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Background: Despite the high prevalence of major depressive disorder (MDD),

current diagnostic methods rely on subjective clinical assessments, highlighting

the need for biomarkers. This study aimed to investigate plasma metabolite

signatures in patients with MDD compared with healthy controls (HC) and to

identify diagnostic biomarkers associated with depressive features.

Methods: A total of 99 patients with MDD and 50 HC were included in this study

from a study cohort. Targeted plasma metabolomics was employed to quantify

metabolites across diverse biochemical classes. Weighted gene co-expression

network analysis (WGCNA) was performed to construct metabolite networks and

identify modules andmetabolites associated with depressive features. Diagnostic

models were developed based on the identified hub metabolites, using six

supervised machine-learning algorithms. Model interpretability was enhanced

through the application of the SHapley Additive exPlanations (SHAP) algorithm.

Results: Pathways such as biosynthesis of phenylalanine, tyrosine and

tryptophan, glutathione metabolism, and arginine and proline metabolism were

significantly enriched in the comparison of metabolic profiles between the MDD

and HC groups. Seven hub metabolites were identified as the biomarker

signatures that effectively discriminate the MDD and HC groups. Among these

metabolites, one sphingomyelin (SM (OH) C16:1), one hexosylceramide (HexCer

(d18:1/24:1)), one phosphatidylcholine (PC aa C40:6), and one cholesteryl ester

(CE(20:4)) were positively associated with the depression severity, sadness/

depressive mood, and other depressive features, while methionine, arginine,

and tyrosine showed negative correlation. The deep neural network model

incorporating these seven biomarkers achieved the highest diagnostic

performance, with an area under the curve (AUC) of 0.803 (95% CI,

0.643–0.962).
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Conclusion:We identified a novel signature of seven biomarkers for constructing

an explainable diagnostic model that effectively discriminates between the MDD

and HC groups. These biomarkers were associated with depressive symptoms.

The findings provide new insights into the biological diagnosis of MDD.

Clinical Trial Registration: https://clinicaltrials.gov/search?cond=NCT04518592.
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1 Introduction

Major depressive disorder (MDD) is a complex psychiatric

disease, affecting approximately 6% of the global population

annually (1). Despite extensive research, the exact mechanisms

underlying MDD remain incompletely understood. Currently, no

clinically applicable diagnostic biomarkers have been established for

MDD, and its diagnosis largely depends on clinicians’ subjective

assessments. Due to the lack of objective diagnostic methods, fewer

than half of patients with MDD receive effective treatment (2).

Consequently, research on biomarkers for MDD holds substantial

clinical significance.

Metabolic dysregulation has been recognized as one of the

underlying etiological factors in MDD (3, 4). Previous studies have

explored a series of bloodmetabolites with potential diagnostic value for

MDD. Metabolites involved in the neurotransmitter system, such as g-
aminobutyric acid (GABA), dopamine, tyramine, and kynurenine, have

the potential to become biomarkers for MDD (5). Lipid metabolites

derived from phosphatidylcholine, phosphatidylethanolamine,

sphingomyelin, and triacylglycerol have been reported as potential

biomarkers (6). Altered plasma levels of amino acids, including

proline, serine, arginine, phenylalanine, and glycine have been

observed in patients with MDD (7).

Previous studies have primarily focused on specific metabolite

classes, potentially overlooking interclass metabolic interactions (5,

8). Comprehensive metabolomic studies examining a broad spectrum

of metabolite classes in MDD are still limited. Moreover, although

many metabolic biomarkers have been proposed, their relationships

with clinical features remain inadequately characterized. Given the

high clinical heterogeneity in patients with MDD (9), the

identification of biomarkers associated with clinical features is

essential for advancing precision diagnosis.

Metabolomic analyses generate vast amounts of data, and

investigating univariate associations between MDD and metabolites

may not be sufficient for diagnosing the disease. Weighted gene co-

expression network analysis (WGCNA), as a powerful network-based

approach, was developed to effectively identify modules associated

with sample traits (10). The application of WGCNA for MDD

research has expanded from transcriptomics to other high-

throughput omics data, including metabolomics (11). For instance,
02
a clinical study employed WGCNA to identify metabolic signatures

associated with antidepressant response in lipoprotein profiles (12).

Another study using WGCNA found that the acylcarnitine module

was inversely associated with depressive symptomatology (13).

The WGCNA is a valuable tool for identifying biomarkers

associated with disease symptoms. Meanwhile, machine learning

can efficiently process high-dimensional and complex datasets,

enabling the extraction of hub features from the modules identified

by WGCNA (14, 15). The biological context provided by WGCNA,

combined with the computational advantages of machine learning,

could offer robust insights for investigating complex diseases such as

MDD (16). However, studies applying WGCNA combined with

multiple machine learning approaches to analyze metabolomics

data for MDD diagnostic model development are still limited.

Therefore, this study aimed to use WGCNA to identify

metabolomic signatures associated with depressive features, such

as overall depression severity and depressive mood, and to explore

diagnostic biomarkers for MDD using various machine learning

techniques. Correlations between metabolite modules and

depressive features were calculated within the metabolite

networks. Diagnostic models were developed based on hub

metabolites. Six machine-learning algorithms were applied to

enhance the diagnostic performance of combined metabolites.

Model interpretability was enhanced through the application of

the SHapley Additive exPlanations (SHAP) algorithm.
2 Materials and methods

2.1 Study design and data

In our previous Integrated Module of Multidimensional Omics

for Peripheral Biomarkers (iMORE) cohort study, we profiled

plasma metabolites associated with MDD by the targeted

metabolomics approach (17). To further investigate metabolic

diagnostic biomarkers for MDD, we included 99 patients with

MDD and 50 healthy controls (HC) from the iMORE cohort.

This subgroup had complete clinical and metabolomic data at

baseline, constituting the largest available subset within the

cohort. The iMORE study is a prospective, observational cohort
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study conducted at the Shanghai Mental Health Center (17). The

study protocol was approved by the Institutional Review Board of

Shanghai Mental Health Center (approval number 2020-87).

Clinical and metabolomic data were collected between December

2020 and September 2021 at the Shanghai Mental Health Center.
2.2 Inclusion and exclusion criteria

The inclusion criteria for patients with MDD were as follows:

(1) aged 18–65 years; (2) diagnosed with MDD (first or recurrent

episode) according to the DSM-5 criteria; (3) Hamilton Depression

Rating Scale (HAMD-17) total score of 20 or higher at screening;

(4) Montgomery-Asberg Depression Rating Scale (MADRS) total

score of 24 or higher at screening; and (5) provided informed

consent. The exclusion criteria primarily included a diagnosis of any

current Axis I mental disorder other than MDD or identification of

serious suicide risk or suicidal thoughts (score >3 on item 10 of the

MADRS). The comprehensive exclusion criteria are detailed in the

protocol (17). Healthy adults with matched age ranges and sex

ratios were recruited as controls, and individuals with a family

history or personal history of mental disorders were excluded.
2.3 Depressive symptom assessments

Depressive features were primarily quantified using individual

item scores from the MADRS and HAMD-17 scales. Suicide-related

features were not analyzed, as patients with high suicide risk had

been excluded during the recruitment phase. Pearson correlation

analysis was performed to evaluate the associations between

metabolites and depressive features.
2.4 Metabolite detection in plasma

Plasma samples from patients with MDD and HC were

preserved for targeted metabolomics assays via the MxP® Quant

500 kit (BIOCRATES Life Science AG, Austria) on an ultra-

performance liquid chromatography (UPLC)/MS/MS system

[ExionLC UPLC (Sciex), QTRAP 6500+ triple quadrupole/linear

ion trap MS/MS (Sciex)]. This system enables the quantitative and

semiquantitative determination of up to 630 endogenous and

microbially derived metabolites (Supplementary Table S1). The

plasma samples were analyzed following the manufacturer’s

protocol, with each plate containing four replicates of the QC

pool, which consisted of 10 pooled human plasma samples. The

samples were analyzed under blinded diagnostic conditions.
2.5 Multivariate analysis of metabolites

Multivariate analysis was performed to identify differential

metabolites. Orthogonal partial least squares discriminant analysis

(OPLS-DA) was applied to discriminate variation in the metabolomic
Frontiers in Psychiatry 03
profiles between the MDD and HC groups. Variable importance in

projection (VIP) scores of each metabolite were calculated, which

represents the contribution and explanatory power in distinguishing

the two groups. The robustness of the OPLS-DAmodel was evaluated

using R²Y and Q² values and further validated through a 200-time

permutation test. Differences in metabolite levels between the two

groups were assessed using Student’s t-tests and fold change analysis.

Metabolites were considered significantly different based on

commonly used thresholds of VIP > 1 and p < 0.05 (18).
2.6 Metabolite co-expression network
analysis

WGCNA was conducted on all metabolites using the WGCNA

package in R to identify modules associated with depressive features.

Based on the soft threshold power and mean connectivity, the

weighted coefficient b was set to seven to approximate a scale-free

metabolite network (Supplementary Figure S1). A hierarchical

clustering dendrogram was constructed based on the adjacency

matrix and topological overlap matrix to identify metabolite

modules. Significant modules were identified by calculating

Pearson’s correlations between module eigengenes (MEs) and

depressive features. Metabolites in the significant modules with a

module membership (MM) > 0.6 and gene significance (GS) > 0.2

were identified as candidate hub metabolites. The intersection of

differentially expressed metabolites and candidate hub metabolites

was defined as the final hub metabolite set. These metabolites were

subsequently evaluated as potential diagnostic biomarkers for MDD.
2.7 Metabolic pathway analysis

Metabolic pathway analysis was performed using the

MetaboAnalystR package in R. Quantitative Metabolite Set

Enrichment Analysis (MSEA) was conducted on all metabolites to

identify pathways associated with MDD. Additionally, pathway

enrichment analysis was performed on the differentially expressed

metabolites using the hypergeometric test. Pathways with p less

than 0.05 were considered statistically significant.
2.8 Diagnostic model construction and
evaluation

Diagnostic models were developed using the identified hub

metabolites as predictive features. The dataset of 149 samples was

randomly split into a training set (70%) and a testing set (30%) for

model development and validation, respectively. Feature selection was

performed using the elastic net algorithm to reduce multicollinearity

among features in the training set. Six supervised machine learning

algorithms—ridge regression, naive Bayes, support vector machine

(SVM), random forest (RF), extreme gradient boosting (XGBoost),

and deep neural network (DNN)—were employed to construct

diagnostic models. All models were trained using the same training
frontiersin.org
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dataset. Both feature selection and model training were performed

using five-fold cross-validation for hyperparameter tuning within the

training set. Model performance was evaluated by AUC, accuracy, F1

score, and recall. Models’ predictive calibration was evaluated using

the Hosmer–Lemeshow test and calibration curves.
2.9 Model interpretation

The SHAP analysis was used to interpret the models by

evaluating the contribution of each feature for each sample to

classification performance (19). Higher mean absolute SHAP

values indicated greater feature importance in the model. SHAP is

particularly useful for interpreting complex models.
2.10 Statistical analysis

All statistical analyses were performed using the R software

(4.4.1). Metabolites with more than 30% missing values were

excluded, and only those quantified in at least 50% of the samples

were retained for analysis. Missing metabolite values were imputed

using the k-nearest neighbor method. Metabolite concentration

data were normalized and log-transformed. Demographic

characteristics and clinical scale scores were compared between

the MDD and HC groups using appropriate statistical tests.

Continuous variables were analyzed using t-tests for normally

distributed data and the Mann–Whitney U test for non-normally

distributed data. For metabolites, the odds ratio (OR) and 95%

confidence interval (CI) for MDD risk were calculated using
Frontiers in Psychiatry 04
univariate logistic regression. An OR of less than 1 indicates a

protective factor, while an OR of greater than 1 indicates a risk

factor. A two-tailed p <0.05 was considered statistically significant.
3 Results

3.1 Participant characteristics

An overview of the study design and workflow is presented in

Figure 1. A total of 99 patients with MDD and 50 HC were included

in the analysis. The mean age (SD) of all participants was 27.1 (8.2)

years. Among them, 29.5% were male and 70.5% were female. In the

MDD group, depressive symptom severity was assessed using

depression scales, with a mean (SD) score of 32.6 (5.6) on the

MADRS, 25.6 (4.2) on the HAMD-17, and 24.1 (6.6) on the

Hamilton Anxiety Rating Scale (HAMA-14). No significant

differences were observed in age, sex, or BMI between the two

groups. Detailed demographic and clinical characteristics of the

participants have been described previously (17).
3.2 Identification of differential metabolites

Following data preprocessing, a total of 427 metabolites were

successfully quantified for further analysis. The OPLS-DA analysis

revealed differences in the metabolic profiles between the MDD and

HC groups (Figure 2A). VIP values of metabolites were calculated

by the OPLS-DA model. Metabolites with higher VIP values

showed greater importance in discriminating between the two
FIGURE 1

Flowchart of the study.
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groups. A total of 158 metabolites exhibited VIP scores >1. The

robustness of the model was demonstrated by the permutation

testing (n=200) with R²Y = 0.67, Q² = 0.18, and p < 0.01 (Figure 2B).

Metabolite levels between the groups were compared by the

Student’s t-test. A total of 44 differential metabolites were

identified (VIP >1, p < 0.05), including 32 upregulated and 12

downregulated metabolites. The differential metabolites were

visualized via the volcano plot (Figure 2C). The major classes of

these differential metabolites included cholesteryl esters (CEs,

18.18%), amino acids (13.64%), phosphatidylcholines (PCs,

13.64%), and sphingomyelins (SMs, 13.64%) (Figure 2D).
3.3 Pathway analysis of metabolites

First, MSEA was performed on all 427 metabolites based on their

fold changes to identify enriched pathways between the MDD and HC

groups. The enrichment test was based on metabolite sets in KEGG

(Kyoto Encyclopedia of Genes and Genomes) human metabolic

pathways. A total of 14 significant metabolic pathways were identified

(p < 0.05) (Figure 3A). Pathways with high fold enrichment included
Frontiers in Psychiatry 05
glutathione metabolism, arginine and proline metabolism, and tyrosine

metabolism. To obtain more specific pathways with function, we

performed KEGG pathway enrichment analysis on the 44 differential

metabolites and identified eight significant metabolic pathways (p <

0.05). The top three pathways included valine, leucine and isoleucine

biosynthesis, linoleic acid metabolism, and phenylalanine, tyrosine and

tryptophan biosynthesis (Figure 3B). Four important metabolic

pathways were identified both in the MSEA and KEGG pathways

enrichments: biosynthesis or degradation of valine, leucine and

isoleucine, biosynthesis of phenylalanine, tyrosine and tryptophan,

glutathione metabolism, and arginine and proline metabolism. The

findings suggest that dysregulation of these metabolic pathways is

closely associated with MDD.
3.4 WGCNA identifies depressive features-
associated modules

WGCNA was performed to identify co-expression modules

associated with depressive features among 427 metabolites.

Depressive features were quantified using individual item scores
FIGURE 2

Identification of differential metabolites between MDD patients and healthy controls. (A) OPLS-DA score plot showing distinct metabolic profiles
between the two groups. (B) Permutation test (n = 200) evaluating the robustness of the OPLS-DA model. (C) Volcano plot of 427 metabolites, with
point size indicating the corresponding VIP values. (D) Biochemical classes of the 44 differential metabolites. OPLS-DA, orthogonal projections to
latent structure-discriminant analysis; VIP, variable importance in projection.
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from the MADRS and HAMD-17 scales. To avoid redundancy, the

sadness features (items 1, 2) in MADRS were combined. Features of

insomnia (items 4, 5), anxiety (items 10, 11), and somatic symptoms

(items 12, 13) in HAMD-17 were combined respectively. The

analysis identified ten distinct metabolite co-expression modules,

with each represented by a unique color (Figure 4A). The MEs,

defined as the first principal component of each module, were

calculated. The correlation between module MEs and depressive

features was evaluated, and four significant modules (Modules 0, 1,

3, and 4) were identified (p < 0.05) (Figures 4B–D). These four

modules were significantly associated with multiple depressive

features, including depression severity, sadness, insomnia, and

somatic symptoms.

The metabolite interaction networks within the significant

modules were further analyzed using Cytoscape (version 3.7.2)

with the Molecular Complex Detection (MCODE) plugin. The
Frontiers in Psychiatry 06
primary networks were visualized in Supplementary Figure S2.

Pathway enrichment in these modules identified 13 significant

metabolic pathways (Supplementary Figure S3). Furthermore, 23

candidate hub metabolites were identified from these four modules

with the thresholds of MM > 0.6 and GS > 0.2, representing their

association with the respective modules and depressive features.
3.5 Signatures of the ten hub metabolites

A total of ten hub metabolites were identified by intersecting the

44 differentially expressed metabolites with the 23 candidate hub

metabolites. These included a hexosylceramide (HexCer(d18:1/

2 4 : 1 ) ) , a s ph ingomye l i n ( SM (OH) C16 : 1 ) , t h r e e

phosphatidylcholines (PC aa C34:1, PC aa C40:6, PC aa C38:6),

two cholesteryl esters (CE(20:4), CE(22:6)), and three amino acids
FIGURE 3

Metabolic pathway enrichment analysis. (A) Quantitative metabolite set enrichment analysis of 427 metabolites between MDD patients and healthy
controls. (B) Pathway enrichment of 44 identified differential metabolites.
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(arginine, tyrosine, methionine). The normalized concentration of

these metabolites in the MDD and HC groups is shown in

Figure 5A. Univariate logistic regression analysis was conducted

to estimate the risk for MDD in individual metabolites. The results

suggested that methionine, tyrosine, and arginine were protective

factors, whereas the other seven hub metabolites were risk factors

(Figure 5B). Their diagnostic potential was further assessed using

ROC analysis. The AUC values of these metabolites ranged from

0.621 to 0.660, with a high rank among all the metabolites,

indicating their potential diagnostic value (Figure 5C).
3.6 Correlation with depressive features

Pearson correlation analysis was conducted to examine

associations between the identified hub metabolites and

depressive symptom features. Arginine, tyrosine, and methionine

exhibited significant negative correlations with multiple depressive
Frontiers in Psychiatry 07
features, such as depression severity and sadness/depressive mood.

In contrast, the remaining seven metabolites showed significant

positive correlations, indicating their association with increased

symptom severity (Figures 5D, E). Among these metabolites, the

following metabolites exhibited the more significant positive

correlations (p<0.01): HexCer(d18:1/24:1), CE(20:4), and CE

(22:6) positively correlated with total depression scores and

somatic symptoms; HexCer(d18:1/24:1) and CE(22:6) positively

correlated with sadness/depressed mood; SM(OH)C16:1, PC aa

C40:6, PC aa C38:6, CE(20:4), CE(22:6), and HexCer(d18:1/24:1)

positively correlated with insomnia/reduced sleep.
3.7 Construction and evaluation of
diagnostic models

To evaluate their diagnostic potential, machine-learning models

were constructed using the ten identified hub metabolites. The
FIGURE 4

WGCNA analysis of metabolites. (A) Module clustering of 427 metabolites using WGCNA, with different colors representing distinct modules. (B-C)
Module-trait correlations between module eigengenes and depression rating scales (MADRS and HAMD-17, respectively). Significant correlations are
defined as p < 0.05 (D) Average MEs of the identified four modules associated with depression traits. WGCNA, weighted gene co-expression
network analysis; MADRS, Montgomery-Asberg Depression Rating Scale; HAMD-17, Hamilton Depression Rating Scale; MEs, module eigengenes.
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collinearity among these metabolites was evaluated in

Supplementary Figure S4. To identify important variables and

minimize their collinearity, the elastic net algorithm was used for

feature selection in the training set (Supplementary Figure S5).

Ultimately, seven metabolites (SM (OH) C16:1, HexCer(d18:1/
Frontiers in Psychiatry 08
24:1), methionine, PC aa C40:6, arginine, CE(20:4), and tyrosine)

were selected as features for model construction. Six machine-

learning algorithms were applied to the training set to construct

diagnostic models. The detailed parameters and primary R packages

used for all model training are provided in Supplementary Table S2.
FIGURE 5

Signature of the 10 identified hub metabolites. (A) Normalized concentrations of the hub metabolites in MDD patients and healthy controls.
(B) Univariate logistic regression analysis of the hub metabolites. (C) Ranking of AUC values for the hub metabolites among all metabolites in ROC
analysis. (D, E) Correlations between the hub metabolites and depression rating scales; Correlations are calculated using Pearson’s correlation, with
significance levels indicated as ***p < 0.001, **p < 0.01, and *p < 0.05. AUC, Area Under the Curve; ROC, Receiver Operating Characteristic.
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Compared to other models, the DNN model was identified as

the optimal diagnostic model with the highest AUC in the testing

set (Figure 6A). In the ROC curve, the AUC of the model was 0.803

(95% CI: 0.643–0.962), sensitivity was 79.3%, and specificity was

78.6% (Supplementary Figure S6). The accuracy of the model was

0.791, the recall was 0.793, and the F1 score was 0.836 (Figures 6B–

D). The model also demonstrated a good calibration with a p-value

of 0.090 on the Hosmer-Lemeshow test. The DNN model consisted

of two hidden layers, each with 15 neurons, using the rectifier

activation function with a dropout rate of 10.0% in the hidden layers

(20). The performance of the other five models in distinguishing the

patients from HC is shown in Figures 6A–D.
3.8 Model interpretability

The DNN model was interpreted using the SHAP algorithm to

evaluate the contribution of each feature to its diagnostic

predictions in the training set. SHAP quantified the directional

contribution of features to the prediction, where positive values

indicated increased diagnostic possibility for MDD and negative

values indicated a higher possibility for HC. A higher mean absolute

SHAP value indicated greater importance of features to the model.

SM (OH) C16:1 was identified as the most important contributor to

the model (Figures 7A, B). Furthermore, the relationship between

standardized metabolite levels (Z-scores) and the SHAP values was

displayed in Figure 7C, illustrating how a feature influenced

diagnostic predictions.
Frontiers in Psychiatry 09
4 Discussion

The rising global prevalence of MDD highlights the urgent need

for the development of diagnostic biomarkers (21). Accumulated

evidence indicates that metabolic dysregulation has been implicated

in the pathological mechanism of MDD. Metabolomics serves as a

powerful tool to investigate systemic metabolic alterations and

identify potential biomarkers for MDD.

Through targeted metabolomics, we identified the metabolic

profiles from various classes between patients with MDD and HC.

Cholesteryl esters, amino acids, phosphatidylcholines, and

sphingomyelin were the primary differential metabolites. Pathway

enrichment highlighted several important metabolic pathways, such

as the biosynthesis of phenylalanine, tyrosine, and tryptophan,

glutathione metabolism, and arginine and proline metabolism.

These pathways were enriched not only among the differential

metabolites but also within the modules correlated with depressive

features. Consistent with our results, dysregulation of these

metabolic pathways has been recognized as the potential

pathophysiology of MDD (22–24).

In this study, the DNN model was trained with stochastic

gradient descent using back-propagation based on a multi-layer

feedforward artificial neural network. Using the DNN algorithms,

we identified a signature of seven metabolite biomarkers that

effectively discriminated MDD patients from HC. In univariate

logistic regression analysis, the results suggested that methionine,

tyrosine, and arginine might be protective factors, while the other

seven hub metabolites might be risk factors. Furthermore, these
FIGURE 6

Evaluation of the six diagnostic models. (A–D) Evaluation of six diagnostic model performances on training and testing sets using area under the
curve (AUC), accuracy, F1 score, and recall. RF, random forest; SVM, support vector machine; DNN, deep neural network.
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metabolites were significantly associated with multiple depressive

features, highlighting the complex and interconnected nature of

depressive symptomatology. For instance, HexCer(d18:1/24:1) and

CE(20:4) positively correlated with total depression scores and

somatic symptoms. HexCer(d18:1/24:1) also positively correlated

with sadness/depressed mood. Moreover, HexCer(d18:1/24:1), SM

(OH)C16:1, PC aa C40:6, and CE(20:4) showed strong associations

with insomnia or reduced sleep. Notably, methionine, tyrosine, and

arginine significantly exhibited consistent negative correlations with

several key depressive features, such as depression severity, sadness/

depressed mood, and insomnia. Despite the clinical heterogeneity in

MDD, these biomarker detections may still benefit individuals with

unreported symptoms or diagnostic uncertainty.

Several recent studies have proposed metabolite-based

diagnostic models for MDD. Zhou et al. identified inosine as a
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promising marker (AUC=0.866) for children and adolescents with

MDD (8). Liu et al. used a combination of carnitine C10:1,

phosphatidylethanolamine-O 36:5, LysoPE 18:1 sn-2, and

tryptophan to discriminate adult patients with MDD from HC,

with AUC from 0.838 to 0.869 in the validation set (6). Ma et al.

integrated a series of clinical features with common metabolic

indicators, achieving the diagnostic performance with an AUC of

0.716 via the CATBoost model (25). In comparison, our

model achieved a comparable diagnostic performance (AUC =

0.803) by integrating seven targeted biomarkers from distinct

metabolic pathways.

Among the biomarkers identified in this study, tyrosine,

methionine, and arginine have been implicated in depression.

Our findings further support their potential as biomarkers, as

these metabolites not only distinguished patients with MDD from
FIGURE 7

Interpretation of the DNN diagnostic model. (A) Contribution of each diagnostic marker from individual samples to the DNN diagnostic model’s
performance. (B) Importance ranking of model features based on mean absolute SHAP values. (C) The effects of diagnostic marker expression on
SHAP values. DNN, deep neural network; SHAP, SHapley Additive exPlanations.
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HC but also showed significant associations with specific depressive

symptoms. Tyrosine is the precursor of neurotransmitters, and its

disrupted metabolism has been implicated in the pathogenesis of

depression (26). Consistent with previous studies, we observed

significantly lower methionine levels in patients with MDD (27);

this dysregulation may contribute to the pathophysiology by

reducing oxidative stress in the central nervous system (28).

Moreover, methionine is involved in the biosynthesis of S-

adenosyl-methionine (SAMe), which has been explored as a

dietary supplement for treating depression (29). Significantly

reduced arginine levels and global arginine bioavailability ratio

(GABR) have been associated with MDD (24, 30); the alterations

may disrupt nitric oxide (NO) metabolism, consequently

exacerbating oxidative stress in the central nervous system.

Four novel metabolite biomarkers are identified in this study,

whose roles in the mechanisms of MDD have not been reported:

HexCer(d18:1/24:1), SM (OH) C16:1, CE(20:4), and PC aa C40:6.

These metabolites belong to hexosylceramides, sphingomyelins,

cholesteryl esters, and phosphatidylcholines, respectively.

Hexosylceramides, as the derivatives of ceramides, are rarely

reported in patients with MDD; however, they are associated with

oxidative stress and neurodegenerative diseases (31). Altered

sphingomyelin profiles have been reported in individuals with

depression (32). Elevated levels of SM C18:1 and SM C18:0 were

found to correlate with higher depression scores in patients with

coronary artery disease (33). Research suggested that elevated levels of

phosphatidylcholines were associated with depression; for instance,

multiple ether-phosphatidylcholine (PC ae) were negatively associated

with depressive symptoms (34, 35). Only limited evidence has reported

that depression may involve alterations in cholesteryl esters (36, 37).

Several limitations exist in this study. First, the relatively small

sample size may limit the robustness of our diagnostic models,

necessitating external validation to support them. Second, the study

did not account for medication history or genetic background.

Third, since metabolomics is not routinely tested in clinical practice

for MDD, the high costs may hinder the clinical translation of these

metabolites. To promote the incorporation of these findings as a fast

and reliable diagnostic tool, further studies with larger sample sizes

across diverse regions and ethnicities are needed to independently

validate the clinical application of the biomarkers identified in this

research. Additionally, we should explore alternative detection

methods for the identified metabolites, such as simplified mass

spectrometry techniques and new detection strategies (e.g., assay

kits), to facilitate their clinical applications.
Conclusion

This diagnostic study identified hub metabolites and significant

pathways associated with depressive features through the metabolite

co-expression network. Based on a metabolomic biomarker

signature, we developed a highly interpretable diagnostic model

that effectively discriminated between the MDD and HC groups.

These findings provide new insights into the biological diagnosis of

MDD and provide potential pathways for intervention.
Frontiers in Psychiatry 11
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Shanghai Mental Health Center (approval

number 2020-87). The studies were conducted in accordance

with the local legislation and institutional requirements.

The participants provided their written informed consent to

participate in this study.
Author contributions

YZ: Formal analysis, Investigation, Methodology, Software,

Writing – original draft. DZ: Conceptualization, Writing – review

& editing. YT: Investigation, Methodology, Writing – review &

editing. SL: Methodology, Software, Writing – review & editing. SH:

Conceptualization, Methodology, Visualization, Writing – review &

editing. HL: Conceptualization, Funding acquisition, Supervision,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the Collaborative Innovation Center for Clinical and

Translational Science by Ministry of Education & Shanghai

(CCTS-202306), Shanghai Clinical Research Center for Mental

Health (19MC1911100), Clinical Trial Platform Program for

Psychotropics (CCTS-202409PT), the China Postdoctoral Science

Foundation (2024M762045), the Shanghai Sailing Program

(23YF1438000) and the Clinical Research Plan of SHDC

(No. SHDC2023CRS016).
Acknowledgments

The study is supported by the Shanghai Mental Health Center

(SMHC). We greatly acknowledge the investigators’ group and the

clinical research centers for their contributions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1610520
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zheng et al. 10.3389/fpsyt.2025.1610520
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,
Frontiers in Psychiatry 12
or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1610520/

full#supplementary-material
References
1. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, et al.
Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. (2011)
9:90. doi: 10.1186/1741-7015-9-90

2. Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: Recent insights,
current challenges and future prospects. Neuropsychiatr Dis Treat. (2017) 13:1245–62.
doi: 10.2147/NDT.S114542

3. Bharti V, Bhardwaj A, Hood K, Elias DA, Metcalfe AWS, Kim JS. A systematic
review and meta-analysis of lipid metabolomic signatures of major depressive disorder.
J Psychiatr Res. (2021) 139:197–205. doi: 10.1016/j.jpsychires.2021.05.036

4. Duan J, Xie P. The potential for metabolomics in the study and treatment of major
depressive disorder and related conditions. Expert Rev Proteomics. (2020) 17:309–22.
doi: 10.1080/14789450.2020.1772059

5. Pan JX, Xia JJ, Deng FL, Liang WW, Wu J, Yin BM, et al. Diagnosis of major
depressive disorder based on changes in multiple plasma neurotransmitters: A targeted
metabolomics study. Transl Psychiatry. (2018) 8:130. doi: 10.1038/s41398-018-0183-x

6. Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, et al. Discovery and validation of
plasma biomarkers for major depressive disorder classification based on liquid
chromatography-mass spectrometry. J Proteome Res. (2015) 14:2322–30.
doi: 10.1021/acs.jproteome.5b00144

7. Du Y, Wei J, Zhang Z, Yang X, Wang M, Wang Y, et al. Plasma metabolomics
profiling of metabolic pathways affected by major depressive disorder. Front Psychiatry.
(2021) 12:644555. doi: 10.3389/fpsyt.2021.644555

8. Zhou X, Liu L, Lan X, Cohen D, Zhang Y, Ravindran AV, et al. Polyunsaturated
fatty acids metabolism, purine metabolism and inosine as potential independent
diagnostic biomarkers for major depressive disorder in children and adolescents.
Mol Psychiatry. (2019) 24:1478–88. doi: 10.1038/s41380-018-0047-z

9. Maj M, Stein DJ, Parker G, Zimmerman M, Fava GA, De Hert M, et al. The
clinical characterization of the adult patient with depression aimed at personalization of
management. World Psychiatry. (2020) 19:269–93. doi: 10.1002/wps.20771

10. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

11. Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic
data analysis. Methods Enzymol. (2017) 585:135–58. doi: 10.1016/bs.mie.2016.09.016

12. Caspani G, Turecki G, Lam RW, Milev RV, Frey BN, MacQueen GM, et al.
Metabolomic signatures associated with depression and predictors of antidepressant
response in humans: A can-bind-1 report. Commun Biol. (2021) 4:903. doi: 10.1038/
s42003-021-02421-6
13. Palacios N, Bhupathiraju SN, Kelly RS, Lee JS, Ordovas JM, Tucker KL.

Acylcarnitines are associated with lower depressive symptomatology in a mainland
Puerto Rican cohort. Metabolomics. (2024) 20:85. doi: 10.1007/s11306-024-02116-z

14. Zhang X, Wang X, Wang S, Zhang Y, Wang Z, Yang Q, et al. Machine learning
algorithms assisted identification of post-stroke depression associated biological
features. Front Neurosci. (2023) 17:1146620. doi: 10.3389/fnins.2023.1146620

15. Jiang H, Fu CY. Identification of shared potential diagnostic markers in asthma
and depression through bioinformatics analysis and machine learning. Int
Immunopharmacol. (2024) 133:112064. doi: 10.1016/j.intimp.2024.112064

16. Lian K, Yang W, Ye J, Chen Y, Zhang L, Xu X. The role of senescence-related
genes in major depressive disorder: Insights from machine learning and single cell
analysis. BMC Psychiatry. (2025) 25:188. doi: 10.1186/s12888-025-06542-8
17. Zheng Y, Zhang L, He S, Xie Z, Zhang J, Ge C, et al. Integrated module of

multidimensional omics for peripheral biomarkers (iMORE) in patients with major
depressive disorder: Rationale and design of a prospective multicentre cohort study.
BMJ Open. (2022) 12:e067447. doi: 10.1136/bmjopen-2022-067447

18. Zhu T, Ma Y,Wang J, XiongW,Mao R, Cui B, et al. Serummetabolomics reveals
metabolomic profile and potential biomarkers in asthma. Allergy Asthma Immunol Res.
(2024) 16:235–52. doi: 10.4168/aair.2024.16.3.235
19. Bifarin OO. Interpretable machine learning with tree-based shapley additive
explanations: Application to metabolomics datasets for binary classification. PloS One.
(2023) 18:e0284315. doi: 10.1371/journal.pone.0284315

20. Baldi P, Sadowski P. The dropout learning algorithm. Artif Intell. (2014) 210:78–
122. doi: 10.1016/j.artint.2014.02.004

21. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the global burden of
depression from 1990 to 2017: Findings from the global burden of disease study. J
Psychiatr Res. (2020) 126:134–40. doi: 10.1016/j.jpsychires.2019.08.002

22. Parker G, Brotchie H. Mood effects of the amino acids tryptophan and tyrosine:
‘Food for Thought’ III. Acta Psychiatr Scand. (2011) 124:417–26. doi: 10.1111/j.1600-
0447.2011.01706.x

23. Lee SW, Kim S, Chang Y, Cha H, Noeske R, Choi C, et al. Quantification of
glutathione and its associated spontaneous neuronal activity in major depressive
disorder and obsessive-compulsive disorder. Biol Psychiatry. (2025) 97:279–89.
doi: 10.1016/j.biopsych.2024.08.018

24. Ali-Sisto T, Tolmunen T, Viinamäki H, Mäntyselkä P, Valkonen-Korhonen M,
Koivumaa-Honkanen H, et al. Global arginine bioavailability ratio is decreased in
patients with major depressive disorder. J Affect Disord. (2018) 229:145–51.
doi: 10.1016/j.jad.2017.12.030

25. Ma S, Xie X, Deng Z, Wang W, Xiang D, Yao L, et al. A machine learning
analysis of big metabolomics data for classifying depression: Model development and
validation. Biol Psychiatry. (2024) 96:44–56. doi: 10.1016/j.biopsych.2023.12.015

26. Gammoh O, Aljabali AAA, Tambuwala MM. Plasma amino acids in major
depressive disorder: Between pathology to pharmacology. Excli J. (2024) 23:62–78.
doi: 10.17179/excli2023-6767

27. Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, et al. An integrated meta-analysis of
peripheral blood metabolites and biological functions in major depressive disorder.Mol
Psychiatry. (2021) 26:4265–76. doi: 10.1038/s41380-020-0645-4
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