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Objective: Depression is a prevalent mental health disorder affecting millions of

people. Traditional diagnostic methods primarily rely on self-reported

questionnaires and clinical interviews, which can be subjective and vary

significantly between individuals. This paper introduces the Integrative

Multimodal Depression Detection Network (IMDD-Net), a novel deep-learning

framework designed to enhance the accuracy of depression evaluation by

leveraging both local and global features from video, audio, and text cues.

Methods: The IMDD-Net integrates these multimodal data streams using the

Kronecker product for multimodal fusion, facilitating deep interactions between

modalities. Within the audio modality, Mel Frequency Cepstrum Coefficient

(MFCC) and extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

features capture local and global acoustic properties, respectively. For video

data, the TimeSformer network extracts both fine-grained and broad temporal

features, while the text modality utilizes a pre-trained BERT model to obtain

comprehensive contextual information. The IMDD-Net’s architecture effectively

combines these diverse data types to provide a holistic analysis of

depressive symptoms.

Results: Experimental results on the AVEC 2014 dataset demonstrate that the

IMDD-Net achieves state-of-the-art performance in predicting Beck Depression

Inventory-II (BDI-II) scores, with a Root Mean Square Error (RMSE) of 7.55 and a

Mean Absolute Error (MAE) of 5.75. A classification to identify potential

depression subjects can achieve an accuracy of 0.79.

Conclusion: These results underscore the robustness and precision of the

IMDD-Net, highlighting the importance of integrating local and global features

across multiple modalities for accurate depression prediction.
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1 Introduction

Depression is the primary mental health disorder contributing

to the disease burden and it impacts roughly 300 million individuals

worldwide (1). Depression is a widespread, costly, and debilitating

condition that significantly increases the risk of suicide (2). More

than 80% of individuals fail to receive appropriate treatment due to

the lack of early intervention services and treatments for depression

and researchers estimate that approximately one in five individuals

will experience depression at some point in their lifetime (3).

Consequently, it is evident that the diagnosis and screening of

depression are essential.

Current approaches to evaluating depression rely predominantly

on the verbal accounts provided by patients, their families, or

caregivers, whether through clinical interviews or questionnaires

(4). However, these traditional methods have certain limitations

because the subjectivity of individuals can affect responses to

questions, and symptoms of depression may manifest differently

across individuals (5). Traditionally, accurate diagnosis of

depression severity requires comprehensive information and

extensive clinical training (6). Fortunately, advanced computing

methods, such as machine learning, deep learning, and artificial

intelligence, are ideally suited to enhance the assessment of mental

health outcomes for individuals (7).

Utilizing audio and video methods for detecting depression

offers distinct advantages, including the ability to capture direct

cues and subtle behavioral changes that may not be evident in

traditional assessments, while numerous indicators are used to

detect depression, such as hormonal imbalances (8), changes in

sleep patterns (9), cognitive performance assessments (10), resting-

state functional magnetic resonance imaging (fMRI) data (11), EEG

data (12, 13) and other physiological data (14). In recent years, a

variety of automatic depression estimation (ADE) systems have

emerged (7, 15, 16). These systems automatically assess the severity

of depression using audiovisual cues, employing advanced
Frontiers in Psychiatry 02
techniques from machine learning and deep learning (17).

Research indicates that speech exhibits numerous unique

characteristics that can be used to identify an individual’s mental

state (18–20). With the aid of various gestures involving the eyes,

mouth, nose, and hands, emotions such as anger, happiness,

sadness, and neutrality can be identified through depression

detection systems that utilize image and video processing (21).

Similarly, textual information can also be analyzed to extract

features relevant to depression (22) Similarly, textual information

can also be analyzed to extract features relevant to depression (22,

23). And many researchers also have explored diagnosing

depression through social networks by textual information (24–

26). While unimodal approaches can be effective to some extent in

detecting depression, multimodal or hybrid modalities often exhibit

superior performance. However, the selection of different

modalities, the choice of network architectures, and the methods

of fusion all significantly impact the effectiveness of depression

detection (17). Many depression detection networks utilize

multimodal architectures, yet few of these systems effectively

incorporate both local and global features within various modalities.

Consequently, this study introduces a novel deep learning

network architecture for multimodal depression detection

(Figure 1), termed the Integrative Multimodal Depression

Detection Network (IMDD-Net). This advanced framework not

only integrates data from video, text, and audio modalities but also

considers both local and global information within each modality.

By doing so, the IMDD-Net enhances the estimation efficacy by

capturing a more comprehensive representation of depressive

symptoms. Specifically, within the audio modality, we

preprocessed the audio signals and extracted both time-frame

level and global statistical features. Both sets of features were then

fed into the IMDD-Net through separate channels. For video data,

we sampled the video at regular intervals and processed each frame.

Then we utilized the specific network to extract both global and

local features. In the text modality, we employed a pre-trained Bert-
FIGURE 1

Brief diagram of multimodal depression detection by IMDD.
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base-german-cased (27) network. The high-dimensional features

obtained from these three modalities were fused. This IMDD-Net

was evaluated by using the AVEC2014 dataset (28), demonstrating

the effectiveness of our approach in the practical assessment

of depression.

The primary innovations and contributions of this paper are

summarized as follows:
Fron
1. A novel multimodal network architecture has been

proposed for the identification of depression;

2. This network effectively integrates and analyzes both global

and local features across multiple modalities, including text,

video, and audio;

3. Using the Kronecker product for multimodal fusion

explores deep interactions between modalities and

enhances the detection accuracy of depression.

4. The IMDD-Net achieves state-of-the-art performance in

depression assessment areas.
The remainder of this paper is organized as follows. Section 2

reviews the related work on automatic depression estimation.

Section 3 describes the dataset used in this study, details the data

preparation and preprocessing steps, and provides a comprehensive

explanation of the proposed IMDD-Net architecture. Section 4

presents the experimental results obtained using IMDD-Net and

provides an analysis of the model’s performance across regression

and classification tasks. Section 5 discusses the implications of our

findings, outlines current limitations, and considers directions for

future improvement and clinical applicability. Section 6 concludes

the paper and summarizes the main contributions of this work.
2 Related works

Recent years have witnessed significant advancements in the field

of automatic depression estimation through deep learning. In 2021,

Dong et al. (19) developed an automatic depression estimation

method using speech signals. This approach combines deep speaker

recognition and speech emotion recognition features from pre-

trained models to utilize complementary vocal and emotional data.

In 2020, Li et al. (29) introduced DRR_DepressionNet to predict

depression severity from facial expressions. This method enhances

facial images to enlarge the training dataset and uses a modified

ResNet divided into C_M block, Resblock, and global average

pooling. It employs Euclidean loss instead of traditional cross-

entropy loss for training. Compared to static images, videos often

contain more information and Uddin et al. (30) introduced a two-

stream deep spatiotemporal network to assess depression levels from

video data. This framework employs the Inception-ResNet-v2 for

spatial data and a volume local directional number descriptor for

facial motion analysis, enhanced by convolutional neural network

(CNN) processing. It also features a multilayer bidirectional long

short-term memory (Bi-LSTM) with temporal median pooling to
tiers in Psychiatry 03
integrate spatial and temporal features effectively. Then, He et al. (31)

introduced an end-to-end trainable system for depression detection,

utilizing a 3D CNN with a spatiotemporal feature aggregation

module. This system utilizes a 3D DEP-NetVLAD aggregation

method to effectively identify depression. In 2023, Rajawat et al.

(32) introduced a fusion fuzzy logic model combined with deep

learning to identify depression through facial expressions from image

and video files. Their model uses a fuzzy algorithm and unordered

fuzzy rule initiation for depression recognition, transforming facial

expressions into detectable indicators of depression.

Furthermore, many multimodal networks based on audio and

video have also achieved excellent results in the field of depression

detection. Niu et al. (33) introduced a novel Spatio-Temporal

Attention network combined with a Multimodal Attention Feature

Fusion strategy for predicting depression levels by capturing

multimodal cues in 2020. In addition, Sun et al. (34) developed a

multi-modal adaptive fusion transformer network and it is tailored to

extract long-term context from uni-modal data. This network employs

an adaptive fusion technique to integrate multimodal features

effectively. Bucur et al. (35) introduced a unique time-enriched

multimodal transformer architecture that leverages pre-trained

models to extract image and text embeddings from social media

posts in 2023. Operating at the user level, their model integrates

time2vec positional embeddings to account for the timing of posts.

Furthermore, they developed a variant designed to handle randomly

sampled, unordered post sets, thereby increasing robustness against

dataset noise. Li et al. (36) proposed a Decoupled Multimodal

Distillation (DMD) framework to address modality heterogeneity in

emotion recognition by separating each modality’s representation into

modality-exclusive and modality-irrelevant components. A graph-

based distillation unit (GD-Unit) enables dynamic, adaptive

knowledge transfer between modalities via learned edge weights.

This flexible structure improves feature discrimination and

crossmodal alignment, achieving superior performance on standard

multimodal emotion recognition benchmarks.

In summary, recent advancements in the field of automatic

depression estimation have showcased the potential of deep

learning and multimodal approaches in improving the accuracy

and reliability of depression detection. Various methods utilizing

speech signals, facial expressions, and video data have been

developed, each contributing unique strengths and innovations.

As the field continues to evolve, future research should focus on

refining these models, addressing their limitations, and improve the

effectiveness of depression detection.
3 Materials and methods

3.1 Dataset and preprocessing methods

This chapter provides an overview of the datasets utilized in this

study, as well as the preprocessing methods applied to the raw data,

encompassing audio, video, and text modalities.
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3.1.1 AVEC 2014 dataset
In this study, we utilize the Audio-Visual Emotion Recognition

Challenge (AVEC) 2014 dataset (28). This dataset is among the few

that offer unprocessed audio and video data, which are critical for

analyzing nuanced behavioral cues and expressions associated with

depression. The AVEC 2014 dataset includes 150 German

participants (96 female and 54 male) and the subjects had a mean

age of 31.5 years, with a standard deviation of 12.3 years, ranging

from 18 to 63 years. Each of them completed two tasks to generate

differentiated audiovisual data. The tasks selected are as follows: (1)

Northwind dataset: Participants recite a passage from the fable “Die

Sonne und derWind” (The NorthWind and the Sun) in German. (2)

Freeform dataset: Participants express themselves spontaneously by

answering various prompts, such as: “What is your favorite dish?”;

“What was your best gift, and why?”; or “Discuss a sad childhood

memory.” All responses are answered in German. Therefore, these

tasks have been specifically selected to enable a comprehensive

analysis of both verbal and nonverbal cues associated with

depression. Additionally, each participant’s depression severity is

quantified using the Beck Depression Inventory-II (BDI-II) (37)

scores, which serve as labels for the dataset. According to standard

interpretation guidelines, BDI-II scores can be categorized as follows:

0–13 indicates minimal depression, 14–19 mild depression, 20–28

moderate depression, and 29–63 severe depression.

3.1.2 Video preprocessing
In this section, we detail the preprocessing steps applied to the

video data of the AVEC 2014 dataset, and the process is depicted

in Figure 2.

First, we perform sampling on the raw videos. Since the original

videos vary in length, we employ an adaptive sampling interval

approach. This method calculates the sampling interval based on

the length of the video and the number of frames, ensuring that each

video yields exactly one hundred frames after sampling.
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To minimize the interference from the background and other

irrelevant information, each frame is processed through Multi-

task Cascaded Convolutional Neural Networks (MTCNN) (38).

First, MTCNN employs an image pyramid (39) to handle various

face sizes within the frame, allowing it to perform detection

across multiple scales. Then, the processed images are sent to

Proposal Network (P-Net). It generates candidate facial regions

by rapidly scanning the resized images, proposing potential areas

that likely contain faces. After that, the outputs of the P-Net are

sent to the Refine Network (R-Net) and this stage refines these

candidates, filtering out false positives. Finally, the outputs of R-

Net are sent to the Output Network and this stage also provides

final bounding boxes and associated confidence scores to

confirm the presence of facial features and output the final

processed frames.

Following this preprocessing procedure, we have successfully

processed the video data for 150 participants, with each set

consisting of 100 frames.

3.1.3 Audio preprocessing
The processing of audio data in this study focuses on both

global and local features, utilizing eGeMAPS (40) and MFCC (41)

respectively. This section will detail the preprocessing steps used to

extract these features, ensuring a comprehensive analysis for

depression detection.

To control variables that might affect experimental outcomes,

the extraction of audio features employed the Northwind dataset

from AVEC2014. This ensures consistency in the content spoken by

all participants. After extracting audio from original video files, the

audio undergoes a noise reduction process. This involves spectral

gating and wavelet denoising to remove noise while preserving

essential aspects of the voice. Following the denoising, MFCC and

eGeMAPS are extracted and the overall process is shown in the

upper part of Figure 3.
FIGURE 2

The preprocessing steps applied to the video data (MTCNN indicates Multi-task Cascaded Convolutional Neural Networks).
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MFCCs are widely used in speech and audio processing and

they play a pivotal role in capturing the local features of audio for

our analysis. MFCCs are derived from the Fourier transform of a

signal, with a focus on the Mel scale, which approximates the

human auditory system’s response more closely than the linearly-

spaced frequency bands used in the standard cepstral analysis. The

calculation of MFCCs is as Equation 1:

fmel = 2595 log10 1 +
f
700

� �
(1)

Initially, each audio track is segmented into 1,000 frames and

for each frame, we extract the first 20 MFCCs. To further enhance

the descriptive power of our features, we compute both the first and

second derivatives of these coefficients, effectively capturing the

dynamic changes in the cepstral features over time. As a result, each

frame is represented by 60 MFCC features (20 coefficients plus their

first and second derivatives), culminating in a 1000 * 60 feature

matrix for each audio sample. This feature set allows us to analyze

the local characteristics of the speech.

Meanwhile, we utilize the eGeMAPS (40) to represent the global

features of speech. Unlike the MFCCs which focus on capturing

fine-grained local properties of audio, eGeMAPS is designed to

encapsulate the overall statistical characteristics of speech. This

feature set is particularly effective for its comprehensive coverage of

voice attributes that are commonly implicated in emotional states

and psychological conditions.

eGeMAPS is an acoustic parameter set built on the Geneva

Minimalistic Acoustic Parameter Set (GeMAPS). eGeMAPS
Frontiers in Psychiatry 05
consists of 88 features derived from basic acoustic descriptors

(Low-Level Descriptors, LLDs) through various statistical

methods, and these statistical features are known as High-Level

Statistics (HSFs). The features cover multiple acoustic aspects

including frequency, energy, and spectral properties. Each audio

sample in our dataset is processed to extract a complete set of these

eGeMAPS features, ultimately transforming the entire speech signal

into a single 1 * 88 vector. This representation captures the global

attributes of the speech.

3.1.4 Text preprocessing
To capture the diverse semantic information expressed by

participants during interviews, our study begins by extracting

textual data from the AVEC 2014 Freeform dataset, and the

process is shown in the lower part of Figure 3. The first step

involves extracting audio from the video recordings, followed by a

noise reduction process to ensure the clarity of human voices.

Several preprocessing techniques are employed here, including

spectral gating to reduce background noise and dynamic range

compression to maintain a consistent audio level.

Once the audio is cleaned, it is converted into German text.

Following transcription, the German text undergoes text cleaning

and normalization. This involves transforming all text to lowercase,

stripping away punctuation and special characters, and discarding

stopwords that do not add significant va lue to the

depression detection.

Thus, we have thoroughly and meticulously preprocessed the

data for 150 participants, obtaining refined final datasets across
FIGURE 3

The preprocessing steps applied to the audio data and text data.
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three modalities: audio, video, and text. This comprehensive

preparation ensures data well-suited for the subsequent stages of

our analysis.
3.2 Framework of IMDD-Net

This chapter is dedicated to detailing the architecture of the

IMDD-Net, a multimodal network designed for assessing

depression. The IMDD-Net integrates audio, text, and video

modalities, using both local and global information within each

modality to enhance estimation accuracy. The network processes

these modalities through four specialized channels and a

multimodal fusion and inference process, culminating in the

output of BDI-II scores to evaluate the severity of depressive

disorders. The architecture of the network is illustrated in

Figure 4. In the following sections, the composition and

functionalities of the IMDD-Net’s architecture will be introduced.

3.2.1 Video feature extraction subnetwork
In order to capture both local and global features from video

data effectively, the TimeSformer (42) network has been selected for

the video modality channel of the IMDD-Net. The TimeSformer

builds upon the Vision Transformer (ViT) (43) by integrating

temporal processing capabilities, allowing it to effectively address

the dynamic nature of video data. Specifically, the TimeSformer

extends the Vision Transformer architecture by incorporating

temporal dimensions into the self-attention mechanism. This

enables the model to process sequences of video frames rather

than static images.
Frontiers in Psychiatry 06
Initially, each frame (64 * 64 pixels) of the video is divided into

patches of size 8 * 8 pixels. These patches are then linearly

embedded into 512-dimensional vectors. After patch embedding,

each patch is concatenated with learned spatial (position within a

frame) and temporal (position within the sequence) embeddings.

Space and time embeddings enhance the model’s ability to interpret

the positional context of each patch both within individual frames

and across the sequence. The embedded patches are processed

through multiple layers of spatial and temporal self-attention

mechanisms. Each layer consists of 12 blocks (depth=12), where

both local interactions within frames and global interactions across

frames are captured (Figure 5). Each attention block is followed by a

multilayer perceptron (MLP) and the output from the final layer of

the TimeSformer is passed through a linear layer that shapes the

output into a high-dimensional feature vector of size 5*1 per video.

This vector represents the key features extracted and processed

from the video which contain both local and global features.

3.2.2 Textual feature extraction subnetwork
In the text modality channel of the IMDD-Net, we leverage the

capabilities of the Bidirectional Encoder Representations from

Transformers (BERT) (27) to analyze textual data. BERT is particularly

well-suited for this task due to its ability to capture both local and global

contextual information from text. Unlike directional models, which read

the text input sequentially (left-to-right or right-to-left), the BERT model

reads the entire sequence of words at once. This characteristic allows

BERT to capture the meaning of a specific word in different contexts,

providing a deeper understanding of the text as a whole.

For our study, we utilize the German variant of BERT,

specifically the Bert-base-german-cased model, which has been
FIGURE 4

Framework of the proposed Integrative Multimodal Depression Detection Network (IMDD-Net).
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pre-trained on a large corpus of German text. The model features an

embedding layer that converts tokenized text into numerical

vectors. Text data is initially processed using the BertTokenizer,

and adjusts the length of these sentences to a uniform 350 tokens by

padding. The subsequent transformer blocks process the input

using self-attention mechanisms, followed by an MLP layer at the

end to transform the token embeddings into a single vector.

The final output is a high-dimensional feature vector sized 5 * 1

for each piece of text, encapsulating both local and global

contextual information.

3.2.3 Audio feature extraction subnetwork
The audio modality channel in the IMDD-Net processes audio

data to capture both local and global features.

Local Feature Extraction with MFCC: The audio files are first

processed to extract MFCC, which focus on local information at the

frame level. Each audio file is segmented into frames, and for each

frame, 60 MFCC features are computed, resulting in a feature

matrix of size 60 * 1000. These MFCC features are then processed

through a Transformer model with 8 attention heads and a hidden

dimension of 64. The Transformer encoder is composed of 3 layers

and the 5 * 1 feature vector representing local speech information

is outputted.

Global Feature Extraction with eGeMAPS: In parallel,

eGeMAPS features are extracted to capture the global acoustic

properties of the audio file and the size of input is 88 * 1. The

eGeMAPS features are processed using a network structured similar

to ResNet, which is adapted here for one-dimensional audio signal

processing. This network is composed of 18 residual blocks and

each block includes layers of linear transformations with skip

connections. After processing through an MLP, the 5 * 1 high-

dimensional feature vector representing global audio information

is outputted.

At this point, we have obtained two vectors that respectively

represent the global and local features of the audio information.
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3.2.4 Multimodal feature fusion and inference
In this final phase of the IMDD-Net, we converge the extracted

features from different modalities to form a unified representation,

leveraging the power of multimodal data fusion to enhance

estimation precision.

The use of the Kronecker product in our fusion process allows

for a detailed interaction between features from different modalities.

Unlike simpler fusion techniques such as concatenation or

averaging, the Kronecker product facilitates a richer and more

expressive combination by mathematically intertwining the

feature sets, thus capturing both inter-modal and intra-

modal dependencies.

The Kronecker product, denoted by ⊗, is a mathematical

operation on two matrices. For matrices A of size m*n and B of

size p*q, the Kronecker product A⊗B is a block matrix of size m

p*nq. The operation is defined as Equation 2:

A⊗B =

a11B … a1nB

… … …

am1B … amnB

2
664

3
775 (2)

where each element aij of matrix A is multiplied by matrix B.

In the context of our IMDD-Net, the 5 * 1 feature vectors from

each modality (representing both global and local information)

undergo a transformation through the Kronecker product, resulting

in a combined feature matrix. When these 5 * 1 vectors from the

three modalities (audio, video, text) are subjected to the Kronecker

product sequentially, the dimensionality of the resulting feature

matrix expands to 625 * 1. This expansion not only increases the

feature space but also preserves the unique characteristics of

each modality.

The 625 * 1 feature vector is then processed through a deep

residual network consisting of 18 layers and the output from the

ResNet is a predictive value that correlates with the Beck Depression

Inventory-II (BDI-II) scores.
FIGURE 5

Local & global features extracted by space & time attention of TimeSformer.
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In summary, the architecture of the IMDD-Net is designed for

multimodal data. By integrating and processing local and global

features from video, audio, and text inputs through advanced

models, the system improves the accuracy of depression

estimation and provides new insights for detecting depression.
3.3 Training methodology

The training and validation strategy of the IMDD-Net is

designed to ensure a robust and comprehensive assessment of the

model’s performance.

The dataset consists of data from 150 participants. To validate

the effectiveness and stability of the model, five-fold cross-

validation is employed. The dataset is divided into five equal parts

randomly. In each fold, one part is held out as a validation set while

the other four parts are used for training. This process is repeated

five times, with each of the five parts used exactly once as the

validation set.

The Huber loss function is selected because it is an error metric

that combines the best aspects of L1 norm (mean absolute error)

and L2 norm (mean squared error) loss functions, making it

particularly effective for regression problems.

The Huber loss is defined by the Equation 3:

Ld y, ŷð Þ =
1
2 y − ŷð Þ2,     for   y − ŷj j ≤ d

d y − ŷj j − 1
2 d

� �
,     for y − ŷj j   > d

(
(3)

where y represents the true value, ŷ is the predicted value and d
is a threshold parameter that defines the boundary between the

quadratic loss and the linear loss. This threshold is adjusted as 1

(d = 1) in our experiment.

The optimizer used is AdamW (Initial learning rate = 0.001),

which combines the advantages of AdaGrad and RMSProp

op t im i z a t i on me thod s and in c l ude s we i gh t d e c a y

(weight_decay=0.01) regularization to prevent overfitting.

To evaluate the performance of our model, we adopt Mean

Absolute Error (MAE) and Root Mean Square Error (RMSE) as
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primary evaluation metrics. These two measures are widely used in

the field of automatic depression estimation, particularly on the

AVEC 2014 dataset, allowing for direct and fair comparisons with

prior state-of-the-art methods. MAE provides a straightforward

interpretation of average error, while RMSE penalizes larger

deviations more heavily, offering insight into prediction stability.

MAE and RMSE which are defined as Equations 4 and 5:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No ri − r

0
i

� �2r
(4)

MAE =
1
No ri − r

0
i

��� ��� (5)

where N is the total number of observations, ri is the prediction

from the model, and r
0
i is the actual observed value.

The model was trained for 300 epochs, and Figure 6 presents the

Huber loss, MAE, and RMSE curves averaged across the five cross-

validation folds.
4 Results

4.1 Experiments result of IMDD-Net

In this section, we present the experimental results of the

IMDD-Net, comparing its performance against state-of-the-art

(SOTA) methods and the baseline from the AVEC 2014

challenge. The evaluation metrics used to assess the performance

are RMSE and MAE.

As shown in Table 1, our model has achieved state-of-the-art

performance with an RMSE of 7.55 and an MAE of 5.75. The AVEC

2014 baseline has an RMSE of 9.89 and anMAE of 7.89 (28). Cai et al.

(44) proposed an end-to-end time-domain channel attention network

(TDCA-Net) for depression detection and on the AVEC 2014 dataset,

their model achieved an RMSE of 8.90 and an MAE of 7.08.

Additionally, Dong et al. (19) proposed a hierarchical depression

detection model combining deep speaker recognition and speech
FIGURE 6

Averaged training curves of Huber loss, MAE, and RMSE over 300 epochs across five cross-validation folds.
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emotion recognition features, achieving an RMSE of 8.73 and anMAE

of 7.32 on the AVEC 2014 dataset. Moreover, Uddin et al. (30)

developed a two-stream deep spatiotemporal network for depression

level estimation, resulting in an RMSE of 8.78 and an MAE of 6.86.

Furthermore, He et al. (31) introduced an end-to-end trainable

intelligent system utilizing a 3D convolutional neural network with

a spatiotemporal feature aggregation module achieving an RMSE of

8.42 and an MAE of 6.78 on the AVEC 2014 dataset and Shang et al.

(45) proposed a method called Local Quaternion and Global Deep

Network, which integrates local quaternion and global deep features

for facial depression recognition, achieving an RMSE of 7.84 and an

MAE of 6.08. Moreover, Melo et al. (46) introduced the Maximization

and Differentiation Network to represent facial expression variations

relevant for depression assessment, achieving an RMSE of 7.90 and an

MAE of 6.19 on the AVEC 2014 dataset. Additionally, Niu et al. (47)

proposed a multi-scale andmulti-region facial dynamic representation

method for depression prediction, achieving an RMSE of 7.98 and an

MAE of 6.14 and Melo et al. (48) proposed a two-streammodel with a

novel temporal pooling method for capturing spatio-temporal

dynamics in video clips, achieving an RMSE of 7.94 and an MAE of

6.20 on the AVEC 2014 dataset. Pan et al. (49) proposed the Spatial-

Temporal Attention Depression Recognition Network, which

enhances feature extraction by capturing global and local spatial-

temporal information, achieving an RMSE of 7.75 and anMAE of 6.00

and Song et al. (50) proposed a method for video-based automatic

depression analysis using multi-scale video-level features and novel

spectral representations, achieving an RMSE of 7.15 and an MAE of

5.95 on the AVEC 2014 dataset.

In summary, our model has achieved state-of-the-art

performance, demonstrating its effectiveness in depression

detection. Notably, our model achieved the lowest MAE among
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all compared models, with a score of 5.75, indicating its superior

accuracy in predicting depression severity. Furthermore, our model

attained the second-lowest RMSE, with a score of 7.55, closely

following the RMSE of 7.15 achieved by Song et al. [38]. These

results underscore the robustness and precision of our IMDD-Net

in integrating multimodal data and global and local features to

enhance depression detection.

In our study, we generated a BDI-II value comparison bar plot

and an error histogram to evaluate the prediction performance of

the IMDD-Net visually (Figure 7). Figure 7A presents a bar plot

comparing the real and predicted BDI-II values for each sample.

The x-axis corresponds to the sample indices, and the y-axis

represents the BDI-II values. Each sample is represented by two

bars: one for the real value and one for the predicted value. The red

dashed line in the figure represents the threshold at a BDI-II score

of 13. Typically, BDI-II scores below 13 are considered indicative of

no depression, while scores above 13 suggest the presence of

depressive symptoms. Analysis of Figure 7A reveals that the

IMDD-Net tends to underestimate the actual BDI-II scores of

individuals with depression (BDI-II scores greater than 13, (43 of

73 are underestimated), while overestimating the BDI-II scores of

those without depression (BDI-II scores less than 13, 45 of 77

are overestimated).

As shown in Figure 7B, the error histogram illustrates the

distribution of the prediction errors, which are calculated as the

difference between the real and predicted BDI-II values. The

histogram provides a visual representation of how closely the

predicted values align with the actual values. The x-axis

represents the prediction error, while the y-axis represents the

frequency of each error value. The majority of the errors are

concentrated around zero and 57.33% sample is located in the
TABLE 1 The comparison of different methods and their structures on the AVEC 2014 dataset.

Method Network structure Modality RMSE↓ MAE↓

AVEC 2014 baseline (28) Support Vector Regression Audio-Video 9.89 7.89

(44) An end-to-end time-domain channel attention network (TDCA-Net) Audio 8.90 7.08

(19)
A hierarchical model combining deep speaker recognition and speech emotion recognition

features
Audio 8.73 7.32

(30) A two-stream deep spatiotemporal network Video 8.78 6.96

(31)
An end-to-end trainable system utilizing a 3D convolutional neural network with a

spatiotemporal feature aggregation module
Audio-Video 8.42 6.78

(45) Local Quaternion and Global Deep Network Video 7.84 6.08

(46) Maximization and Differentiation Network Video 7.90 6.19

(47) A multi-scale and multi-region facial dynamic representation method Video 7.98 6.14

(48)
A two-stream model with a novel temporal pooling method for capturing spatio-temporal

dynamics in video clips
Video 7.94 6.20

(49) Spatial-Temporal Attention Depression Recognition Network Video 7.75 6.00

(50) Using multi-scale video-level features and novel spectral representations Video 7.15 5.95

Ours
Integrative Multimodal Depression Detection Network by using local and global

multimodality features
Audio-Video-Text 7.55 5.75
front
The symbol "↓" indicates that lower values represent better performance (as for MSE and RMSE).
Bold values denote the best performance across methods.
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error range of ± 5, indicating that the IMDD-Net’s predictions are

generally accurate.

To further illustrate the experimental results, we conducted a

Brand-Altman analysis and performed a regression analysis. The

Brand-Altman scatter plot and the regression plot are presented in
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Figure 8 to illustrate the agreement and predictive accuracy of the

IMDD-Net.

The Bland-Altman plot (the left part of Figure 8) compares the

differences between the predicted BDI-II scores and the actual BDI-

II scores against their averages. The mean difference (bias) is
FIGURE 8

The Bland-Altman plot and regression analysis for IMDD-Net predictions.
FIGURE 7

Differences between real and predicted BDI-II values and histogram of prediction errors of IMDD-Net. (A) The comparison of real and predicted
BDI-II values; (B) Histogram of prediction errors.
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calculated to be −0.97 with a standard deviation of 7.61. The limits

of agreement, defined as the mean difference ± 1.96 times the

standard deviation, range from −15.89 to 13.95.

The regression analysis (the right part of Figure 8) shows the

relationship between the predicted BDI-II scores and the actual BDI-II

scores. The regression equation is given by: Predicted BDI-II = 0.85 ×

Actual BDI-II + 3.22. The coefficient of determination (R2) is

calculated to be 0.65, indicating that approximately 65% of the

variance in the actual BDI-II scores can be explained by the IMDD-

Net’s predictions.

In summary, the Bland-Altman analysis shows good agreement

between the predicted and actual BDI-II scores, while the regression

analysis confirms the predictive accuracy of the IMDD-Net. These

results collectively highlight the effectiveness of the IMDD-Net in

assessing depression severity.
4.2 Classification performance analysis

To further validate the effectiveness of IMDD-Net, we

performed a classification analysis using a threshold of 13 on the

BDI-II scores. Participants with scores above 13 were classified as

depressed, while those with scores of 13 or below were classified as

non-depressed. The confusion matrix (The left part of Figure 9)

provides a detailed breakdown of the classification results,

showcasing the true positive (TP) is 62, false positive (FP) is 20,

true negative (TN) is 57, and false negative (FN) is 11. Therefore,

the performance metrics are calculated as follows: Accuracy (ACC)

is approximately 79.3%, Sensitivity (SEN) is 84.9%, Specificity (SPE)

is 74.0%, Positive Predictive Value (PPV) is 75.6%, and Negative

Predictive Value (NPV) is 83.8% (The right part of Figure 9).
4.3 Ablation experiment

To further emphasize the importance of multimodal data in the

detection of depression, we conducted an ablation study. In this

study, we evaluated the performance of the IMDD-Net using
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individual modalities and combinations of two modalities and

compared the results with the complete multimodal configuration.

For the ablation study, we considered the following

configurations: (a) Audio Only (MFCC and eGeMAPS); (b)

Video Only; (c) Text Only; (d) Audio + Video; (e) Audio + Text;

(f) Video + Text; (g) IMDD (Audio + Video + Text). Each

configuration was used to train and test the model independently,

following the same training methodology as described in the

previous sections.

The performance of each configuration was evaluated by RMSE

and MAE. The results are summarized in Table 2. Among the single

modalities, the text modality achieves the best performance with the

lowest RMSE (7.81) and MAE (6.36). For dual-modality

combinations, the Video + Text configuration yields the best

results with an RMSE of 7.66 and an MAE of 5.84. Previous

clinical psychology studies have indicated that the relationship

between language users (e.g., speakers or writers) and their texts

is meaningful and shows considerable promise for the depression

detection (51). A study (51) also suggests that it may be possible to

identify individuals at risk for depression through text-based

analysis, which aligns with the results of our ablation experiments.

The ablation experiments and corresponding statistical analysis

results are also shown in Figure 10, where the standard deviation is

also included from five-fold cross-validation and paired t-tests are

conducted on the RMSE and MAEmetrics. The RMSE of the Audio

Only and Video Only configuration is significantly higher than that

of other configurations (p<0.05). The Text Only configuration

presents significantly lower RMSE than other two single modality

configurations (p<0.05), indicating that the information underlying

the text might be more valuable for the depression detection or

easier to be extracted by our IMDD-Net. The MAE of the IMDD

(Audio + Video + Text) is significantly lower than that of single

modality and Audio + Video configurations (p<0.05).

The ablation study clearly illustrates the critical role of

multimodal data integration in the IMDD-Net. Each modality

contributes unique and valuable information and enhances the

network’s ability to detect depression accurately. The superior

performance of the complete multimodal configuration
FIGURE 9

The confusion matrix and classification performance of IMDD-Net.
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underscores the necessity of leveraging diverse data sources in the

field of depression detection.

An important experimental discovery in this study is the

identification of the critical role played by multimodal data

integration, specifically emphasizing the complementary nature of

text, audio, and video modalities. Through ablation experiments, we

observed that integrating text modality consistently improved

performance more than audio or video alone, indicating that

linguistic patterns provide highly discriminative signals for

depression. This finding is consistent with clinical research, which

suggests that linguistic expressions offer reliable and sensitive

indicators of depressive states, capturing nuanced cognitive and

emotional disturbances that might be less prominently reflected

through facial expressions or vocal characteristics alone.

Furthermore, the comparative analysis of prediction errors and

Bland-Altman agreement plots revealed specific behavioral patterns

in our model’s predictions: the IMDD-Net tended to underestimate

depressive severity in participants with higher BDI-II scores,

possibly due to subtle or suppressed emotional cues in severely

depressed individuals that are difficult to capture comprehensively

from video or audio data alone. Conversely, it slightly overestimated

scores in non-depressed individuals, suggesting a potential

sensitivity toward ambiguous or transient emotional cues. These

nuanced error patterns highlight opportunities for further refining

modality-specific feature extraction and fusion techniques.

Overall, these experimental insights underscore the necessity of

multimodal fusion in depression detection frameworks, particularly

emphasizing the distinct contribution and sensitivity of linguistic

information. This emphasizes the need for future research to

prioritize advanced linguistic feature extraction methods and

adaptive multimodal fusion strategies, ultimately improving the

clinical utility and interpretability of automated depression

detection systems.
5 Discussion

This study introduced IMDD-Net, a multimodal deep learning

model designed to enhance depression detection by integrating
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video, audio, and text data. Our findings demonstrate that

incorporating multiple modalities provides a more comprehensive

and robust assessment of depressive symptoms. By leveraging both

local and global feature extraction, IMDD-Net effectively captures

short-term behavioral cues as well as long-term patterns in facial

expressions, vocal tone, and linguistic structures. The model

achieved an RMSE of 7.55 and an MAE of 5.75 for depression

severity estimation, along with a classification accuracy of 79.3%,

demonstrating high sensitivity (84.9%) and specificity (74.0%).

This study underscores the potential of multimodal deep

learning in advancing objective, scalable, and accessible mental

health assessments. By addressing current challenges, models like

IMDD-Net could significantly contribute to the development of AI-

driven tools for depression screening and monitoring, bridging the

gap between computational psychiatry and clinical practice.
5.1 Effectiveness of multimodal data in
depression prediction

The use of multimodal data, particularly the combination of

audio, video, and text, has proven to be highly effective in

depression prediction. Depression is a disorder that manifests

through various behavioral, cognitive, and linguistic patterns (52).

Studies have consistently shown that individuals with depression

exhibit distinct facial expressions, speech patterns, and language

use, which together provide a more comprehensive and reliable

means of assessment (53, 54).

Facial expression analysis plays a crucial role in depression

detection, as individuals suffering from depression often exhibit

reduced facial variability, diminished smiling, and increased negative

affect (55). Similarly, speech-based features such as prosody, pitch

variation, articulation rate, and speech fluency offer valuable indicators

of depressive states (56). Depressed individuals often demonstrate

monotonous speech, slower articulation, increased hesitations, and

longer response latencies (57), all of which can be extracted using

acoustic analysis techniques such as MFCC and eGeMAPS. In

addition to audio-visual cues, the linguistic patterns of individuals

with depression often reflect negative sentiment, cognitive distortions,

self-referential focus, and reduced syntactic complexity (51). By

analyzing transcribed speech or written text, natural language

processing (NLP) models can identify markers such as higher usage

of first-person pronouns, excessive expressions of sadness or

hopelessness, and reduced use of complex sentence structures (58).

While unimodal approaches relying on either facial expressions,

speech, or text have demonstrated promising results, they often

suffer from limited accuracy due to the heterogeneous nature of

depressive symptoms (59). For instance, an individual may suppress

facial expressions while still exhibiting changes in speech tone and

linguistic patterns, or their speech may remain neutral while textual

markers indicate distress. By integrating these three modalities,

deep learning models can compensate for the weaknesses of each

individual modality, leading to more robust and reliable

depression prediction.
TABLE 2 The result of the ablation experiment of IMDD-Net.

Model variant RMSE↓ MAE↓

Audio Only 8.49 6.88

Video Only 8.27 6.63

Text Only 7.81 6.36

Audio + Video 7.72 6.05

Audio + Text 7.68 5.99

Video + Text 7.66 5.84

IMDD (Audio + Video + Text) 7.55 5.75
The symbol "↓" indicates that lower values represent better performance (as for MSE and
RMSE).
Bold values denote the best performance across methods.
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5.2 The role of global and local features in
multimodal fusion

The integration of global and local features in multimodal

learning plays a crucial role in capturing the complex

manifestations of depression. Depression affects individuals in both

momentary expressions and long-term behavioral patterns (60),

making it essential for predictive models to analyze information

across multiple temporal scales. Local features focus on fine-grained,

short-term behavioral signals such as micro-expressions, brief tonal

fluctuations in speech, and word-level linguistic markers, which

provide immediate but transient indicators of depressive symptoms

(61). On the other hand, global features capture long-term

dependencies, trends in speech fluency, sustained emotional states

in facial expressions, and discourse-level linguistic patterns, which
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reflect the broader psychological state of an individual over an

extended period (62, 63).

Depression manifests at multiple temporal and behavioral

levels, necessitating an approach that jointly models local

variations and global trends. Future research should continue to

explore adaptive multimodal fusion strategies that dynamically

balance local and global information, ensuring that automated

depression detection models remain both effective and

clinically interpretable.
5.3 Limitations and future directions

In this paper, the IMDD-Net is introduced as a novel deep

learning model designed to enhance the accuracy of depression
FIGURE 10

The result of the ablation experiment and statistical analysis. (A) RMSE and MAE. (B) Pairwise p-value heatmap of RMSE. (C) Pairwise p-value
heatmap of MAE. (* indicates a significant difference.).
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detection by leveraging local and global features from video, audio,

and text cues. This model effectively integrates multimodal data to

provide a comprehensive analysis of depressive symptoms. By using

the Kronecker product for multimodal fusion, our network explores

deep interactions between modalities, further enhancing assessment

accuracy. Experimental results demonstrate that the IMDD-Net

achieves state-of-the-art performance. The robustness and precision

of IMDD-Net are proved in identifying depression by extra

experiment. In summary, via deep learning approach and video-

audio-text multimodal data, IMDD-Net might be a useful tool of

e s t ima t ing depr e s s ion r i sk in an und i s tu rbed and

convenient manner.

While the IMDD-Net has demonstrated state-of-the-art

performance, there are several limitations that need further

investigation. First, the IMDD-Net does not effectively address

the issue of missing modalities. If any one of the input modalities

(audio, video, or text) is absent, the model’s performance may be

impacted. But it also means that depression can manifest through

various modalities, encompassing diverse behavioral, emotional,

and physiological indicators. Second, the integration of multimodal

data and the use of advanced feature extraction techniques increase

the computational complexity and resource requirements. This may

hinder the deployment of the IMDD-Net in real-world, resource-

constrained environments. Third, the current implementation of

the IMDD-Net focuses on accuracy rather than real-time processing

capabilities. For practical applications in clinical settings, the model

needs to be optimized for faster inference without compromising

accuracy. Furthermore, the current version of IMDD-Net has not

been optimized for real-time deployment. Due to the model’s

reliance on high-dimensional features, multiple deep architectures

and Kronecker-based multimodal fusion, the computational load is

relatively high. This may pose challenges for real-time inference,

particularly in resource-constrained environments such as mobile

platforms or telehealth applications. Finally, each modality (audio,

video, text) comes with its own set of challenges, such as

background noise in audio data, varying lighting conditions in

video data, and the need for accurate transcription in text data.

Addressing these issues comprehensively remains a challenge.

The ethical considerations are of crucial importance. While the

IMDD-Net shows potential for use in clinical or diagnostic settings, its

deployment raises important ethical considerations. First, the collection

and analysis of audio, video, and textual data involve sensitive personal

information, necessitating strict data privacy protection and informed

consent protocols. Second, false positives may lead to unnecessary

anxiety or stigmatization, while false negatives could result in missed

opportunities for early intervention. Therefore, the model should not

function as a standalone diagnostic tool but rather as an assistive

system to support clinical decision-making. Additionally, bias in

training data—such as demographic imbalance—could propagate

disparities in predictions. Ensuring fairness, transparency, and

human oversight will be essential in any future clinical deployment

of the IMDD-Net.
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Future work should focus on training and validating the IMDD-

Net on larger and more diverse datasets, including data from

various cultural backgrounds and different age groups. This

would enhance the model’s generalizability and robustness. As a

future direction, we also plan to collaborate with clinical partners to

conduct prospective validation studies or pilot trials, aiming to

assess the model’s reliability and generalizability in diverse patient

populations. More efforts should be made to optimize the IMDD-

Net for real-time processing through reducing computational

complexity and improving the efficiency of the feature extraction

and inference processes. Developing robust methods to handle

missing modalities is crucial. This could involve creating

imputation techniques or designing the model to be more

resilient to incomplete input data, ensuring consistent

performance regardless of data availability. Recovering missing

modalities also represents a viable approach (64). By addressing

these limitations and exploring these future directions, the IMDD-

Net can provide a more reliable and efficient tool for the detection

of depression.
6 Conclusion

In this study, we introduced the Integrative Multimodal

Depression Detection Network (IMDD-Net), a novel deep-

learning framework that effectively integrates video, audio, and

textual modalities to enhance depression detection accuracy. By

systematically capturing both local and global features within each

modality and employing an advanced multimodal fusion strategy

based on the Kronecker product, IMDD-Net provides a robust

representation of depressive symptoms.

Experimental results conducted on the AVEC 2014 dataset

demonstrate the superior performance of IMDD-Net, achieving

state-of-the-art outcomes with a Root Mean Square Error (RMSE) of

7.55 and a Mean Absolute Error (MAE) of 5.75 in predicting BDI-II

scores. The classification analysis further validates the model’s practical

utility, yielding an accuracy of approximately 79.3% in distinguishing

depressed individuals from non-depressed ones. Ablation studies

underscore the critical contribution of each modality and reinforce

the necessity of incorporating multimodal data.

Despite these promising outcomes, IMDD-Net faces several

limitations that merit attention. The computational complexity

associated with multimodal fusion and high-dimensional feature

extraction poses challenges for real-time and resource-constrained

applications. Moreover, the model currently lacks comprehensive

clinical validation, limiting immediate deployment in clinical

practice. Future studies will address these limitations by

optimizing the computational efficiency, developing methods to

handle incomplete modality inputs, and rigorously evaluating

clinical validity through prospective trials.

Ultimately, by bridging advanced computational methods with

multimodal behavioral indicators, IMDD-Net represents a significant
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step toward objective, accurate, and accessible depression screening,

paving the way for enhanced mental health assessment practices.
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