 3–10 years. MEG signals were mapped 
to 68 cortical regions using the Desikan–Killiany atlas, and functional 
connectivity was assessed using the phase lag index across five frequency 
bands (delta, theta, alpha, beta, and gamma). Graph theoretical analyses 
quantified the clustering coefficient (C), characteristic path length (L), and 
small-worldness (SW) to evaluate network organization. 

Results: Both groups exhibited increased alpha-band clustering coefficients 
under EO. Notably, baseline (DR) graph metrics predicted EO-induced 
changes, with higher initial values associated with smaller subsequent 
increases. Diagnosis-by-condition interactions emerged in the delta and beta 
bands: children with ASD exhibited more pronounced increases in SW from DR to 
EO, whereas TD peers showed more modest or opposite shifts. Within the ASD 
group, larger beta-band SW increases correlated with greater autistic trait 
severity (Social Responsiveness Scale), whereas in TD children, delta-band 
increases associated with milder autistic-like traits. 
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Conclusion: These findings reveal age- and diagnosis-specific differences in how 
visual stimulation reshapes functional brain network organization. They also 
highlight the potential of network metrics as biomarkers for ASD, though 
validation in larger, more diverse cohorts is needed to establish clinical relevance. 
KEYWORDS 

autism spectrum disorder, magnetoencephalography, visual stimuli, graph theory, 
small-worldness, social communication 
1 Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental 
condition characterized by impairments in social interaction and 
communication, as well as restricted, repetitive behaviors and 
fixated interests (1). Diagnosing ASD can be challenging owing to 
the subtlety and variability of behavioral markers, time constraints 
during clinical evaluations, and comorbidities such as anxiety or 
hyperactivity. Additional factors, including female sex, mild 
symptom presentation, inconsistent care, socioeconomic status, 
and language barriers, may further obscure or delay an accurate 
diagnosis (2–5). Given these complexities, investigating the 
biological and physiological underpinnings of ASD may improve 
diagnostic precision. In recent years, brain imaging techniques have 
become essential tools for exploring the neural basis of ASD (6). 
Electroencephalography (EEG) and magnetoencephalography 
(MEG) provide insights into neural processing by measuring the 
brain’s electrical and magnetic activity, respectively. Both 
techniques are safe, noninvasive, and free from noise or radiation, 
making them well-suited for pediatric research. 

The recent systematic review and meta‐analysis by Neo et al. (7) 
have highlighted atypical patterns of resting‐state EEG in ASD, 
underscoring the influence of recording conditions—eyes open 
(EO) versus eyes closed or EO with minimal visual input (EC)— 
on observed group differences. Specifically, EO paradigms tend to 
reveal more robust ASD‐related deviations than EC paradigms. 
Likewise, Mathewson et al. (8) demonstrated that alpha suppression 
—a hallmark of cortical reactivity to visual input—is attenuated in 
ASD. Together, these findings emphasize the importance of 
distinguishing EO and EC states when investigating atypical brain 
oscillations in ASD and suggest that directly contrasting these 
conditions may shed light on the neurophysiological mechanisms 
underlying this disorder. 

Given the brain’s inherent complexity, relying solely on simple 
measures, such as power spectra, may oversimplify its dynamics. To 
address this, neuroscience has increasingly adopted graph theory as 
a framework for understanding large-scale brain networks (9). 
Within this framework, a complex system is represented as a 
“graph” consisting of nodes (discrete objects) and edges 
(relationships between them). In brain network models, nodes 
correspond to distinct brain regions, whereas edges reflect their 
02 
functional connectivity (10). Key metrics such as the mean 
clustering coefficient, which quantifies local clustering among 
connected nodes (functional segregation), and the average 
shortest path length, which reflects communication efficiency 
across distant regions (functional integration), help characterize 
network organization (11). In healthy brains, high clustering and 
short path lengths typically coexist, forming a “small-world” 
configuration that optimally balances local specialization and 
global integration (12–16). This property, known as “small­

worldness”, is measured by the ratio of normalized clustering to 
normalized path length, highlighting the brain’s efficient 
information-processing architecture. 

Given that simple spectral metrics—such as alpha power and 
peak alpha frequency (7, 8)—already differ between EO and EC 
resting-state EEGs, it is essential to treat these states separately in 
graph-theoretical analyses. Although many EEG and MEG studies 
have used graph theory to characterize functional networks in ASD, 
none have specifically compared EO with EC. To the best of our 
knowledge, even only a few studies have examined both states in 
healthy adults (17–19). In these cohorts, clustering coefficients are 
generally higher and characteristic path lengths are longer in the 
alpha band under EC compared to EO conditions (17, 18), with the 
sole exception of Zheng et al. (19), who reported the reverse pattern 
for path length. Although these findings derive from non-ASD 
populations, they clearly demonstrate that EO–EC manipulations 
modulate key graph metrics, underscoring the importance of 
distinguishing these states in graph-theoretical research. 

Beyond EC–EO distinctions, the choice of functional-
connectivity metric critically shapes graph-theoretical outcomes, 
as different measures rest on distinct assumptions and may yield 
substantially different connectivity estimates (20). Although some 
studies suggest that broad patterns of connectivity may converge 
across methods (21), the magnitude and topological properties of 
resulting networks can still differ considerably. In graph-theoretical 
analyses, connectivity measures that are highly vulnerable to 
volume conduction and source leakage—such as correlation, 
coherence, and synchronization likelihood—are generally 
discouraged, as spatial leakage can introduce strong but spurious 
connections (20, 21), leading to inflated clustering coefficients and 
other distorted network metrics. A common strategy to address this 
issue is to use phase-based connectivity measures that specifically 
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suppress zero-phase interactions, which are most susceptible to 
volume conduction. While this comes at the cost of discarding 
genuine zero-lag synchrony, it greatly improves the physiological 
plausibility of the estimated networks. Among such measures, the 
phase lag index (PLI) exhibits high test–retest reliability (22) and is 
widely used in pediatric ASD studies employing EEG or MEG 
(22–27). 

Network construction is another key methodological concern 
that must be considered. Functional brain networks in graph theory 
are built upon the estimated strength of functional connectivity 
between brain regions (nodes). In a weighted network, these 
connection strengths are retained, whereas in an unweighted 
(binary) network, only the presence or absence of a connection is 
considered. Binary networks are typically constructed by applying a 
threshold to the connectivity matrix, such that connections above 
this threshold are retained and others are discarded. One rationale 
for using binary networks is to eliminate potentially spurious 
connections, which may arise from noise or methodological 
artifacts (10). However, threshold selection is often arbitrary and 
can vary across research groups, potentially biasing results (28). 
Weighted networks avoid the need for thresholding and offer a 
more continuous, realistic representation of functional brain 
organization. Nevertheless, they include all connections— 
including weak ones—that may be dominated by noise, thereby 
affecting graph metrics. Furthermore, networks can be either 
directed, reflecting the directionality of interactions (typically 
based on effective connectivity), or undirected, which assumes 
symmetric relationships. While directed networks can potentially 
yield deeper insights into causal information flow, their 
interpretation is more complex and depends on additional 
modeling assumptions. Overall, the information carried by graphs 
ranges from the simplest (binary and undirected) to the most 
detailed (weighted and directed), with richer representations often 
coming at the expense of interpretability and robustness. Possibly 
reflecting this trade-off, prior studies in children with and without 
ASD have used a range of approaches: binary undirected graphs (23, 
26, 27, 29), weighted undirected graphs (24, 25, 30), and rarely 
binary directed graphs (31). 

Finally, two common EEG-specific concerns in graph-
theoretical analyses must be addressed: reference montage and 
sensor density. Unlike MEG, EEG potentials are measured 
relative to a chosen reference—often a single electrode (e.g., 
mastoid, earlobe, or central)—or in bipolar configurations. Single-
reference montages inherently include reference-site activity, which 
can confound connectivity estimates. Although re-referencing (e.g., 
average reference) can reduce this contamination (32), different 
referencing methods yield distinct sensor-level connectivity 
patterns (33), and single-reference montages introduce greater 
distortions than average referencing (34). Reference choice also 
significantly impacts graph metrics—such as node degree and local 
efficiency—derived from these estimates (34). Given ongoing 
debates regarding the optimal reference for connectivity and 
graph-theoretical measures (20), caution is warranted when 
interpreting EEG-based networks. Electrode density similarly 
affects network topology. Hatlestad-Hall et al. (35) showed that 
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reducing the electrode count leads to an overestimation of 
clustering coefficients and an underestimation of characteristic 
path length; these authors recommend at least 64 sensors for 
reliable graph metrics. 

Several EEG and MEG studies have applied graph-theoretical 
methods to compare functional brain networks between ASD and 
typically developing (TD) groups (23, 25–27, 29–31). However, 
methodological variability—including differences in recording 
conditions (EO vs. EC), connectivity metrics (e.g., coherence vs. 
PLI), graph construction (binary vs. weighted networks), and 
participant characteristics (age, medication status)—has resulted 
in inconsistent findings. For example, some studies have reported 
reduced small-worldness in certain frequency bands of the ASD 
group (23, 25, 29), whereas others have found enhanced small­

worldness (26, 30). These discrepancies highlight the importance of 
explicitly considering methodological differences when interpreting 
graph-theoretical findings in ASD. Focusing specifically on 
pediatric studies employing PLI-based binary undirected graphs— 
as in the present study—only three prior studies meet these criteria 
(23, 26, 27), and all three studies used MEG. Soma et al. (23) 
examined young children (60–89 months) under minimal visual 
input (fixation cross), reporting reduced small-worldness in the 
beta band in ASD, alongside a negative correlation between beta-
band small-worldness and autistic traits measured by Social 
Responsiveness Scale (SRS) scores. In contrast, two studies 
employing rich visual inputs (e.g., video viewing) yielded mixed 
results. Shiota et al. (27) studied children aged 38–92 months, 
grouped them by autistic trait severity, and reported reduced small­

worldness across multiple frequency bands (delta, theta, beta, and 
gamma) in children with pronounced autistic traits. Takahashi et al. 
(26), however, found increased gamma-band small-worldness and 
decreased delta-band small-worldness in ASD. These conflicting 
results likely stem from methodological disparities: Takahashi et al. 
conducted sensor-level analyses and included medicated 
participants, whereas Shiota et al. conducted source-level analyses 
and excluded participants on medication. Given the methodological 
similarities (source-level analysis, unmedicated participants) 
between Soma et al. (23) and Shiota et al. (27), the findings from 
these two studies may offer more reliable comparative insights. 
Taken together, these pediatric findings suggest that ASD is 
generally characterized by reduced small-worldness under 
conditions of robust visual stimulation (27), whereas under 
minimal visual input, the observed differences are largely confined 
to the beta band (23). 

The primary objective of this study was to determine how 
transitions from minimal visual stimulation (dark room (DR)) to 
robust visual stimulation (eyes open (EO)) influence three critical 
graph metrics—small-worldness, normalized clustering coefficient, 
and normalized characteristic path length—in children with and 
without ASD. Given the methodological variability in the currently 
available literature, we adopted a PLI-based connectivity measure to 
reduce sensitivity to spurious connections from volume conduction 
and to enhance comparability with prior pediatric ASD studies. 
Furthermore, we used binary undirected graphs, aligning with the 
dominant approach in the pediatric literature to balance 
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methodological consistency, interpretability, and robustness. To 
overcome challenges associated with EEG reference-montage 
confounds and electrode density limitations, we utilized a child-
specific, 151-channel MEG system. MEGs measure unreferenced 
magnetic fields, thereby avoiding EEG-specific reference 
distortions. Additionally, the high sensor density and pediatric-
optimized helmet design improve signal-to-noise ratios, enhance 
spatial sampling, and provide more accurate source-level estimates 
of connectivity and network organization. 

Building upon the findings by Soma et al. (23) and Shiota et al. 
(27), we expected condition-dependent differences in small-world 
network properties between ASD and TD groups. Specifically, we 
hypothesized that during the transition from DR to EO conditions, 
children with ASD would exhibit reduced reactivity—particularly 
diminished small-worldness changes—in delta, theta, and gamma 
bands compared to their TD peers. For completeness, we also 
examined whether similar effects would emerge for the 
characteristic path length L and the clustering coefficient C across 
the same frequency bands. As additional exploratory analyses, we 
investigated whether autistic traits were associated with EO-

induced network changes and whether baseline DR measures 
predicted the magnitude of these dynamic shifts. 
2 Materials and methods 

2.1 Study design and participants 

In this prospective observational study, we recruited children 
aged 3–10 years with ASD and TD peers for MEG recordings. 

The ASD group consisted of 39 children diagnosed with ASD, 
recruited from Kanazawa University and its affiliated hospitals. 
Only those with a confirmed ASD diagnosis without any additional 
neuropsychiatric conditions (e.g., attention-deficit/hyperactivity 
disorder, anxiety, epilepsy) were included, as verified by the 
referring clinician. The ASD diagnoses were further confirmed 
using  either  the  Diagnostic  Interview  for  Social  and  
Communication Disorders (DISCO) or the Autism Diagnostic 
Observation Schedule-2 (ADOS-2) (1, 36–38). TD children were 
recruited through flyers and an institutional website. Inclusion 
criteria were the absence of known developmental, psychiatric, or 
neurological diagnoses based on parental reports. The control 
group included 62 TD children with no known behavioral or 
language difficulties. Participants currently taking psychotropic or 
neurological medications were excluded from both groups. If a 
medication was initiated after recruitment but before the MEG 
session, participants were instructed to pause this medication for at 
least 24 h before scanning. Information on past medication history 
was not systematically collected. 

Children were also excluded if they met any of the following 
criteria: (1) sensory impairments (blindness or deafness), (2) 
intellectual disabilities (see Section 2.2 for details), or (3) 
incomplete MEG or magnetic resonance imaging (MRI) data. In 
the final sample, 16 children with ASD and 31 TD children were 
Frontiers in Psychiatry 04
excluded due to incomplete MEG, magnetic resonance imaging, or 
psychological assessments (see RESULTS section for details). All 
participants were of Japanese ethnicity. 

Written informed consent was obtained from the parents of the 
children before participation in the study. The study was approved 
by the Ethics Committee of Kanazawa University Hospital and 
conducted in accordance with the Declaration of Helsinki. This 
research was part of the broader Bambi Plan at the Kanazawa 
University Research Center for Child Mental Development (https:// 
kodomokokoro.w3.kanazawa-u.ac.jp/en/). While some participants 
in this study were also included in our previous study (23), there 
was no overlap in the results, and the objectives of that study 
differed significantly from those of the present study. 
2.2 Assessment of intelligence and the 
severity of autism symptoms 

To evaluate intellectual functioning, we administered the 
Kaufman Assessment Battery for Children (K-ABC) or its second 
edition (K-ABC-II) to all participants depending on the time of 
assessment and test availability (39, 40). The K-ABC provides a 
Mental Processing Scale (MPS) that assesses problem-solving skills 
through simultaneous and sequential processing tasks, whereas the 
K-ABC-II offers the Mental Processing Index (MPI), which is 
conceptually similar to the original K-ABC MPS, measuring 
general mental processing abilities. As our study focused on 
children with ASD but without intellectual disabilities, we set an 
inclusion criterion of a score of ≥70 on these scales. This threshold 
aligns with the standard diagnostic criteria, distinguishing 
intellectual disability from average intellectual functioning (1). 

To assess the severity of autism symptoms, parents completed 
the SRS or its second edition (SRS-2) (41, 42). The SRS and SRS-2 
provide a continuous measure of social ability, ranging from 
impaired to above average, rather than a categorical ASD 
diagnosis. Higher scores were associated with greater social 
impairment. Because the SRS measures autism traits along a 
spectrum, it can identify both milder ASD symptoms, as well as 
social impairments in non-ASD individuals. 
2.3 MEG data acquisition 

MEG data were recorded using a 151-channel Superconducting 
Quantum Interference Device (SQUID) whole-head coaxial 
gradiometer system (PQ 1151R; Yokogawa/KIT, Kanazawa, 
Japan) housed in a magnetically shielded room (Daido Steel Co., 
Ltd., Nagoya, Japan). To optimize sensor positioning for children’s 
heads and minimize movement, we used a custom-made child-sized 
MEG system (43). MEG signals were low-pass filtered at 500 Hz and 
sampled at 2,000 Hz. Recordings were conducted under two 
conditions: (1) DR Condition – participants focused on a fixation 
cross in a dark room, approximating a resting-state condition 
(consistent with our previous studies) (23, 44), and (2) EO 
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Condition – participants watched a silent video projected onto a 
screen. During both conditions, participants lay supine on a bed. 

To enhance engagement and minimize movement, each child 
selected a preferred video from a set of popular programs. Given 
that children with ASD may experience heightened sensory 
sensitivity, this approach, reduced anxiety by providing a sense of 
control, minimized movement artifacts, improved data quality, and 
increased compliance, ultimately leading to higher-quality 
MEG recordings. 

Although this strategy sacrificed consistency in visual stimuli 
across participants, the benefits of reducing stress and obtaining 
cleaner recordings outweighed this limitation. A staff member 
remained in the room to encourage stillness. 

Recordings were conducted between 11:00 AM and 3:00 PM. 
No participant showed clear signs of drowsiness based on MEG 
waveforms. Given the challenge of keeping young children 
stationary, we set a minimum recording duration of 50 s 
consistent with our previous studies (23, 26). To account for data 
loss due to movement artifacts, we recorded 130 s for the DR 
condition and 190 s for the EO condition. 

These durations ensured sufficient artifact-free data for analysis 
while maintaining participant comfort. 
2.4 Magnetic resonance imaging 

Structural brain images were acquired using a 1.5 Tesla (T) MRI 
scanner (SIGNA Explorer; GE Healthcare, USA) with a T1­
weighted gradient-echo sequence incorporating the Silenz pulse 
sequence. This specialized sequence minimizes acoustic noise and 
shortens scan times, making it particularly suitable for pediatric 
populations (45, 46). The imaging parameters were as follows: 
repetition time (TR) = 435.68 ms, echo time (TE) = 0.024 ms, flip 
angle = 7°, field of view = 220 mm, matrix size = 256 × 256 pixels, 
and slice thickness = 1.7 mm, yielding a total of 130 transaxial 
images. Although this protocol resulted in slightly lower spatial 
resolution due to the thicker slices and lower matrix size, it provided 
sufficient anatomical reference while minimizing scan duration to 
enhance participant compliance. 
2.5 Co-registration of MEG and MRI 
images 

Co-registration of MEG and MRI images was performed using 
specific anatomical markers. Four key reference points were 
identified in both modalities: the midline frontal point, vertex, 
and bilateral mastoid processes. For MEG, magnetic field-
generating coils served as markers, while for MRI, lipid capsules 
were used due to their high-intensity appearance in the images. 
Additionally, anatomical landmarks such as the mastoid processes, 
nasion, and skull surface were manually identified on MRI scans. To 
enhance accuracy, 15–25 additional points were marked for each 
participant, ensuring precise alignment between MEG and 
MRI data. 
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2.6 MEG data preprocessing 

MEG data were processed using Brainstorm (47), an open-
source software platform available under the GNU General Public 
License. Preprocessing followed the guidelines of the Organization 
for Human Brain Mapping (48). The preprocessing pipeline was 
identical to that detailed in Kameya et al. (49) and in our earlier 
work (23, 26). 

The preprocessing pipeline included the following steps: 
 

1. 	  Downsampling: Data were downsampled  to  500 Hz to reduce  
computational load while preserving temporal resolution. 

2. 	  Sensor  Exclusion:  Noisy  sensors  were  identified  
and excluded. 

3. Artifact Removal: 

•	 Notch filters at 60, 120, and 180 Hz were applied to 

eliminate power-line noise and harmonics. 

•	 A 0.5–200 Hz band-pass filter was applied to retain 
relevant frequency components. 

•	 Independent component analysis (ICA) was used to 
remove ocular and cardiac artifacts, specifically 
targeting blinks and heartbeat-related noise. 
4.	 Manual Inspection: Segments with apparent motion 
artifacts or radio frequency interference were visually 
identified and removed by one of the authors (Daiki 
Soma), who was blinded to participant identities. 

5. Epoching: Continuous MEG data were segmented into 5-s 
epochs. To ensure sufficient data quality, at least 10 artifact-
free segments (≥50 s total recording time) were retained 
per participant. 

6.	 Frequency Band Filtering: Each epoch was further 
decomposed  into  the  following  commonly  used  
frequency bands: 
•	 Delta (2–4 Hz) 

•	 Theta (4–8 Hz) 

•	 Alpha (8–13 Hz) 

•	 Beta (13–30 Hz) 
•	 Gamma (30–60 Hz) 
2.7 Atlas-guided source reconstruction and 
segmentation 

Signal source estimation was performed using each participant’s 
original anatomical data. An anatomically constrained MEG 
approach was employed, applying structural constraints to 
estimated sources (50). Head models were computed using the 
overlapping spheres algorithm (51) with a default source space 
comprising 15,000 vertices. We used weighted minimum-norm 
estimation (wMNE) to determine source orientation constraints 
(52). Since noise recordings were unavailable, an identity matrix 
was used as the noise covariance. Signal sources were then grouped 
into 68 regions based on the Desikan–Killiany atlas (53), utilizing 
principal component analysis to refine signal grouping. 
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We selected the Desikan–Killiany atlas to balance the 
limitations of MEG’s spatial resolution with the need for 
interpretable results. Choosing an appropriate brain parcellation 
scheme is critical for graph-theoretical analysis of functional 
networks. The number of regions of interest (ROIs) must balance 
interpretability and spatial resolution (54): Fewer ROIs improve 
interpretability but risk oversimplification by merging functionally 
distinct areas. More ROIs capture finer connectivity details but 
increase complexity and potential signal leakage. 

While Hallquist and Hillary (55) recommended segmenting the 
brain into ≥200 functional regions for fMRI studies, MEG’s lower 
spatial resolution necessitates a more conservative approach. 
Farahibozorg et al. (56) suggested that approximately 70 parcels 
optimize spatial resolution while minimizing signal leakage in MEG 
studies. Based on these findings, we adopted the Desikan–Killiany 
atlas, which provides a 68-region cortical parcellation, as an optimal 
balance for our study. 
 

-
-

-
-

2.8 Phase lag index as a connectivity 
measure 

PLI was used to estimate functional connectivity between signal 
sources by assessing phase relationships in time series signals (56). 
However, reconstructed sources may contain spurious interactions 
due to volume conduction or field spread, which can cause artificial 
synchrony, particularly at zero-lag phase differences (57). To 
mitigate  zero-lag  synchrony  and  focus  on  meaningful  
connectivity, we employed PLI, a mixing-insensitive interaction 
metric that attenuates artificial interactions by emphasizing 
consistent nonzero phase lags (58). 

For each epoch, the instantaneous phase of the filtered 
waveform was computed using the Hilbert transform for each 
signal source. The phase difference Df(tk) was then computed 
between each pair of sources at each time point tk (where k = 1,  2,  
3, …, N, and  N is the  number  of  time  points  per epoch).  The
PLI between two signal sources in an epoch is defined as follows 
(58): 

- 1 -
NPLI = k=1sign½Dj(tk) -N o -

where the sign function of the phase difference at time point 
“tk,” is defined as: 
Fron
• +1 if Df(tk) > 0  
• −1 if  Df(tk) < 0  
• 0 if  Df(tk) = 0  
PLI values range from 0 to 1, inclusive. A value closer to 1 
indicates a strong nonzero phase lag between the two signals over 
time, implying robust phase synchronization, whereas a value near 0 
suggests weak or no consistent phase relationship. Notably, PLI does 
not indicate which of the signal is leads in phase, only the consistency 
of phase lag. PLI was computed for all signal source pairs across each 
frequency band to estimate functional connectivity. 
tiers in Psychiatry 06
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2.9 Graph construction and graph metrics 

To characterize the brain functional connectivity, we employed 
graph theory, representing the brain network as a graph of nodes 
and edges. The network comprised 68 nodes, corresponding to 
brain regions defined by the Desikan–Killiany atlas, and weighted 
edges derived from PLI values. For each frequency band (delta, 
theta, alpha, beta, gamma) and each epoch, we constructed an 
undirected weighted functional connectivity matrix of size 68 × 68. 
These matrices were then averaged across all epochs for each 
participant. To simplify the graph and reduce spurious 
connections, we applied binary thresholding. To reduce spurious 
connections, we binarized each connectivity matrix using a 
proportional threshold of k = 0.20, retaining only the strongest 
20% of connections; this approach is consistent with that of prior 
pediatric ASD studies (23, 26, 27). Because the chosen threshold can 
influence graph metrics, we also repeated all analyses using k = 0.10, 
0.12, …, 0.30 (10). 

For the resulting binary matrices, we computed commonly used 
graph metrics: clustering coefficient (C), characteristic path length 
(L), and small-worldness (SW) (59). These metrics were computed 
for each frequency band and each k value using the Brain 
Connectivity Toolbox (BCT, version 2019-03-03; https:// 
sites.google.com/site/bctnet/). The mathematical definitions are 
detailed in previous literature (10, 60). The clustering coefficient 
(C) measures the tendency of nodes to form local clusters, reflecting 
the degree of segregated neural processing in the brain (10). 

Mathematically, the characteristic path length L is defined as the 
average of the shortest path lengths between all pairs of nodes in a 
network, serving as an indicator of the efficiency of global 
information integration. However, readers should be aware of a 
subtle distinction between the mathematical definition and its 
implementation in the BCT. In each binary graph, we first 
computed the shortest-path distance matrix D according to the 
conventions of the BCT. After binarizing the adjacency matrix, we 
applied BCT’s function distance_bin of the BCT (https:// 
github.com/fieldtrip/fieldtrip/blob/master/external/bct/  
distance_bin.m) so that each entry Dij represents the length of the 
shortest path between nodes i and j and is set to ∞ if no connecting 
path exists. We then invoked BCT’s function charpath(D, 0, 0) 
(https://github.com/jblocher/matlab-network-utilities/blob/master/ 
BrainConnectivity/charpath.m), where the third argument 
infinite_dist = 0 instructs the function to (i) ignore all ∞ entries 
and (ii) compute the average over finite distances only (i.e., 
distances among nodes belonging to the same connected 
component). Specifically, charpath does not explicitly extract the 
largest connected component beforehand; rather, it treats every ∞ 
entry as missing and calculates 

1 
L = -{ �- o Dij(i, j) ∣ Dij < ∞, i < j  i, j 

Dij < ∞, i < j  

Because our thresholded binary graphs typically yielded one 
large, connected component encompassing most nodes—and only a 
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few isolated nodes or minor subcomponents appeared, particularly 
at lower proportional thresholds—ignoring ∞ values effectively 
approximates a restriction to the largest component in practice. 
Nonetheless, we emphasize that we did not manually remove small 
isolated components; instead, we relied on charpath(D,0,0) to drop 
only ∞ distances, thereby including all finite-distance pairs across 
all components (which differs subtly from the mathematical 
definition of L). We adopted this procedure because it aligns with 
prior MEG-based ASD studies (23, 26, 27) and with Brainstorm’s 
implementation of BCT measures, ensuring consistency and 
comparability with existing literature. 

The small-worldness (SW) metric captures the balance between 
local specialization and global integration, a hallmark of efficient 
brain networks (60). It is defined as the ratio of the normalized 
clustering coefficient to the normalized characteristic path length, 
compared with equivalent random networks (61). To obtain the 
normalized metrics, we generated 1,000 random networks for each 
graph by rewiring all edges five times, preserving the same number 
of nodes and edges as the original network. We calculated the mean 
clustering coefficient (Crand) and the characteristic path length 
(Lrand) for these random networks. The normalized metrics were 
computed as: 

C L 
Cnorm , Lnorm = = 

Crand Lrand 

The small-worldness ratio was calculated as 

CnormSW = 
Lnorm 

For each participant, we obtained C, L, and SW values for each 
frequency band. 
2.10 Statistical analyses 

Statistical analyses were performed using Stata (version 17.0; 
StataCorp LLC, College Station, TX, USA). Group differences in 
age, K-ABC, and SRS scores between the ASD and TD participants 
were assessed using a two-tailed Student’s t-test. Sex differences 
were examined using the chi-square test. All categorical variables 
were expressed as numbers, while continuous parameters were 
expressed as means. 

Our main objective was to investigate the effects of experimental 
conditions (DR vs. EO) on three graph measures: small-worldness 
(SW), clustering coefficient (C), and characteristic path length (L). 
Additionally, we examined whether EO-induced changes in graph 
measures correlated with autistic traits and whether these changes 
depended on baseline values from the DR condition. 

To examine the effects of experimental conditions, we 
conducted separate linear mixed-effects regression analyses for 
each graph measure (SW, C, and L) across five frequency bands 
(delta, theta, alpha, beta, and gamma). Each model included fixed 
effects for diagnosis (ASD vs. TD), experimental conditions (DR vs. 
EO), their interaction, age, and sex, with a random intercept for 
each participant to account for within-subject correlations. This 
Frontiers in Psychiatry 07 
mixed effects approach allowed us to account for individual 
variability and the hierarchical structure of the data. Given that 
SW, C, and L quantify different aspects of the graph structure, but 
are not strictly independent, we applied a Bonferroni correction to 
adjust for multiple comparisons across the five frequency bands. 
Statistical significance was set at p < 0.01 (0.05/5) (62). 

If significant diagnosis-by-experimental condition interaction 
was found in any model, we further investigated the relationship 
between autistic traits and changes in graph measures induced by 
the EO condition. We calculated the difference in each graph 
measure between the experimental conditions (EO minus DR) 
and performed linear regression analyses to predict the raw total 
SRS scores based on the EO-DR difference, diagnosis (ASD vs. TD), 
their interaction, and age and sex as covariates. Following Rubin 
(63), we treat these regressions as individual tests of distinct null 
hypotheses and set statistical significance at p < 0.05. Because the 
omnibus interaction served as a trigger, these analyses are presented 
as exploratory, hypothesis‐generating tests and should be 
interpreted with caution. For these follow-up subgroup analyses, 
while our primary inferential framework relies on a predefined 
threshold of a = 0.05 for determining statistical significance, we also 
report p-values between 0.05 and 0.10 as exploratory trends when 
they align with the broader pattern of results. Labeling a result as an 
exploratory trend does not imply confirmation, but rather 
highlights a potentially meaningful pattern that may merit 
replication. Importantly, all such trends are explicitly framed as 
exploratory rather than confirmatory. Readers are cautioned against 
overinterpreting these findings; true validation will require 
independent replication in larger samples. 

To assess whether EO-induced changes depended on baseline 
measures obtained in the DR condition, we calculated the difference 
in each graph measure between conditions (EO minus DR) and 
used the baseline value (from the DR condition) to predict the 
difference. Separate linear regression analyses were conducted for 
each frequency band. The models included fixed effects for 
diagnosis (ASD vs. TD), baseline graph measures, their 
interaction terms, age, and sex. Again, we applied a Bonferroni 
correction to adjust for multiple comparisons across the five 
frequency bands. Statistical significance was set at p <  0.01 (0.05/5). 

To ensure that key mixed-effects regression models met 
standard assumptions, we conducted a minimal set of diagnostic 
checks on the models central to our primary inferences. For each of 
these models, we visually inspected both residual and random-

effects diagnostics. First, we assessed residual distributions by 
plotting histograms of raw residuals to verify approximate 
normality, ensuring the absence of pronounced skewness or 
kurtosis. Second, we evaluated homoscedasticity by plotting 
residuals against fitted values; the absence of a systematic funnel-
like pattern suggested roughly constant variance across the range of 
predicted values. Third, we extracted estimated random intercepts 
for each participant and examined their distribution via histogram 
to confirm approximate normality (64, 65). For the linear regression 
models, we applied similar diagnostics; we plotted histograms of 
residuals to assess normality and scatterplots of residuals versus 
fitted values to evaluate homoscedasticity. As with the mixed-effects 
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models, these checks were performed only for the primary models 
underpinning our main conclusions; diagnostic plots for other 
models are available upon request. 
3 Results 

3.1 Participants 

Among the total of 39 children with ASD recruited for the 
study, 16 were excluded from the analyses: one boy with ASD had 
evident intellectual disability reflected in a K-ABC mental 
processing scale score <70; five boys and five girls exhibited 
excessive noise in their MEG recordings; and three boys and two 
girls were unable to complete their MRI recordings. Among the 62 
children enrolled in the TD group, 31 children were excluded from 
the analysis: 13 boys and seven girls exhibited excessive noise in 
their MEG recordings, and five boys and six girls could not 
complete their MRI recordings. 

Consequently, the final sample consisted of 23 children with 
ASD (14 boys and 9 girls) and 31 TD children (17 boys and 14 girls). 
The age range of children in the ASD group was 60–97 months, 
while that of the TD group was 44–109 months. There were no 
significant differences between groups in sex, age, number of 
available epochs, or K-ABC scale scores. However, total SRS 
scores were significantly different between the two groups (t = 
−6.879, p < 0.001). These findings are summarized in Table 1. For 
the ASD group, the mean scores of ADOS-2 were as follows: Social 
Affect score: 6.9 (standard deviation [SD] = 3.9), Restricted and 
Repetitive Behaviors score: 2.3 (SD = 1.5), total ADOS-2 score: 9.2 
(SD = 4.6), and Comparison score: 5.1 (SD = 2.4). 
3.2 Effect of experimental condition on 
graph measures 

Separate linear mixed-effects regression analyses were 
conducted for each graph measure (SW, C, and L) across all 
frequency bands (delta, theta, alpha, beta, and gamma). The 
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models included fixed effects for  diagnosis (ASD vs.  TD),

experimental condition (DR vs. EO), their interaction term, age, 
and sex, with a random intercept for each participant to account for 
within-subject correlations. Detailed results from these analyses are 
presented in Table 2. 

3.2.3 Clustering coefficient (C) 
In the alpha frequency band, we found a significant main effect 

of the experimental condition on C (z = 2.62, p = 0.0087), indicating 
that C was higher in the EO condition compared to that in the DR 
condition across both groups (Figure 1A). 

3.2.4 Small-worldness 
In the delta frequency band, we observed a significant 

diagnosis‐by‐experimental‐condition interaction on SW (z = 2.58, 
p = 0.0099). In follow-up exploratory, hypothesis-generating 
analyses, children with ASD showed a trend toward increased SW 
from DR to EO (z = 1.78, p = 0.0756), whereas TD children 
displayed a trend in the  opposite  direction (z = −1.91, p = 
0.0567). Neither effect reached the conventional threshold of a = 
0.05, and both are therefore reported as exploratory trends to be 
interpreted with caution. Altogether, these results indicate that the 
EO condition may modulate delta‐band SW differently in children 
with ASD than in TD children (Figure 1B). 

In the beta frequency band, we found a significant diagnosis‐by‐
experimental‐condition interaction on SW (z = 2.84, p = 0.0045), as 
well as a significant main effect of diagnosis (z = −2.99, p = 0.0028). 
Group-specific analyses revealed that SW significantly increased 
from DR to EO in children with ASD (z = 2.29, p = 0.0219), whereas 
TD children exhibited a trend toward decreased SW (z = −1.71, p = 
0.0867). As the TD effect did not reach significance, it is also 
reported as an exploratory trend. Together, these results suggest 
that the EO condition modulates beta‐band SW differently in TD 
children and children with ASD (Figure 1C). 

Diagnostic plots for the abovementioned mixed-effects models 
are provided in Supplementary Figures 1, 2. These checks revealed 
qualitatively similar patterns across models. The residuals were 
symmetrically distributed and clustered near zero, with no clear 
signs of heteroscedasticity, and the random intercepts 
approximated a Gaussian distribution, thereby supporting the 
validity of our inferential framework. 
3.2.5 Relationship between changes 
induced by the EO condition and autistic 
traits 

Given the significant diagnosis-by-experimental condition 
interactions observed in the models predicting SW in the delta 
and beta frequency bands, we further examined the relationship 
between autistic traits and EO-induced changes in SW. To do this, 
we calculated the difference in SW (DSW) between the EO and DR 
conditions (EO minus DR) for each participant. We then performed 
linear regression analyses to predict raw total SRS scores based on 
this difference, including diagnosis, their interaction term, age, and 
-

TABLE 1 Participant characteristics. 

Characteristic ASD TD c2 or 
t-values p-value 

N  23  31  

Sex † 14 17 0.196 0.658 

Month ‡ 73.770 75.348 −0.480 0.634 

Epoch number (DR) ‡ 34.957 35.548 0.826 0.413 

Epoch number (EO) ‡ 21.391 22.193 0.716 0.477 

K-ABC ‡ 102.087 116.129 3.110 0.030 

SRS ‡ 69.391 47.677 −6.879 <0.001* 
†Chi-square test; ‡ Student’s t-test; *Statistically significant; ASD, autism spectrum disorder; 
TD, typically developing children; DR, dark room; EO, eyes open; K-ABC, Kaufman 
Assessment Battery for Children; SRS, Social Responsiveness Scale. 
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TABLE 2 Effects of diagnosis, experimental condition, and their interaction on graph metrics. 

Graph 
measures 

Frequency 
band 

Predictor Coefficient S.E. z-value p-value 95% CI 

SW Delta Diagnosis (ASD vs. TD) −0.038 0.022 −1.733 0.083 −0.080 – 0.005 

Experimental condition (DR vs. EO) −0.035 0.019 −1.875 0.061 −0.072 – 0.002 

Diagnosis * Experimental condition 0.075 0.029 2.579 0.010* 0.018 – 0.131 

Age −0.001 0.001 −1.123 0.261 −0.002 – 0.001 

Sex 0.018 0.016 1.132 0.258 −0.014 – 0.050 

Theta Diagnosis (ASD vs. TD) −0.012 0.020 −0.607 0.544 −0.051 – 0.027 

Experimental condition (DR vs. EO) −0.032 0.018 −1.771 0.077 −0.068 – 0.003 

Diagnosis × Experimental condition 0.012 0.028 0.413 0.679 −0.043 – 0.066 

Age −0.001 0.001 −1.404 0.160 −0.002 – 0.000 

Sex −0.004 0.014 −0.280 0.779 −0.032 – 0.024 

Alpha Diagnosis (ASD vs. TD) 0.006 0.021 0.286 0.775 −0.036 – 0.048 

Experimental condition (DR vs. EO) 0.031 0.019 1.626 0.104 −0.006 – 0.068 

Diagnosis × Experimental condition 0.008 0.029 0.270 0.787 −0.049 – 0.065 

Age 0.000 0.001 0.761 0.447 −0.001 – 0.002 

Sex 0.031 0.016 2.010 0.044 0.001 – 0.062 

Beta Diagnosis (ASD vs. TD) −0.062 0.021 −2.992 0.003 −0.102 – −0.021 

Experimental condition (DR vs. EO) −0.026 0.018 −1.430 0.153 −0.061 – 0.010 

Diagnosis × Experimental condition 0.079 0.028 2.843 0.004* 0.024 – 0.133 

Age 0.001 0.001 1.874 0.061 0.000 – 0.002 

Sex 0.023 0.015 1.487 0.137 −0.007 – 0.053 

Gamma Diagnosis (ASD vs. TD) −0.010 0.022 −0.468 0.639 −0.054 – 0.033 

Experimental condition (DR vs. EO) 0.003 0.020 0.149 0.881 −0.036 – 0.042 

Diagnosis × Experimental condition −0.003 0.031 −0.083 0.933 −0.063 – 0.058 

Age 0.001 0.001 1.497 0.134 0.000 – 0.002 

Sex 0.009 0.016 0.574 0.566 −0.022 – 0.041 

C Delta Diagnosis (ASD vs. TD) −0.009 0.007 −1.250 0.211 −0.023 – 0.005 

Experimental condition (DR vs. EO) 0.000 0.006 −0.038 0.969 −0.011 – 0.011 

Diagnosis × Experimental 
condition 0.016 0.009 1.812 0.070 −0.001 

– 
0.033 

Age 0.000 0.000 −0.339 0.734 −0.001 – 0.000 

Sex 0.006 0.006 1.018 0.309 −0.005 – 0.017 

Theta Diagnosis (ASD vs. TD) 0.002 0.010 0.218 0.828 −0.017 – 0.021 

Experimental condition (DR vs. EO) 0.017 0.009 1.852 0.064 −0.001 – 0.034 

Diagnosis × Experimental condition −0.019 0.014 −1.398 0.162 −0.046 – 0.008 

Age −0.001 0.000 −1.880 0.060 −0.001 – 0.000 

Sex −0.005 0.007 −0.707 0.480 −0.018 – 0.009 

Alpha Diagnosis (ASD vs. TD) −0.011 0.019 −0.555 0.579 −0.048 – 0.027 

Experimental condition (DR vs. EO) 0.046 0.018 2.625 0.009 0.012 – 0.080 

(Continued) 
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TABLE 2 Continued 

Graph 
measures 

Frequency 
band Predictor Coefficient S.E. z-value p-value 95% CI 

Diagnosis × Experimental condition −0.033 0.027 −1.217 0.224 −0.085 – 0.020 

Age −0.001 0.001 −1.433 0.152 −0.002 – 0.000 

Sex −0.008 0.014 −0.559 0.576 −0.035 – 0.019 

Beta Diagnosis (ASD vs. TD) −0.012 0.011 −1.033 0.302 −0.034 – 0.010 

Experimental condition (DR vs. EO) 0.001 0.009 0.056 0.955 −0.018 – 0.019 

Diagnosis × Experimental condition 0.001 0.014 0.072 0.942 −0.027 – 0.029 

Age −0.001 0.000 −2.198 0.028 −0.002 – 0.000 

Sex 0.008 0.009 0.938 0.348 −0.009 – 0.025 

Gamma Diagnosis (ASD vs. TD) 0.007 0.013 0.512 0.609 −0.019 – 0.032 

Experimental condition (DR vs. EO) 0.016 0.008 2.006 0.045 0.000 – 0.031 

Diagnosis × Experimental condition −0.008 0.012 −0.658 0.510 −0.032 – 0.016 

Age −0.001 0.000 −1.091 0.275 −0.001 – 0.000 

Sex 0.007 0.012 0.576 0.564 −0.016 – 0.029 

L Delta Diagnosis (ASD vs. TD) 0.006 0.008 0.705 0.481 −0.010 – 0.021 

Experimental condition (DR vs. EO) 0.010 0.007 1.400 0.161 −0.004 – 0.025 

Diagnosis × Experimental condition −0.011 0.011 −0.955 0.340 −0.033 – 0.011 

Age 0.000 0.000 1.478 0.139 0.000 – 0.001 

Sex 0.000 0.006 −0.051 0.959 −0.011 – 0.011 

Theta Diagnosis (ASD vs. TD) 0.005 0.009 0.521 0.602 −0.013 – 0.023 

Experimental condition (DR vs. EO) 0.017 0.008 1.976 0.048 0.000 – 0.033 

Diagnosis × Experimental condition −0.020 0.013 −1.552 0.121 −0.046 – 0.005 

Age 0.000 0.000 0.354 0.723 0.000 – 0.001 

Sex −0.003 0.007 −0.469 0.639 −0.016 – 0.010 

Alpha Diagnosis (ASD vs. TD) −0.022 0.015 −1.501 0.133 −0.051 – 0.007 

Experimental condition (DR vs. EO) −0.016 0.012 −1.299 0.194 −0.040 – 0.008 

Diagnosis × Experimental condition −0.011 0.019 −0.557 0.578 −0.048 – 0.026 

Age 0.000 0.000 0.464 0.642 −0.001 – 0.001 

Sex −0.020 0.011 −1.780 0.075 −0.042 – 0.002 

Beta Diagnosis (ASD vs. TD) −0.002 0.012 −0.129 0.898 −0.025 – 0.022 

Experimental condition (DR vs. EO) 0.003 0.011 0.290 0.772 −0.018 – 0.024 

Diagnosis × Experimental condition −0.006 0.017 −0.392 0.695 −0.039 – 0.026 

Age −0.001 0.000 −1.734 0.083 −0.001 – 0.000 

Sex 0.005 0.008 0.543 0.587 −0.012 – 0.021 

Gamma Diagnosis (ASD vs. TD) 0.010 0.011 0.869 0.385 −0.012 – 0.032 

Experimental condition (DR vs. EO) 0.016 0.010 1.535 0.125 −0.004 – 0.036 

Diagnosis × Experimental condition −0.018 0.016 −1.174 0.240 −0.049 – 0.012 

Age −0.001 0.000 −2.112 0.035 −0.001 – 0.000 

Sex 0.006 0.008 0.785 0.432 −0.010 – 0.023 
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sex as predictors. Some of these regression models did not satisfy 
the assumption of homoscedasticity, necessitating the application of 
heteroscedasticity-robust standard errors (66). 

3.2.6 Delta frequency band 
In the delta band (Figure 2A), there was a significant main effect 

of diagnosis on SRS scores (t = 7.27, p < 0.001), reflecting the 
differences in SRS scores between the ASD and TD groups. We also 
observed an exploratory trend for the interaction diagnosis × DSW 
(t = 2.00, p = 0.051). In follow-up, hypothesis-generating, group-
specific analyses—reported as exploratory due to p-values exceeding 
the conventional threshold a = 0.05—we found for the ASD group 
no significant association between DSW and SRS (t = 0.93, p = 
0.365) and for the TD group a significant negative association (t =  
−2.61, p = 0.014), indicating that larger SW increases from DR to 
EO were linked to lower SRS scores (i.e., milder autistic traits). 

3.2.6 Beta frequency band 
In the beta frequency band (Figure 2B), we found a significant 

main effect of diagnosis (t = 4.92, p < 0.001). An exploratory trend 
for the interaction diagnosis × DSW also emerged (t = 1.79, p = 
0.080). In hypothesis-generating, group-specific analyses—again 
treated as exploratory given the nonsignificant interaction—we 
found for the ASD group a significant positive association (t =
2.67, p = 0.015), such that larger SW increases from DR to EO 
corresponded with higher SRS scores (i.e., more pronounced 
autistic traits), whereas no significant association was observed for 
the TD group (t = 1.08, p = 0.289). 
Frontiers in Psychiatry 11 
Because the overall interactions were only exploratory trends 
(i.e., they exceeded the conventional threshold a = 0.05), these 
subgroup results should be interpreted cautiously and regarded as 
hypothesis-generating rather than confirmatory. Replication in a 
larger sample is needed to evaluate the robustness of these patterns. 

Detailed results from these analyses are presented in Table 3 
and Figure 2. Diagnostic plots for the corresponding linear 
regression models are provided in Supplementary Figure 3. 

To visualize the results from the linear regression models, we 
adjusted SRS raw scores and changes in SW (DSW) for age and sex 
using the following steps: (1) we regressed SRS scores on age and sex 
to obtain the residuals (adjusted SRS scores) for each group; (2) we 
regressed DSW on age and sex to obtain residuals (adjusted DSW) 
for each group; and (3) we generated scatter plots of adjusted SRS 
scores versus adjusted DSW for each group, including regression 
lines to illustrate the relationships. 
3.3 Relationship between EO-induced 
changes and baseline measures 

Given the established differences in resting-state graph 
measures between ASD and TD populations (23, 24, 29–31), we 
investigated whether EO-induced changes depended on baseline 
measures obtained in the DR condition. To assess this we: 
Calculated the difference in each graph measure between the 
conditions (EO minus DR); used the baseline value (DR 
condition) to predict this difference; and conducted separate 
TABLE 2 Continued 

Graph 
measures 

Frequency 
band Predictor Coefficient S.E. z-value p-value 95% CI 

SW Delta TD 

Experimental condition (DR vs. EO) −0.035 0.019 −1.906 0.057 −0.072 – 0.001 

Age −0.001 0.001 −1.520 0.129 −0.003 – 0.000 

Sex −0.002 0.019 −0.109 0.913 −0.039 – 0.035 

ASD 

Experimental condition (DR vs. EO) 0.039 0.022 1.777 0.076 −0.004 – 0.082 

Age 0.000 0.001 −0.288 0.773 −0.003 – 0.002 

Sex 0.045 0.028 1.592 0.111 −0.010 – 0.100 

Beta TD 

Experimental condition (DR vs. EO) −0.026 0.015 −1.713 0.087 −0.055 – 0.004 

Age 0.001 0.001 1.466 0.143 0.000 – 0.003 

Sex 0.014 0.021 0.660 0.509 −0.028 – 0.056 

ASD 

Experimental condition (DR vs. EO) 0.053 0.023 2.293 0.022* 0.008 – 0.098 

Age 0.001 0.001 0.913 0.361 −0.001 – 0.003 

Sex 0.035 0.024 1.493 0.135 −0.011 – 0.082 
front
*Statistically significant; ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; C, clustering coefficient; L, characteristic path length; DR, dark room; EO, eyes 
open; CI, confidence interval; S.E., standard error. 
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linear regression analyses for each frequency band, including fixed 
effects for diagnosis (ASD vs. TD), baseline graph measures, 
interaction terms (diagnosis × baseline measures), age, and sex. 

3.3.1 Clustering coefficient (C) 
Significant effects of the baseline C (Figure 3A) were observed in 

the delta (t = −4.59, p < 0.001), theta (t = −4.09, p < 0.001), and 
alpha (t = −3.35, p = 0.002) frequency bands. The key findings were 
as follows: No significant diagnosis-by-baseline interactions were 
found, no significant effects of age or sex were observed, and a 
higher baseline C was associated with a smaller increase in C from 
DR to EO in these frequency bands. The findings are summarized in 
Table 4. Diagnostic plots for the corresponding linear regression 
models are provided in Supplementary Figure 4. 

3.3.2 Characteristic path length (L) 
Baseline measures significantly predicted changes in L 

(Figure 3B) across all frequency bands (delta: t = −5.40, p < 0.001; 
theta: t = −6.57, p < 0.001; alpha: t = −4.80, p < 0.001, beta: t = −4.42, 
p = 0.0001; and gamma: t = −3.79, p = 0.004). No significant 
interactions or effects of age and sex were observed. This indicates 
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that higher baseline L corresponds to smaller increases in L from 
DR to EO. The details are provided in Table 4. 

3.3.3 Small-worldness 
Baseline SW (Figure 3C) significantly predicted changes in SW 

across all frequency bands: (delta: t = −4.72, p < 0.001; theta: t = 
−7.17, p < 0.001; alpha: t = −5.09, p < 0.001; beta: t = −3.46, p = 
0.001; gamma: t = −4.02, p = 0.002). Again, no  significant 
interactions or effects of age or sex were observed. A higher 
baseline SW corresponded to a smaller increase from the DR to 
the EO. (Table 4, Figure 3). 
3.3.4 Threshold variability 

To ensure that the binary‐graph results were not driven by an 
arbitrary choice of network density, we recomputed C, L, and SW 
across a range of proportional thresholds from 10% to 30% in 2% 
increments. As shown in Supplementary Tables 1-3, Document 1, 
the overall pattern of our findings remained qualitatively consistent 
across this density range, although z‐scores varied slightly at the 
A B 

C 

FIGURE 1 

Adjusted mean graph measures across experimental conditions in ASD and TD groups. (A) Adjusted mean C in the alpha frequency band for each 
experimental condition (DR vs. EO), adjusted for age and sex. The means were estimated from a linear mixed-effects model, including fixed effects 
for experimental condition, diagnosis, their interaction, age, and sex, with a random intercept for each participant to account for within-subject 
correlations. Since the diagnosis-by-condition interaction for C was not significant, only the main effect of the experimental conditions is presented. 
Error bars represent the standard error of the adjusted means. C was higher in the EO condition than that in the DR condition. (B) Adjusted mean 
SW in the delta frequency band for each experimental condition (DR vs. EO) in the ASD and TD groups. Error bars represent the standard error of the 
mean adjusted for age and sex. The figure illustrates the diagnosis-by-experimental condition interaction, with the ASD group showing a trend 
toward increased SW and the TD group showing a trend toward decreased SW from DR to EO condition. (C) Adjusted mean SW in the beta 
frequency band for each experimental condition (DR vs. EO) in the ASD and TD groups. Error bars represent the standard error of the mean, 
adjusted for age and sex. An asterisk (*) denotes a significant increase in SW for the ASD group from DR. ASD, autism spectrum disorder; C, 
clustering coefficient; EO, eyes open; DR, dark room; SW, small-worldness; TD, typically developing. 
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extremes (below ~12% or above ~28% density). In other words, 
while absolute metric values changed with the chosen threshold, the 
key group and condition effects remained stable over a reasonable 
window of network densities. 
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4 Discussion 

In this study, we examined how transitioning from DR to EO 
conditions affects three key graph-theoretical measures—small-
TABLE 3 Relationship between changes induced by the EO condition and autistic traits. 

vs. raw total SRS scores Coefficient S.E. t-value p-value 95% CI 

SW in the delta band EO-induced changes in SW (EO − DR) −67.257 25.941 −2.593 0.013 −119.416 – −15.099 

Diagnosis 42.120 5.791 7.273 <0.001* 30.476 – 53.765 

Diagnosis × EO-induced changes in SW 106.735 53.361 2.000 0.051 −0.554 – 214.024 

Age 0.312 0.259 1.205 0.234 −0.209 – 0.833 

Sex 9.736 6.122 1.590 0.118 −2.574 – 22.046 

(Group-specific analysis) TD 

EO-induced changes in SW (EO − DR) −60.015 22.969 −2.613 0.014 −107.144 – −12.886 

Age −0.054 0.183 −0.296 0.769 −0.429 – 0.320 

Sex 11.676 5.962 1.958 0.061 −0.557 – 23.909 

ASD 

EO-induced changes in SW (EO − DR) 42.794 46.134 0.928 0.365 −53.765 – 139.352 

Age 1.061 0.503 2.111 0.048 0.009 – 2.113 

Sex 3.797 11.915 0.319 0.753 −21.141 – 28.735 

SW in the beta band EO-induced changes in SW (EO − DR) 29.549 37.499 0.788 0.435 −45.847 – 104.945 

Diagnosis 33.803 6.873 4.918 <0.001* 19.984 – 47.623 

Diagnosis × EO-induced changes in SW 107.043 59.820 1.789 0.080 −13.233 – 227.320 

Age 0.089 0.242 0.368 0.715 −0.398 – 0.576 

Sex 7.088 5.953 1.191 0.240 −4.882 – 19.057 

(Continued) 
f

A B 

FIGURE 2 

Scatter plots of adjusted SRS scores vs. adjusted change in SW in beta and delta frequency bands. (A) Scatter plot of adjusted SRS scores vs. adjusted 
change in SW (DSW) in the delta frequency band. An asterisk (*) denotes a significant negative relationship between adjusted DSW and adjusted SRS 
scores (t = −2.475, p = 0.019), suggesting that lower SRS scores (milder autistic traits) in TD children are associated with larger increases in SW from 
the DR to the EO condition. (B) Scatter plot of adjusted SRS scores vs. adjusted change in SW (DSW) in the beta frequency band. An asterisk (*) 
denotes a significant positive relationship between adjusted DSW and adjusted SRS scores (t = 2.995, p = 0.007), suggesting that higher SRS scores 
(more pronounced autistic traits) in children with ASD are associated with larger increases in SW from the DR to the EO condition. ASD, autism 
spectrum disorder; DR, dark room; EO, eyes open; SRS, Social Responsiveness Scale; SW, small-worldness; TD, typically developing children. 
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worldness (SW), clustering coefficient (C), and characteristic path 
length (L)—across five frequency bands (delta, theta, alpha, beta, 
and gamma) in children with and  without ASD.  Our  results
revealed several important patterns: First, we observed the main 
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effects of the experimental conditions on the clustering coefficient in 
the alpha band, indicating an overall higher clustering coefficient in 
the EO condition compared to the DR condition for both groups. 
Second, we examined whether these EO-induced changes depended 
TABLE 3 Continued 

vs. raw total SRS scores Coefficient S.E. t-value p-value 95% CI 

(Group-specific analysis) TD 

EO-induced changes in SW (EO − DR) 41.222 38.089 1.082 0.289 −36.929 – 119.373 

Age −0.217 0.179 −1.211 0.236 −0.586 – 0.151 

Sex 10.282 5.827 1.764 0.089 −1.675 – 22.238 

ASD 

EO-induced changes in SW (EO − DR) 128.138 47.905 2.675 0.015 27.872 – 228.404 

Age 0.744 0.433 1.720 0.102 −0.161 – 1.650 

Sex 0.597 11.049 0.054 0.957 −22.528 – 23.722 
f

*Statistically significant; ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; SRS, Social Responsiveness Scale; S.E., standard error; CI, confidence interval; 
DR, dark room; EO, eyes open. 
A B 

C 

FIGURE 3 

Relationship between baseline measures and changes induced by the EO condition in the alpha frequency band. This figure illustrates the negative 
correlations between baseline graph measures obtained in the DR condition and changes induced by the EO condition, with the strongest 
relationship observed in the alpha frequency band. Baseline measures and changes were adjusted for age and sex using residuals from regression 
models. Each data point represents an individual participant from the ASD and TD groups. Negative correlations across all three graph metrics 
suggest that baseline network properties influence the extent of change induced by visual input in the alpha frequency band. (A) Scatter plot of the 
relationship between the adjusted baseline C and the adjusted change in C (EO minus DR). The downward slope indicated that participants with 
higher baseline C exhibited smaller increases in C when transitioning from the DR to the EO condition. The solid line represents the linear regression 
fit. (B) Scatter plot of the relationship between the adjusted baseline L and the adjusted change in L. The downward slope indicated that participants 
with a higher baseline L exhibited smaller increases in L when transitioning from DR to EO. The solid line represents the linear regression fit. (C) 
Scatter plot of the relationship between the adjusted baseline SW and the adjusted change in SW. The downward slope indicated that participants 
with higher baseline SW values exhibited smaller increases in SW when moving from the DR to the EO condition. The solid line represents the linear 
regression fit. baseline C, clustering coefficient under the DR condition; baseline L, characteristic path length in the DR condition; baseline SW, 
small-worldness at DR condition; ASD, autism spectrum disorder; TD, typically developing children; DR, dark room; EO, eyes open. 
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TABLE 4 Effects of baseline graph measures on changes induced by the EO condition. 

Graph 
measures 

Frequency 
band 

Predictor Coefficient S.E. t-value p-value 95% CI 

SW Delta Baseline measure (DR) −0.986 0.209 −4.719 <0.001* −1.406 – −0.566 

Diagnosis −0.154 0.273 −0.567 0.574 −0.703 – 0.394 

Diagnosis × Baseline measure (DR) 0.198 0.277 0.714 0.479 −0.360 – 0.756 

Age 0.000 0.001 −0.144 0.886 −0.002 – 0.002 

Sex 0.031 0.022 1.366 0.178 −0.014 – 0.076 

Theta Baseline measure (DR) −1.141 0.159 −7.175 <0.001* −1.461 – −0.821 

Diagnosis −0.243 0.230 −1.055 0.297 −0.706 – 0.220 

Diagnosis × Baseline measure (DR) 0.242 0.232 1.042 0.302 −0.225 – 0.710 

Age 0.000 0.001 −0.001 0.999 −0.002 – 0.002 

Sex 0.016 0.019 0.835 0.408 −0.022 – 0.053 

Alpha Baseline measure (DR) −0.920 0.181 −5.091 <0.001* −1.283 – −0.556 

Diagnosis 0.006 0.273 0.021 0.983 −0.544 – 0.556 

Diagnosis × Baseline measure (DR) 0.010 0.290 0.033 0.974 −0.573 – 0.592 

Age 0.000 0.001 0.394 0.695 −0.002 – 0.002 

Sex 0.007 0.024 0.288 0.775 −0.041 – 0.054 

Beta Baseline measure (DR) −0.659 0.191 −3.459 0.001 −1.043 – −0.276 

Diagnosis 0.446 0.261 1.711 0.093 −0.078 – 0.970 

Diagnosis × Baseline measure (DR) −0.439 0.269 −1.633 0.109 −0.979 – 0.102 

Age 0.002 0.001 2.422 0.019 0.000 – 0.004 

Sex 0.029 0.021 1.421 0.162 −0.012 – 0.071 

Gamma Baseline measure (DR) −0.927 0.231 −4.018 <0.001* −1.390 – −0.463 

Diagnosis −0.017 0.316 −0.053 0.958 −0.652 – 0.619 

Diagnosis × Baseline measure (DR) 0.005 0.327 0.016 0.988 −0.652 – 0.662 

Age 0.002 0.001 1.503 0.139 −0.001 – 0.004 

Sex −0.013 0.025 −0.500 0.620 −0.064 – 0.038 

C Delta Baseline measure (DR) −0.906 0.197 −4.590 <0.001* −1.303 – −0.509 

Diagnosis −0.148 0.095 −1.550 0.128 −0.340 – 0.044 

Diagnosis × Baseline measure (DR) 0.625 0.379 1.651 0.105 −0.136 – 1.386 

Age 0.000 0.000 −0.264 0.793 −0.001 – 0.001 

Sex 0.006 0.008 0.774 0.443 −0.010 – 0.022 

Theta Baseline measure (DR) −1.001 0.245 −4.089 <0.001* −1.493 – −0.509 

Diagnosis 0.014 0.095 0.148 0.883 −0.177 – 0.205 

Diagnosis × Baseline measure (DR) −0.114 0.362 −0.315 0.754 −0.842 – 0.614 

Age −0.001 0.000 −2.523 0.015 −0.002 – 0.000 

Sex −0.009 0.011 −0.795 0.431 −0.031 – 0.013 

Alpha Baseline measure (DR) −0.832 0.248 −3.352 0.002 −1.330 – −0.333 

Diagnosis 0.050 0.129 0.387 0.700 −0.209 – 0.308 

Diagnosis × Baseline measure (DR) −0.284 0.390 −0.728 0.470 −1.067 – 0.500 

(Continued) 
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TABLE 4 Continued 

Graph 
measures 

Frequency 
band Predictor Coefficient S.E. t-value p-value 95% CI 

Age −0.001 0.001 −1.543 0.129 −0.003 – 0.000 

Sex 0.008 0.023 0.328 0.744 −0.039 – 0.055 

Beta Baseline measure (DR) −0.560 0.215 −2.605 0.012 −0.993 – −0.128 

Diagnosis 0.078 0.087 0.901 0.372 −0.097 – 0.254 

Diagnosis × Baseline measure (DR) −0.321 0.316 −1.016 0.315 −0.955 – 0.314 

Age 0.000 0.001 −0.553 0.583 −0.001 – 0.001 

Sex 0.030 0.012 2.397 0.020 0.005 – 0.054 

Gamma Baseline measure (DR) −0.236 0.177 −1.332 0.189 −0.592 – 0.120 

Diagnosis 0.036 0.076 0.476 0.636 −0.117 – 0.190 

Diagnosis × Baseline measure (DR) −0.164 0.282 −0.581 0.564 −0.730 – 0.403 

Age 0.000 0.001 0.546 0.588 −0.001 – 0.001 

Sex 0.013 0.012 1.056 0.296 −0.012 – 0.038 

L Delta Baseline measure (DR) −1.521 0.282 −5.396 <0.001* −2.088 – −0.954 

Diagnosis −1.413 0.744 −1.898 0.064 −2.909 – 0.084 

Diagnosis × Baseline measure (DR) 0.740 0.391 1.893 0.064 −0.046 – 1.525 

Age 0.000 0.000 0.296 0.769 −0.001 – 0.001 

Sex −0.004 0.010 −0.393 0.696 −0.023 – 0.016 

Theta Baseline measure (DR) −1.157 0.176 −6.570 <0.001* −1.511 – −0.803 

Diagnosis −0.551 0.474 −1.163 0.251 −1.505 – 0.402 

Diagnosis × Baseline measure (DR) 0.282 0.249 1.133 0.263 −0.218 – 0.782 

Age 0.000 0.000 −1.232 0.224 −0.001 – 0.000 

Sex −0.012 0.009 −1.352 0.183 −0.031 – 0.006 

Alpha Baseline measure (DR) −0.750 0.156 −4.804 <0.001* −1.064 – −0.436 

Diagnosis 0.395 0.444 0.890 0.378 −0.498 – 1.289 

Diagnosis × Baseline measure (DR) −0.217 0.227 −0.956 0.344 −0.674 – 0.240 

Age 0.000 0.001 −0.022 0.982 −0.001 – 0.001 

Sex −0.016 0.014 −1.122 0.268 −0.045 – 0.013 

Beta Baseline measure (DR) −1.053 0.238 −4.421 <0.001* −1.532 – −0.574 

Diagnosis −0.144 0.620 −0.233 0.817 −1.391 – 1.103 

Diagnosis × Baseline measure (DR) 0.070 0.323 0.218 0.829 −0.579 – 0.719 

Age −0.001 0.001 −0.959 0.342 −0.002 – 0.001 

Sex 0.024 0.013 1.820 0.075 −0.003 – 0.051 

Gamma Baseline measure (DR) −1.020 0.269 −3.791 <0.001* −1.561 – −0.479 

Diagnosis −0.615 0.868 −0.708 0.482 −2.359 – 1.130 

Diagnosis × Baseline measure (DR) 0.316 0.454 0.697 0.489 −0.596 – 1.228 

Age −0.001 0.001 −1.219 0.229 −0.002 – 0.000 

Sex 0.014 0.014 0.961 0.341 −0.015 – 0.042 
F
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on baseline (DR) measures, revealing a consistent pattern across all 
frequency bands: higher baseline values for clustering coefficients, 
characteristic path length, and SW corresponded to smaller 
increases in EO. Third, we identified significant diagnosis-by­
condition interactions for SW in the delta and beta bands. While 
children with ASD tended to show increases in SW from DR to EO, 
TD children exhibited the opposite trend, suggesting that functional 
network reactivity to visual input differs between groups. Fourth, we 
found that the magnitude of the SW change in the beta band was 
positively associated with autistic trait severity in the ASD group 
(larger increases from DR to EO were linked to higher SRS scores). 
In contrast, SW changes in the delta band were negatively correlated 
with trait severity in the TD group (larger increases were linked to 
lower SRS scores). These findings suggest that functional network 
adaptation to visual input differs between ASD and TD children and 
that autistic trait severity is associated with specific patterns of SW 
modulation in response to environmental changes. 

To the best of our knowledge, this is the first study to 
demonstrate differences in key graph-theoretical metrics between 
DR and EO conditions in children with and without ASD. Notably, 
we found that the clustering coefficient in the alpha band was higher 
in the EO condition than that in the DR condition. Since DR is 
considered analogous to EC conditions (44), our findings contrast 
with studies in adults that consistently report higher alpha-band 
clustering coefficients in EC relative to EO in both young and older 
adults (17–19, 67). This discrepancy suggests an age-dependent 
shift in functional network organization. Thus, our study extends 
the existing evidence by showing that while adults transition toward 
more global processing under EO, children’s functional networks 
shift toward more localized processing in response to visual input. 
Moreover, our results indicate that higher baseline values of the 
clustering coefficient, characteristic path length, and small­

worldness correspond to smaller EO-induced increases. One 
possible interpretation is that, if a functional brain network is 
already optimized for visual processing, additional sensory input 
may induce only minimal changes. This perspective aligns with our 
findings when considering the study by Kavčič et al. (68), which 
documented an age-related increase in alpha-band clustering 
coefficients under EC in individuals aged 5–18 years. Although no 
study has directly compared baseline (EC) clustering coefficients 
between children and adults, it is plausible—given Kavčič et al.’s 
results—that our pediatric participants (with or without ASD) had 
lower baseline clustering coefficients than the adults in earlier 
studies (17–19, 67). Such age-related differences could explain 
why the clustering coefficients in children increase more under 
EO than under EC, whereas adults show the opposite pattern; 
namely, a higher baseline clustering coefficient in adults leads to a 
smaller or even negative change under EO. Together, these 
observations highlight an age-dependent mechanism of network 
reactivity in the alpha band, underscoring the need to further 
investigate how diagnostic status (ASD vs. TD) modulates 
this reactivity. 

We identified significant diagnosis-by-condition interactions 
for SW in the delta and beta bands. Children with ASD tended to 
show increases in SW when transitioning from DR to EO, whereas 
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TD children exhibited the opposite trend. A supplementary t-test 
indicated that TD children had significantly higher SW in the beta 
band (t(52) = 2.76, p = 0.008) and a trend toward higher SW in the 
delta band (t(52) = 1.66, p = 0.10). Given our earlier finding that 
higher baseline SW corresponds to smaller increases from DR to 
EO, these results suggest that elevated baseline SW in children with 
TD may partly explain the smaller (or even more negative) changes 
in SW during EO. In contrast, lower baseline SW in children with 
ASD may predispose them to greater increases in SW during EO. 
Although no previous studies have directly examined how EO vs. 
DR (EC) conditions affect graph measures in children with ASD, 
our data reveal distinct diagnostic differences in network reactivity. 
A crucial next step is to explore whether these differences in SW 
reactivity are associated with autistic trait severity. To address this, 
we examined how SW changes from DR to EO correlate with 
clinical measures of autistic traits, providing insight into the 
potential relationship between network reactivity and the core 
features of ASD. 

Our findings reveal a previously unreported link between 
changes in SW and autistic traits. In children with ASD, larger 
increases in beta-band SW when transitioning from DR to EO were 
associated with more pronounced autistic traits, whereas in TD 
children, greater increases in delta-band SW were linked to less 
pronounced autistic traits. Although no prior studies have directly 
investigated these relationships, several hypotheses may help to 
interpret the observed patterns. First, beta band activity has been 
implicated in processes such as sensory integration (69, 70) and 
attention (71), both of which can be atypical in ASD. Given that 
higher SW reflects a more optimized functional network, this 
heightened reactivity in children with ASD who exhibit more 
pronounced autistic traits might represent a compensatory 
response to a less optimal network organization in the beta band 
when faced with visual processing demands. Second, while delta-
band activity has traditionally been associated with long-term 
memory formation (72), recent studies indicate that delta-band 
oscillations also play a critical role in speech processing and 
comprehension (73–75)—functions closely tied to human 
communication. Consequently, delta-band changes in TD 
children may reflect more flexible network adaptations. Those 
who exhibit stronger shifts toward higher SW in this low-
frequency range may show better speech comprehension, which, 
in turn, could be linked to fewer autistic-like traits. However, it is 
essential to recognize that the SRS may not capture identical 
underlying neurophysiological processes in TD children vs. those 
with ASD. In TD children, SRS scores could reflect cognitive 
functions relevant to communication, such as speech processing, 
whereas in children with ASD, these scores may indicate core 
etiological features of the condition, including excitatory/ 
inhibitory imbalances (76). 

Notably, our study findings were only observed in specific 
frequency bands. Eye‐state‐dependent changes in clustering 
coefficients emerged primarily in the alpha band—which is 
known to index attentional control (77–80)—across both groups. 
In contrast, diagnosis-by-condition interactions in small‐worldness 
were confined to the delta and beta bands. Beta oscillations are 
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implicated in sensorimotor integration and attention (69–71), 
whereas delta rhythms contribute to long-term memory 
formation, speech processing, and comprehension (73–75). 
Because each oscillatory band supports distinct neural 
computations and network configurations, these functional 
specializations likely underlie why clustering coefficient and 
small‐worldness effects appeared in different bands rather than 
uniformly across all frequencies. 

Despite offering valuable insights, this study has methodological 
limitations. First, the exclusion rate was relatively high; 41% and 
50% of children in the ASD and TD groups, respectively, were 
excluded due to excessive motion artifacts during MEG acquisition 
or incomplete MRI scans. These attrition rates likely reflect the 
inherent difficulty of obtaining high-quality neuroimaging data 
from young children, especially in clinical populations. Although 
we believe these exclusions were primarily procedural rather than 
systematic, they may nonetheless limit the generalizability of our 
findings to the broader population of children with and without 
ASD. Second, the TD group was defined based on parental reports 
and the absence of formal clinical diagnoses. While none of the TD 
participants were reported to have behavioral or language 
difficulties, we did not use standardized instruments to screen for 
subclinical neurodevelopmental or psychiatric traits. Thus, we 
cannot fully exclude the presence of subtle characteristics that 
may influence brain network organization in this group. Third, 
although we excluded participants with known comorbidities or 
current medication use, we did not systematically assess prior 
medication history or independently verify the comorbidity status 
beyond referral diagnosis (ASD group) or parental report (TD 
group). This may introduce residual confounding effects on the 
functional connectivity and graph-theoretical metrics reported in 
this study. Fourth, all participants were of Japanese ethnicity, which 
may limit the generalizability of our findings to more diverse 
populations. Future studies including participants from varied 
racial and ethnic backgrounds are needed to assess the broader 
applicability of these results. Fifth, the study did not include 
objective measures of participant vigilance during MEG 
acquisition. Although no children showed overt signs of 
drowsiness based on visual inspection of MEG waveforms, this 
evaluation—conducted by a single author—was subjective and may 
not have detected brief or subtle fluctuations in alertness. Changes 
in vigilance are a well-known challenge in resting-state paradigms 
(81, 82), particularly in pediatric populations, and can affect both 
spectral power (83) and functional connectivity, especially when 
using coherence-based measures (84). While PLI-based 
connectivity and network topology are considered more robust 
against drowsiness-related confounds (85, 86), the lack of objective 
vigilance monitoring (e.g., electrooculogram, eye tracking, or 
behavioral probes) remains a methodological limitation. Future 
studies should incorporate such measures to enhance the 
reliability and interpretability of resting-state MEG findings. 
Sixth, we employed the Desikan–Killiany atlas for cortical 
parcellation, which is based on anatomical landmarks. While this 
atlas provides a standardized framework that facilitates comparison 
across studies, it may not align perfectly with the brain’s functional 
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architecture. Several studies have reported both convergence (87, 
88) and divergence (89, 90) between structural and functional 
boundaries. As such, using anatomically defined parcellations 
may introduce misalignment between functional activity and 
regional boundaries. Future work may benefit from using

functionally derived or individualized parcellations to better 
capture the brain’s true network structure. Seventh, we used an 
identity matrix as the noise covariance in our wMNE for source 
reconstruction.  This  approach  assumes  homoskedastic,  
uncorrelated noise across sensors and is commonly applied when 
empirical noise recordings (e.g., empty-room data) are unavailable. 
However, it does not account for sensor-specific noise variance or 
spatial correlations, which can reduce source localization accuracy 
and introduce spatial bias. We recommend that future studies 
collect same-day baseline or empty-room data to estimate a full 
noise covariance matrix. Eighth, the wMNE method itself 
introduces a known spatial bias toward superficial sources (91). 
Although we applied standard depth weighting and anatomical 
constraints, these corrections cannot fully eliminate this bias. This 
may reduce the accuracy of source estimates for deeper cortical or 
subcortical regions and may influence both connectivity estimates 
and graph-theoretical metrics. Ninth, while various source 
reconstruction algorithms are available, no consensus exists 
regarding the optimal method for resting-state MEG. Each 
algorithm has specific trade-offs. Compared to alternatives such 
as beamformers or sLORETA, wMNE offers better control of signal 
leakage but reduced localization precision (92). We selected wMNE 
because of its robustness in estimating distributed activity patterns, 
which aligns with the goals of analyzing resting-state functional 
connectivity. Nonetheless, this choice entails compromises that 
should be considered when interpreting the findings. Tenth, the 
final sample size (23 children in the ASD group, 31 children in the 
TD group) following participant exclusion represents a limitation 
that may affect the reliability of our results. As noted by Ioannidis 
(93, 94), underpowered studies are more likely to miss true effects, 
overestimate effect sizes when findings are significant, and yield 
results with lower replicability. In our study, these concerns are 
particularly relevant to the effects of diagnosis-by-condition 
interaction in the delta and beta bands, which also informed 
downstream correlational analyses. Although the interactions 
reached significance, they should be considered preliminary and 
interpreted with caution. Future replication with larger, well-
powered samples is essential. Eleventh, we occasionally refer to 
results that did not meet our prespecified significance threshold 
(e.g., p < 0.01 for primary analyses). While such results are explicitly 
labeled as “exploratory trends” and interpreted cautiously, we 
acknowledge that relying on near-significant findings increases 
the risk of Type I errors. Although recent methodological 
literature [e.g., (95–98)] cautions against rigid dichotomization of 
statistical outcomes, this remains a debated issue. We have aimed to 
report exact p-values transparently while clearly labeling results that 
require cautious interpretation. Nonetheless, the use of trends to 
justify post hoc analyses is a limitation of our approach and 
highlights the need for future confirmatory work. Twelfth, our 
findings were compared with those of other graph-theoretical 
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studies that varied in connectivity metrics (lagged linear coherence, 
synchronization likelihood, phase lag index), and graph 
construction (binary vs. weighted; undirected vs. directed). These 
discrepancies extend to the number of regions of interest (nodes), 
which can affect graph metrics, particularly when the node counts 
fall below 200 (28). Currently, there is no consensus on the optimal 
methodology for addressing these variations. Nonetheless, despite 
these methodological differences across studies, many results 
converge on the notion of atypical small-world properties in 
children with ASD. Thirteenth, although the Silenz pulse 
sequence may yield a slightly lower spatial resolution than 
standard MRI protocols (due to thicker slices and a smaller 
matrix size), it was appropriate for our objectives. Our priority 
was to obtain adequate anatomical references while ensuring 
participant compliance and minimizing motion artifacts. We also 
implemented quality assurance procedures to confirm that the 
images met the necessary standards for subsequent analyses. 
Fourteenth, all the participants with ASD in this study were high-
functioning children who were able to remain still during the MEG 
recordings. Thus, our findings may not be generalizable to children 
with lower verbal or intellectual abilities, or those who struggle to 
remain motionless during scanning. Taken together, these 
considerations highlight the need for careful study design and 
interpretation in graph-theoretical research, particularly in 
pediatric ASD populations. Finally, while the pipeline used in this 
study—constructing binary graphs from PLI-based connectivity—is 
widely used in pediatric MEG research, it entails certain trade-offs. 
In particular, applying proportional thresholds enforces equal 
density across groups and conditions, potentially masking true 
differences in global connectivity strength (28). For instance, 
groups with overall weaker but still structured connectivity may 
lose meaningful connections during thresholding, thereby 
distorting network topology. Although our threshold-sensitivity 
analysis (10–30%) confirmed that our findings were stable across 
a range of thresholds, future work may benefit from weighted-graph 
approaches that retain continuous PLI values and avoid 
this limitation. 

In conclusion, our study demonstrates that transitioning from 
DR to EO conditions elicits distinct changes in the functional brain 
network organization in children with and without ASD, as assessed 
using key graph-theoretical measures. Notably, the clustering 
coefficients in the alpha band were higher under EO for both 
groups, but SW in the delta and beta bands showed diagnosis-by­
condition interactions. Children with ASD tended to exhibit greater 
increases in SW under EO, whereas TD children displayed the 
opposite pattern. Moreover, the magnitude of these changes 
correlated with the severity of autistic traits, indicating a potential 
link between network reactivity and the core features of ASD. Taken 
together, these findings suggest that age-related and diagnosis-
specific mechanisms influence baseline network organization and 
reactivity to sensory input. Despite these insights, methodological 
constraints such as a relatively small sample size, variations in 
connectivity metrics and graph construction, and the inclusion of 
only high-functioning children with ASD limit the generalizability 
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of our conclusions. Future research should incorporate larger and 
more diverse samples to improve generalizability, establish 
standardized protocols for graph-theoretical analyses, and explore 
baseline-dependent reactivity in multiple frequency bands. By 
addressing these gaps, we can refine our understanding of 
functional brain network responses in ASD and potentially 
identify novel targets for clinical interventions. 
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