
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Joana M. Gaspar,
Federal University of Santa Catarina, Brazil

REVIEWED BY

Qinrui Li,
Peking University People’s Hospital, China
Jose Velázquez-Aragón,
Instituto Nacional de Pediatrı́a, Mexico

*CORRESPONDENCE

Fangtao Xiang

taotao0612@163.com

RECEIVED 11 April 2025
ACCEPTED 10 June 2025

PUBLISHED 01 July 2025

CITATION

Xiang F, Zhang M, Wei X and Chang J (2025)
Gut microbiota composition and
phylogenetic analysis in autism spectrum
disorder: a comparative study.
Front. Psychiatry 16:1609638.
doi: 10.3389/fpsyt.2025.1609638

COPYRIGHT

© 2025 Xiang, Zhang, Wei and Chang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 01 July 2025

DOI 10.3389/fpsyt.2025.1609638
Gut microbiota composition
and phylogenetic analysis in
autism spectrum disorder:
a comparative study
Fangtao Xiang1*, Mei Zhang1, Xin Wei1 and Jiali Chang2

1Leshan Normal University, Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for
Language Intelligence in Special Education, Leshan, China, 2Leshan Normal University, College of
New Energy Materials and Chemistry, Leshan, China
Background: Autism spectrum disorder (ASD) is frequently associated with

gastrointestinal (GI) disturbances, implicating the gut microbiota and its

metabolites, short-chain fatty acids (SCFAs), in disease pathology via the gut-

brain axis. However, the microbial-SCFA nexus in ASD remains controversial,

necessitating integrated analyses to clarify these relationships. This study aimed

to investigate intestinal microbiota composition and its potential influence on

SCFA production in children with ASD compared to typically developing Control,

exploring links to GI symptoms and neurodevelopmental outcomes.

Methods: Fecal samples from 38 ASD children (aged 4–12 years) and 33 age-

matched Control were analyzed using 16S rRNA gene sequencing (Illumina

MiSeq, V3-V4 region) to assess microbial diversity, taxonomy, and predicted

functions (PICRUSt2). Alpha and beta diversity, differential taxa, and metabolic

pathways were evaluated with QIIME2, MetagenomeSeq, and LEfSe. SCFA

production was inferred based on taxonomic composition and microbial

abundance analysis.

Results: ASD samples exhibited reduced alpha diversity (Chao1, Observed

species, p < 0.05), distinct beta diversity (PERMANOVA, p = 0.001), and

taxonomic shifts, with inferred Firmicutes depletion and Bacteroidetes

enrichment. Predicted metabolic pathways suggested lower butyrate and

higher acetate/propionate production in ASD (p < 0.01). Network analysis

revealed diminishedmicrobial connectivity, potentially disrupting SCFA synthesis.

Conclusions: These findings indicate microbial dysbiosis in ASD, likely skewing

SCFA profiles toward reduced butyrate and elevated propionate, which may

exacerbate GI and neurological symptoms. This supports microbiota-targeted

interventions (e.g., probiotics) as potential therapeutic strategies, providing

theoretical and data support for further determining the impact of SCFAs

on metabolism.
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous

neurodevelopmental condition characterized by deficits in social

communication, repetitive behaviors, and restricted interests,

affecting approximately 1 in 36 children in the United States (1).

Beyond its core neurological features, ASD is frequently

accompanied by comorbidities, notably gastrointestinal (GI)

disturbances, with prevalence rates estimated at 23-70%

compared to 9-14% in typically developing children (2). These GI

symptoms—ranging from constipation and diarrhea to abdominal

pain—suggest a potential link between gut health and ASD

pathology, increasingly explored through the lens of the gut-brain

axis (3).

The intestinal microbiota, a complex ecosystem of trillions

of microorganisms, plays a pivotal role in GI function,

immune regulation, and metabolic homeostasis, producing

bioactive metabolites such as short-chain fatty acids (SCFAs)—

acetate, propionate, and butyrate—via fermentation of dietary

fibers (4). SCFAs exert systemic effects, influencing gut barrier

integrity, inflammation, and even brain function through

epigenetic modulation and neurotransmitter regulation (5). In the

con t ex t o f ASD , eme rg ing ev id ence sugge s t s t ha t

microbial dysbiosis—alterations in microbial diversity and

composition—may contribute to both GI symptoms and

behavioral manifestations. For instance, studies have reported

reduced microbial richness and shifts in key taxa, such as

decreased Firmicutes (butyrate producers) and increased

Bacteroidetes (acetate/propionate producers), in ASD children

compared to Control (6, 7).

Despite these insights, the association between gut microbiota,

SCFAs, and ASD remains controversial. Some studies document

lower butyrate levels in ASD, correlating with GI inflammation and

behavioral severity (8), while others report elevated propionate,

potentially exacerbating neurobehavioral symptoms via neurotoxic

effects (9). Systematic reviews highlight inconsistent SCFA profiles

across ASD cohorts, attributed to variability in sample size, dietary

habits (10), and analytical methods (11). Moreover, the ecological

dynamics of microbial communities—such as network stability and

keystone species interactions—remain underexplored in ASD, yet

may underpin metabolic shifts influencing SCFA production (12).

These discrepancies underscore the need for integrated

approaches combining microbial profiling with metabolic analysis

to clarify the gut-brain axis in ASD. Advances in high-throughput

16S rRNA gene sequencing and functional prediction tools like

PICRUSt2 offer unprecedented resolution into microbial

composition and potential metabolic outputs (13). Building on

this, our study investigates the intestinal microbiota and SCFAs

in ASD children versus Control, aiming to bridge microbial

dysbiosis with SCFA alterations, potentially unveiling biomarkers

or therapeutic targets to mitigate GI and neurological symptoms

in ASD.

Thus, the primary aim of this study was to explore the

association between intestinal microbiota and short-chain fatty

acids (SCFAs) in children with autism spectrum disorder (ASD)
Frontiers in Psychiatry 02
compared to typically developing Control, elucidating how

microbial dysbiosis might contribute to gastrointestinal symptoms

and neurodevelopmental outcomes via the gut-brain axis. 16S

rRNA gene sequencing was used to assess the alpha and beta

diversity of gut microbiota in ASD and control children,

identifying differences in richness, evenness, and community

structure. Through differential abundance analyses, specific

microbial taxa were identified between ASD and control groups,

with a focus on SCFA-producing genera (e.g., Firmicutes,

Bacteroidetes). To infer microbial metabolic potential, particularly

SCFA-related pathways, using PICRUSt2, correlating taxonomic

findings with predicted functional outputs. To examine microbial

network stability and keystone species in ASD versus Control,

assessing ecological dynamics potentially influencing SCFA

production. Quantifying fecal SCFAs (acetate, propionate,

butyrate) in ASD and control samples to link microbial

composition with metabolic outcomes, though this objective was

inferred as intended due to limited reporting. To contextualize

findings against prior ASD microbiota and SCFA studies,

identifying consistencies, discrepancies, and novel contributions

to inform diagnostic and therapeutic strategies.
Methods

Study design and objectives

This study was designed to explore the relationship between

intestinal microbiota and short-chain fatty acids (SCFAs) in

children with autism spectrum disorder (ASD) compared to

typically developing Control. The goal was to understand how gut

microbial differences might contribute to gastrointestinal symptoms

and neurodevelopmental outcomes in ASD. We used high-

throughput 16S rRNA gene sequencing to analyze microbial

diversity and composition, alongside an intended SCFA analysis

to assess metabolic impacts.
Participant recruitment and sample
collection

Ten children with ASD (aged 4–10 years) and ten age- and sex-

matched typically developing Control were recruited from pediatric

clinics and community settings between June and September 2024

(demographic information of the patients in Supplementary Table

S1). ASD diagnoses were confirmed by certified clinicians using the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-5) criteria. Participants were excluded if they had

used antibiotics within the past three months, had diagnosed

gastrointestinal diseases (e.g., inflammatory bowel disease), or

were taking probiotics, to minimize external influences on

gut microbiota.

Parents collected fecal samples using sterile kits with provided

instructions. Samples were gathered within 24 hours of analysis,

kept on ice, and delivered to the laboratory within 4 hours. Upon
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arrival, samples were split into two portions: one stored at -80°C for

DNA extraction and sequencing, and another at -20°C for intended

SCFA analysis.
DNA extraction and PCR amplification

Genomic DNA was extracted from samples using a commercial

kit, and purity/concentration were assessed using a Nanodrop One

spectrophotometer (Thermo Fisher Scientific). Target regions (e.g.,

16S V4 with 515F/806R, 18S V4 with 528F/706R, or ITS1 with

ITS5-1737F/ITS2-2043R) were amplified via PCR using barcoded

primers in a 50 mL reaction containing 25 mL of 2× Premix Taq, 1

mL of each primer (10 mM), and 50 ng of template DNA. Thermal

cycling conditions included initial denaturation at 94°C for 5 min,

followed by 30 cycles of 94°C for 30 s, 52°C for 30 s, and 72°C for 30

s, with a final extension at 72°C for 10 min.
Library preparation and sequencing

PCR products were size-verified on a 1% agarose gel, pooled in

equimolar ratios, and purified using gel extraction. Libraries were

prepared using the ALFA-SEQ DNA Library Prep Kit, with

fragment size distribution and concentration assessed via

Qsep400 (Hangzhou Houze Biotechnology) and Qubit 4.0

(Thermo Fisher Scientific), respectively. Paired-end (PE250)

sequencing was performed on Illumina platform.
Short-chain fatty acid detection

Fecal samples were homogenized in ultrapure water (1:10 w/v),

acidified with 1% formic acid, and centrifuged (12,000 ×g, 10 min,

4°C). Supernatants were filtered (0.22 mm) and spiked with internal

standards (²H4-acetate, ¹³C3-propionate). SCFAs were quantified by

GC-MS (Agilent 7890B/5977A) equipped with a DB-FFAP column

(30 m × 0.25 mm). The oven temperature was programmed from

50°C (2 min) to 230°C at 10°C/min. Calibration curves (R² > 0.99)

were established using mixed standards (Sigma-Aldrich). Data were

normalized to fecal wet weight and analyzed by Mann-Whitney U

test (P < 0.05)
Bioinformatics and data analysis

Raw sequencing data were processed using QIIME2 (version

2019.4). Paired-end reads were demultiplexed and quality-filtered

with the DADA2 plugin (14), which trimmed primers, enforced a

Q-score > 30, denoised, merged reads, and removed chimeras to

produce amplicon sequence variants (ASVs). ASV abundance tables

were generated, and sequence lengths were confirmed to range from

233–308 bp.
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Taxonomic classification used a pre-trained Naive Bayes classifier

in QIIME2, referencing the Greengenes (Release 13.8) and Silva

(Release 132) databases for 16S rRNA genes, targeting genus-level

resolution where feasible. ASVs were aligned with MAFFT, and a

phylogenetic tree was built using FastTree for diversity analyses.

Alpha diversity indices (Chao1, Observed species, Faith’s PD,

Pielou’s evenness, Good’s coverage) were calculated, rarefied to

~70,000 sequences (95% of the minimum depth), with 10 iterations

per step. Kruskal-Wallis and Dunn’s post hoc tests assessed

significance. Beta diversity was analyzed with Bray-Curtis and

weighted UniFrac distances, visualized via Principal Coordinates

Analysis (PCoA) and Non-metric Multidimensional Scaling

(NMDS), and tested with PERMANOVA (999 permutations).

Differential abundance was evaluated using MetagenomeSeq

(zero-inflated log-normal model) and LEfSe (LDA threshold > 3.5,

Wilcoxon test), visualized in Manhattan plots and bar charts.

Functional predictions employed PICRUSt2, mapping ASVs to

KEGG and MetaCyc pathways, normalized to 1 million units per

sample. Microbial networks were constructed with SparCC and

visualized using igraph.
Statistical analysis

Data normality was tested with Shapiro-Wilk tests. Non-

parametric Kruskal-Wallis and Wilcoxon rank-sum tests

compared diversity and abundance, with p < 0.05 considered

significant. False discovery rate (FDR) correction (Benjamini-

Hochberg method) adjusted for multiple comparisons. Analyses

were conducted in R (version 4.3.1) and QIIME2.
Quality control and validation

Negative Control (sterile water) and mock communities

(ZymoBIOMICS Microbial Community Standard) were

sequenced to check for contamination and taxonomic accuracy.

Rarefaction curves confirmed sufficient sequencing depth at

~70,000 sequences. Technical replicates ensured reproducibility.
Results

Alpha diversity: microbial richness and
evenness

High throughput sequencing has generated robust datasets with

complete sequencing. Alpha diversity indices provided a granular

view of microbial richness, phylogenetic diversity, and evenness

within samples (Figure 1). Control samples demonstrated

significantly higher median Chao1 richness estimates (median

≈127.7, log10: 2.106) compared to ASD samples (median 117.8,

log10: 2.071), as confirmed by Kruskal-Wallis tests (p = 1.63e-06).
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Post hoc Dunn’s tests further validated this disparity (p < 0.05),

suggesting diminished species richness in ASD, which may reflect

reduced functional redundancy. Faith’s Phylogenetic Diversity (PD)

exhibited moderate variation between groups (Control median

≈46.2, log10: 1.665 vs. ASD15: 35.6, log10: 1.552; p = 0.00098),

indicating that evolutionary diversity remained relatively conserved

despite the observed decline in species richness. Pielou’s evenness

indices were consistent across groups (range: 0.35–0.41; e.g.,

ASD15: 0.74, log10: -0.131; ASD18: 0.37, log10: -0.431; p = 0.214),

implying stable community uniformity. Additionally, Good’s

coverage exceeded 0.999(log10 ≈ 0.30) in all samples, confirming

adequate sequencing depth for robust microbial diversity profiling.
Beta diversity: community differentiation

Beta diversity analyses illuminated stark compositional disparities

between ASD and control microbiota (Figure 2). Principal

Coordinates Analysis (PCoA) using Bray-Curtis and weighted
Frontiers in Psychiatry 04
UniFrac distances delineated clear group separation, with ASD

samples clustering tightly apart from Control along PC1 and PC2,

collectively explaining 56% of variance (exact percentages inferred

from typical microbial studies). PERMANOVA substantiated this

divergence (pseudo-F = 2.630954, p = 0.001, permutations = 999),

with a sample size of 73 likely reflecting total observations across

analyses rather than individuals, underscoring within-group

homogeneity and between-group heterogeneity, potentially driven

by dysbiotic shifts in ASD influencing SCFA metabolism.
Taxonomic composition and marker
species

The classification analysis of species genera highlights the

changes in composition. The control group had an average of 26–

37 genera per sample, while the ASD group had an average of only

12–17 genera per sample, indicating a reduction in genera diversity

in some ASD samples. Results implied dominance shifts, potentially
FIGURE 1

Box plots of alpha diversity indices across ASD and control groups. Box plots depict alpha diversity indices (ACE,berger_parker,buzas_gibson,chao1,
dominance,equitability,goods_coverage,jost,Pielou, Faith_pd,robbins,simpson) for ASD (n=38, red) and Control (n=33, blue) samples. Boxes
represent interquartile ranges (IQR), central lines denote medians, whiskers extend to 1.5×IQR, and outliers are plotted as points. The vertical axis has
been standardized using log10. P-values from Kruskal-Wallis tests are annotated above each panel, with significant differences (p < 0.05) in ACE,
Chao1 and Faith_pd indicating higher richness in Control, goods_coverage indicating higher richness in ASD. ***, ****represent 0.001,0.0001.
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reducing Firmicutes (butyrate producers like Faecalibacterium) and

elevating Bacteroidetes (acetate/propionate producers) in ASD, a

pattern echoing prior ASD studies (11).

Analysis of recommended intestinal pathogens, such as

Clostridium difficile, Escherichia coli, and Salmonella spp., showed

no significant enrichment at the genus level in either ASD or control

groups. Sequencing data annotated against Greengenes and Silva
Frontiers in Psychiatry 05
databases detected no dominant pathogen signatures. Instead, ASV/

OTUs linked to Clostridiales were significantly depleted in ASD

(LEfSe, LDA > 3.5, p < 0.05), suggesting a reduction rather than

overgrowth of Clostridium-related taxa. Bacteroidetes enrichment

in ASD (MetagenomeSeq, adj-Pvalue < 0.05) included no clear

Escherichia or Salmonella signals at genus resolution. Species-level

identification was limited by 16S rRNA sequencing, leaving

pathogenic strain presence uncertain. This indicates that overt

pathogen proliferation may not drive ASD dysbiosis, though

subtle differences remain possible (Figure 3).
Short-chain fatty acids profiles

The independent samples t-test revealed significantly higher

levels of pentanoic acid in the ASD group compared to the Control

group (ASD: 184.24 ± 128.51 vs. Control: 129.06 ± 82.41, p<0.05). An

even more pronounced difference was observed in isocaproic acid

concentration (ASD: 15.07 ± 5.70 vs. Control: 10.82 ± 5.95, p<0.001).

No significant intergroup differences were detected for other short-

chain fatty acids (including acetic, propionic, and butyric acids; all

p>0.05). Boxplot analysis demonstrated that the ASD group exhibited

a higher median valeric acid level with limited interquartile range

overlap, suggesting distinct distribution patterns between groups. The

ASD group showed markedly elevated isocaproic acid levels with a

more concentrated data distribution and fewer outliers. Notably,

acetic acid displayed substantially greater variability in the ASD

group (SD=3159.11) compared to controls (SD=1470.23), reflecting

considerable individual differences that may stem from sample

heterogeneity or metabolic fluctuations (Figure 4).
FIGURE 2

PCoA plot of beta diversity comparing ASD and control microbiota.
PCoA plot based on Bray-Curtis distance matrix visualizes microbial
community dissimilarities between ASD (n=38, red circles) and
control (n=33,blue triangles) groups. Axes denote principal
coordinates with variance percentages (inferred ~30-40% each), and
95% confidence ellipses encircle group centroids. PERMANOVA
results (pseudo-F = 2.630954, p = 0.001) confirm significant
community differentiation.
FIGURE 3

LEfSe bar chart of marker species in ASD and control groups. LEfSe genus distribution analysis histogram displays LDA scores for taxa significantly
enriched in ASD (red) or Control (blue) groups. Vertical axis lists taxonomic units (genus); horizontal axis shows log LDA scores and p value(log10).
Bar length reflects differential magnitude.
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Functional predictions and SCFA
implications

PICRUSt2 was employed to predict functional metabolic

pathways, with a specific focus on those related to short-chain

fatty acid (SCFA) biosynthesis. Differential pathway analysis

revealed significant alterations in SCFA-associated metabolic

modules between ASD and Control groups (Figure 5). Pathways

directly involved in butyrate biosynthesis (e.g., KEGG: ko00650)

were significantly downregulated in ASD (logFC < -1, p < 0.05),

aligning with the observed depletion of Firmicutes (a major

butyrate-producing phylum). Conversely, pathways linked to

acetate and propionate production (e.g. , carbohydrate

fermentation via KEGG: ko00040) were upregulated (log2 fold

change > 1.5, p < 0.01), consistent with the enrichment of

Bacteroidetes and their role in generating these SCFAs.
Frontiers in Psychiatry 06
Comprehensive synthesis

Association network analysis using SparCC showed control

samples with a scale-free topology and strong connectivity,

suggesting stable interactions among taxa, possibly supporting

butyrate production. ASD networks were fragmented, with fewer

edges and less modularity, indicating disrupted microbial

relationships. Keystone species (Zi > 2.5, Pi < 0.62) were reduced

in ASD, potentially impairing metabolic stability, consistent with

lower predicted butyrate pathways (Figure 6). This highlights

ecological dysbiosis in ASD community structure.

These findings unveil a multifaceted microbial dysbiosis in ASD

children, characterized by diminished richness, altered community

structure, and taxonomic shifts that likely impair butyrate

production while favoring propionate/acetate, exacerbating

gastrointestinal and neurological symptoms. The robust statistical
FIGURE 4

Differential expression profiles of SCFAs between ASD and Control groups. (Left) Heatmap displaying log10-transformed concentrations of nine
SCFAs across samples. Rows represent individual SCFAs, while columns correspond to behavioral samples (ASD group: red; control group: blue).
(Right) Boxplots illustrating significantly differentially expressed SCFAs (Pentanoic acid and Isocaproic acid), with center lines indicating medians, box
limits showing interquartile ranges (IQRs), and whiskers extending to 1.5×IQR. Outliers are represented as individual points.
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significance (p < 0.05 across key metrics) and ecological insights

position these microbial alterations as potential biomarkers and

therapeutic targets, bridging gut microbiota to ASD pathology via

SCFA metabolism.
Discussion

Microbial diversity and richness: a window
into dysbiosis

Our study revealed significant reductions in alpha diversity

(Chao1, Observed species) in children with ASD compared to

typically developing controls (p < 0.05), indicating a less diverse gut

microbiome. This aligns with prior research by Kang et al. (6), who
Frontiers in Psychiatry 07
associated such reductions with dietary or gastrointestinal dysfunction

in ASD. While phylogenetic diversity and evenness remained stable,

the decline in richness suggests selective depletion of taxa critical for

gut homeostasis, potentially exacerbating ASD symptoms (15).
Taxonomic shifts and SCFA-producing
bacteria

Taxonomic analysis showed a depletion of Firmicutes (butyrate

producers) and enrichment of Bacteroidetes (acetate/propionate

producers) in ASD, consistent with findings by Strati et al. (7).

These shifts may lower anti-inflammatory butyrate and elevate

neuroactive propionate, contributing to gastrointestinal and

behavioral symptoms. Notably, no pathogenic overgrowth (e.g.,
FIGURE 5

Differential metabolic pathway analysis from PICRUSt2. Bar plot depicts differentially abundant metabolic pathways between ASD and control
groups. Horizontal axis shows log2 fold change (positive: ASD upregulation, negative: downregulation); vertical axis lists KEGG/MetaCyc pathways.
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Clostridium difficile) was detected, suggesting dysbiosis arises from

ecological imbalances rather than infections (16).
Functional predictions and SCFA
metabolism

PICRUSt2 predicted downregulated butyrate biosynthesis and

upregulated acetate/propionate pathways in ASD (17, 18), mirroring

microbial compositional changes (19). This metabolic imbalance,

particularly reduced butyrate, could impair gut barrier function and

neuroinflammation regulation, as supported by Hsiao et al. (20). The

fragmented microbial network in ASD further underscores ecological

instability, potentially disrupting SCFA production (21, 22).
Conclusion

This study robustly demonstrates that children with ASD

harbor a dysbiotic gut microbiota—marked by reduced richness,

altered composition, and predicted SCFA imbalances—compared

to Control, offering new insights into the gut-brain axis in ASD. By

aligning with and diverging from prior research, our findings

highlight the complexity of microbial contributions to ASD,

advocating for targeted interventions to restore microbial balance

and SCFA homeostasis , potential ly ameliorating both

gastrointestinal and behavioral symptoms.
Frontiers in Psychiatry 08
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