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Frontiers in Psychiatry 
Electroacupuncture as 
adjunctive therapy for 
insomnia via targeting the 
GABAergic microbiota-gut
brain axis: a mini review 

3,4*Xiao Wang 1†, Lijuan Yan 2†, Xiaodong Zhang1, Xiang Liu 
2*and Bin Yang 

1Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, 
Xiamen University, Xiamen, China, 2Department of Anesthesiology, The First Affiliated Hospital of 
Xiamen University, School of Medicine, Xiamen University, Xiamen, China, 3Neuroscience Program, 
Department of Physiology, Michigan State University, East Lansing, MI, United States, 4Department of 
Radiology, Michigan State University, East Lansing, MI, United States 
Insomnia, affecting up to 30% of adults (typically 18–65 years), is characterized by 
GABAergic dysfunction and hyperarousal. This mini-review establishes three 
pivotal advances in insomnia therapeutics: Firstly, it is demonstrated that 
microbiota-gut-brain axis (MGBA) dysregulation is mechanistically central to 
insomnia, directly linking gut dysbiosis to vagal, hypothalamic-pituitary-adrenal 
(HPA), and g-aminobutyric acid (GABA) axis dysfunction and neuroinflammation. 
Secondly, the present study documents the unique multitarget effects of 
electroacupuncture (EA), which have been shown to simultaneously normalize 
HPA axis activity, enrich GABA-producing microbiota, improve the vagal tone, 
and suppress neuroimmune activation. The aforementioned effects collectively 
resolve insomnia’s multifactorial etiology. Thirdly, clinical evidence confirms the 
sustained efficacy of EA to be comparable to that of hypnotics, yet with superior 
safety and durability. EA redefines therapeutic frameworks by integrating 
biological and neural interventions that are inaccessible to single-
target approaches. 
KEYWORDS 

insomnia, electroacupuncture, g-aminobutyric acid, gut microbiota, microbiota-gut
brain axis 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1613408/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1613408/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1613408/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1613408/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1613408/full
https://orcid.org/0000-0002-6539-9732
https://orcid.org/0000-0003-1143-2733
https://orcid.org/0009-0005-1591-466X
https://orcid.org/0000-0002-6604-5565
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1613408&domain=pdf&date_stamp=2025-07-18
mailto:yangbin4332@outlook.com
mailto:liuxia76@msu.edu
https://doi.org/10.3389/fpsyt.2025.1613408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1613408
https://www.frontiersin.org/journals/psychiatry


Wang et al. 10.3389/fpsyt.2025.1613408 
GRAPHICAL ABSTRACT 

Notes: ↑, upregulating/enhancing. ↓, reducing. EA, electroacupuncture; HPA, hypothalamic-pituitary-adrenal; CHR, corticotropin-releasing hormone; 
GAB, g-aminobutyric acid; SCN, suprachiasmatic nucleus. 
 

1 Introduction 

Insomnia is the second most prevalent mental disorder on a 
global scale (1), affecting up to 30% of adults (typically between the 
ages of 18 and 65) with severe consequences for public health, 
occupational functioning, and economic productivity (2–4). 
Notwithstanding its clinical significance, contemporary 
therapeutic strategies are encumbered by critical limitations. 
Hypnotics are associated with the risks of dependency and 
residual daytime impairment, while cognitive behavioral therapy 
for insomnia (CBT-I) remains underutilized due to accessibility 
barriers (1, 5, 6). This unmet need underscores the urgency to 
elucidate novel pathophysiological mechanisms. 

Review evidence primarily from human studies supports the 
hyperactivation of corticolimbic circuits during both sleep and wake 
states as a neural substrate of insomnia pathophysiology (7). 
Concurrently, preclinical research in mice has demonstrated that 
antibiotic-induced dysbiosis can impact cortical interneuron 
dendritic morphology (8). Reviews synthesizing this preclinical 
evidence further suggest that MGBA dysregulation may 
contribute to insomnia pathophysiology through mechanisms 
involving GABAergic signaling and HPA axis hyperactivity (9). 
Neuroimaging studies reveal that insomnia patients exhibit reduced 
cortical GABA concentrations measured by magnetic resonance 
spectroscopy (10–12). These observations may be linked to gut 
microbiota (GM) alterations in chronic insomnia, suggesting GM 
modulation as a novel therapeutic target to restore GABAergic 
function in chronic insomnia patients (13). Crucially, gut dysbiosis 
in these patients depletes GABA-producing bacteria (e.g., 
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Bacteroides, Bifidobacterium) (14), establishing a bidirectional link 
between microbial ecology and the central nervous system (CNS) 
hyperarousal. Recent findings have indicated that insomnia patients 
exhibit impaired peripheral GABAergic inhibition, which is 
associated with reduced GABAA receptor a1/a2 mRNA

expression. Reduced a1 levels have been shown to predict poorer 
sleep metrics (sleep quality and sleep time), while diminished a2 
has been linked to daytime dysfunction (15). Beyond GABAA 

receptors, research now implicates GABAB and r‐containing 
GABAA (GABAC) receptors in sleep-wake regulation (16). 

A recent review suggests traditional Chinese medicine and 
acupuncture may offer a mechanism-based strategy for treating 
insomnia guided by the MGBA theory (17). Conventional 
pharmacotherapies that target specific neurotransmitter systems, 
electroacupuncture (EA), however, has been shown to modulate 
the HPA axis, the gut microbiota, and neuroimmune interactions, 
thereby addressing the multifactorial etiology of insomnia (18–21). 
This multifaceted regulation of neurochemical, inflammatory, and 
gut-barrier pathways has the potential to overcome the limitations of 
current treatments. 
2 Pathophysiological basis of 
insomnia: GABAergic dysregulation 
and gut-brain crosstalk 

The etiology of insomnia is multifactorial, with the 
pathophysiology being driven by gut microbial dysbiosis. The 
MGBA has been identified as a central regulator, exerting its 
frontiersin.org 

https://doi.org/10.3389/fpsyt.2025.1613408
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Wang et al. 10.3389/fpsyt.2025.1613408 
influence via neuroendocrine (HPA axis), neural (vagal signaling), 
and neuroimmune (microbial metabolite-mediated) pathways 
(8, 14, 17, 22, 23). As demonstrated in the extant literature, these 
pathways collectively disrupt central nervous system function and 
sleep  regulation  via  GABAergic  dysfunction,  systemic  
inflammation, and circadian rhythm disruption (24, 25). 
2.1 HPA axis dyshomeostasis: a 
neuroendocrine bridge between stress and 
sleep disruption 

Chronic stress triggers bidirectional gut-brain disturbances 
involving microbial dysbiosis and intestinal hyperpermeability 
(26, 27). Based on in vivo findings, commensal microbiota 
calibrates HPA axis responsiveness in mice, as evidenced by 
amplified stress reactivity in germ-free models compared to 
specific pathogen-free and gnotobiotic counterparts (28). Several 
reviews have confirmed that insomnia pathophysiology involves 
sleep deprivation-induced sympatho-adrenal activation, driving 
HPA axis hyperactivity characterized by elevated cortisol, 
corticotropin-releasing hormone (CRH) hypersecretion, and 
impaired glucocorticoid receptor feedback (27, 29). This initiates 
a self-perpetuating cycle: stress-induced intestinal permeability 
facilitates bacterial translocation, activating TLR4/NF-kB 
pathways that exacerbate systemic inflammation and HPA axis 
activation (26). 

The influence of gut microbes on the HPA axis is a complex 
process involving the release of neuroactive metabolites, 
neurotransmitters, and direct neural stimulation. Experimental 
evidence in gnotobiotic mice demonstrates that L. rhamnosus (JB
1) modulates HPA axis activity via vagus nerve-mediated pathways, 
modulating the GABAergic system and reducing stress-induced 
corticosterone (30). Clinical reviews have identified a further 
association between gut microbiota-derived neuroactive 
metabolites and HPA regulation across neurological disorders, 
highlighting vagal neurotransmission as a conserved mechanism 
in mammals (31). The influence of short-chain fatty acids (SCFAs) 
on clock gene expression and sleep patterns suggests a potential role 
for gut microbiota in propagating the circadian rhythm at the 
molecular level (32). As demonstrated by preclinical studies, 
probiotic-treated animals exhibit an attenuated HPA axis 
response to stress, as indicated by reduced corticosterone 
elevation (26). In contrast, a double-blind, randomized controlled 
trial (RCT) in humans undergoing academic stress revealed that 
Lactobacillus casei strain Shirota (LcS) maintained sleep quality, 
suggesting the potential for microbiota-targeted interventions to 
have clinical relevance (33). As demonstrated in the relevant 
literature, probiotics have been shown to reverse host metabolic 
alterations or modulate immune responses associated with gut 
dysbiosis (Bifidobacterium in human irritable bowel syndrome; 
Lactobacillus/Bifidobacterium in maternal separation of rats) (34– 
36). It is noteworthy that their capacity to modulate corticosterone 
secretion and reverse HPA axis dysfunction in rodents furnishes a 
Frontiers in Psychiatry 03 
mechanistic framework for investigating the potential of probiotic 
interventions in the context of insomnia (9, 36). 
2.2 Vagus nerve mediation in insomnia 
pathophysiology 

The vagus nerve serves as the primary neural conduit for gut-
brain communication in insomnia, with 90% of fibers transmitting 
afferent gut-derived signals—including microbial GABA, serotonin, 
and norepinephrine—to the CNS (14, 22, 23). The vagal functional 
mechanism was initiated by the activation and regulation of the 
HPA axis, which resulted in the generation of CRH. This hormone 
plays a pivotal role in coordinating the organism’s adaptive stress 
reaction and maintaining physiological homeostasis (37). 
Experimental evidence demonstrated that probiotics like 
Lactobacillus and Bifidobacterium modulate CNS function via 
vagus nerve-dependent GABA signaling and systemic neuroactive 
metabolite circulation (9, 30). Simultaneously, oral Lactobacillus 
administration upregulates GABA receptors in sleep-related brain 
regions (prefrontal cortex, hypothalamus). This phenomenon is 
counteracted by vagotomy, as evidenced by the findings of the study 
(30). Vagal neurotransmission has been demonstrated to enhance 
emotional regulation through GABAergic inhibition of amygdala 
CRH neurons, thereby establishing a link between microbial 
modulation and insomnia-related anxiety (9). 
2.3 Microbial metabolite crosstalk: 
neuroimmune axis regulation in insomnia 
pathogenesis 

Gut microbiota orchestrates insomnia through neuroactive 
metabolite production, immune modulation, and neurotransmitter 
regulation. The mediation of sleep-wake homeostasis by microbial 
GABA, serotonin, and SCFAs occurs via bidirectional gut-brain 
communication (32, 38, 39). 

GABA, the predominant inhibitory neurotransmitter, has been 
demonstrated to modulate thalamocortical synchronization and 
hypothalamic sleep-promoting circuits (8). Beyond the 
suppression of neuronal activity, GABA exerts anxiolytic, 
autonomic-stabilizing, and neuroprotective effects that are critical 
for the maintenance of sleep. A clinical study has demonstrated that 
the ingestion of fermented rice germ extract containing GABA has a 
positive effect on sleep latency and subjective sleep quality in 
patients suffering from insomnia (40). From a mechanistic 
perspective, the ingestion of GABA-rich fermented milk has been 
demonstrated to reduce sleep latency and prolong sleep duration in 
sub-threshold sodium pentobarbital dose-induced sleep 
experiments utilizing ICB mice, in comparison to control groups 
(41). This finding validates conserved physiological pathways. 
Additionally, GABAergic dysregulation may mediate the 
bidirectional link between Parkinson’s disease pathogenesis and 
comorbid sleep disorders (16). In recent neuroimaging studies, the 
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concentrations of glutamate and GABA (in addition to the density 
and activity of neurotransmitter receptors and transporters) have 
been associated with mood disorders (13). Neuroimaging reveals 
insomnia severity correlates with reduced cortical GABA 
concentrations (measured via magnetic resonance spectroscopy) 
rather than peripheral levels (16, 41, 42), emphasizing central 
GABAergic tone’s clinical relevance. 

Dysbiosis-induced GABA depletion has been demonstrated to 
trigger glutamatergic excitotoxicity and neuroinflammation, 
which are recognized as key drivers of sleep-wake dysregulation 
(3, 43). The regulation of GABA metabolism by gut microbiota is 
achieved through the synthesis of GABA by Lactobacillus and 
Bifidobacterium via glutamate decarboxylase (14, 44) and  GABA  
utilization by Bacteroides and Parabacteroides as a nitrogen 
source, creating bidirectional host-microbe metabolic crosstalk 
(45). GABA receptor agonists and uptake inhibitors have been 
demonstrated to effectively regulate sleep (16, 46), while GABA 
supplementation is promising for both sleep initiation and 
maintenance (40, 41, 46, 47). It is hypothesized that these effects 
may involve interactions with SCFAs, such as butyrate, which are 
critical gut-brain mediators (38, 41, 48). While exogenous GABA’s 
BBB permeability remains debated, it exerts indirect neural effects 
via gut pathways, including modulating microbiota and 
stimulating GABAB receptors expressing on intestinal/vagal 
afferents (41). Given these multifaceted interactions, therapeutic 
strategies targeting GABAergic-microbiome interactions hold 
promise for insomnia treatment (39), warranting further 
mechanistic studies 
3 EA’s possible multimodal regulation 
of GABAergic MGBA in insomnia and 
coexisting diseases therapeutics 

EA modulates the MGBA to address central GABAergic 
dysfunction and gut dysbiosis (18, 19, 48, 49), thereby 
demonstrating superior anti-insomnia effects compared to 
conventional therapies. 

HPA Axis Modulation: The anti-insomnia effects of EA appear 
particularly robust in regulating HPA axis hyperactivity, a well-
established feature of insomnia pathophysiology (50). By 
modulating HPA axis hyperactivity, enhancing vagal tone, and 
restoring microbial production of sleep-regulating metabolites, EA 
targets the multifactorial etiology of insomnia. In a mouse model of 
depression, EA synergizes electrical stimulation with acupuncture 
to uniquely regulate central GABAergic neurotransmission and 
gut microbial ecology, specifically modulating the abundance 
of Lactobacillus and staphylococci (19). In SPF Sprague-Dawley 
rats under cage-change-induced insomnia, EA at Ganshu (BL18) 
and Zusanli (ST36) reduced wakefulness and increased non-
rapid eye movement (NREM) sleep. Mechanistically, EA 
regulated hypothalamic dopamine (DA) and DA receptors (D1R/ 
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D2R) within the HPA axis, counteracting stress-induced 
neurotransmitter alterations to normalize sleep-wake cycles (50). 
In addition, in the context of the maternal separation rats model, 
the efficacy of acupuncture in reducing corticosterone (CORT) and 
ACTH  levels  in  plasma,  as  well  as  the  hypothalamic  
immunoreactivity (IR) of arginine vasopressin (AVP) in the 
hypothalamic paraventricular nucleus, has been well-documented 
(51, 52). 

Gut Microbial Regulation: Under physiological and 
pathological conditions, gut microorganisms can influence the 
functions and behaviors of the brain through bidirectional 
regulation of various immune, endocrine, and vagus nerve 
pathways via the gut-brain axis (53). EA inhibits peripheral 
inflammation by balancing gut microbiota, the attenuating 
hippocampal neuroinflammation (54) (Table 1). In chronic 
restraint stress-induced anxiety disorders mouse, EA at Baihui 
(GV20) partially alleviated anxiety-like behavior and mitigated 
gut microbiome dysbiosis (55). In C57BL/6 male mice with p
chlorophenylalanine (PCPA)-induced insomnia, acupuncture at 
Baihui (GV20), Sanyinjiao (SP6), and Shenmen (HT7) 
ameliorated sleep disturbances through regulating the gut flora to 
modulate the host immune response (56). In addition, longitudinal 
metagenomic analyses demonstrate that a standardized 8-week 
EA regimen induces significant ecological shifts in D-galactose
induced Alzheimer’s disease (AD) model rats, marked by significant 
enrichment of GABA-producing Lactobacillus and Bifidobacterium 
alongside depletion of Streptococcus and Enterococcus (57). These 
microbial changes have been shown to correlate with measurable 
neurochemical alterations, including elevated GABA and glutamate 
levels in the hypothalamus and peripheral blood (58). It is 
noteworthy that EA has been observed to alleviate symptoms of 
depression-like behaviors by regulating Lactobacillaceae and 
Bacteroidaceae (59, 60), a finding that aligns with the insomnia 
model. However, while these mechanisms have been established in 
models of central nervous system disorders, rigorous validation in 
insomnia-specific paradigms remains essential. 

Neural Mechanisms: The neural mechanisms underlying EA’s 
effects involve multiple complementary pathways that enhance 
central GABAergic tone. The modulation of sleep patterns is 
contingent upon the activity of discrete populations of 
GABAergic neurons. It has been demonstrated that elevations in 
GABA levels facilitate both sleep initiation and maintenance (61). 
This is achieved through EA-induced stimulation of the auricular 
vagus nerve branch of PCPA-induced insomnia models in mice, 
which increases hypothalamic and peripheral blood GABA 
concentrations (58). The hypothesis that EA stimulates 
hypothalamic GABAergic neurons has been posited. These 
neurons have been shown to inhibit hyperactive neural circuits in 
the limbic system and prefrontal cortex. Presynaptically, in status 
epilepticus models induced by kainic acid in Sprague-Dawley rats, 
EA has been shown to enhance GABA synthesis capacity by 
upregulating glutamic acid decarboxylase (GAD67) expression 
(62). Notably, by modulating the release of neurotransmitters like 
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TABLE 1 Preclinical studies included in this mini review. 

Refs. Models Acupoints GABA Inflammatory Substances Gut-microbiota 
markers involving composition 

sleep-wake 

Hong J et al (56) PCPA-induced 
insomnia mice 

GV20, 
SP6, HT7 

– – ↓ DA, 5-HT 
and NE 

↑ Firmicutes/Bacteroidetes ratio 
↑ Lactobacillus 
↓ Clostridium XlVb, Lachnospiracea 
incertae sedis, Anaerovorax, 
Oscillibacter, Pseudoflavonifractor, 
and Acetatifactor 

Zhang F et al (58) PCPA-induced 
insomnia mice 

Cymba 
concha 

↑ GABA in the 
hypothalamus 
and 

– – – 

peripheral blood 

Li G et al (66) multiple-platform 
apparatus-induced 
sleep disorder mice 

GV20 – ↓ IL-1b, MCP-1 and 
TNF-a in the 
hippocamp 
↑ IL-10 in 

↓ TLR4/NF-kB – 

the hippocamp 

Qiu X et al (19) CUMS-induced 
depression mice 

GV20, GV29 – – – ↑ Lactobacillus 
↓ staphylococci 

Cai W et al (59) CUMS-induced GV20, GV24 – – – ↑ Lactobacillaceae and Bacteroidaceae 
Poststroke 
depression rats 

Li P et al (60) CUMS-induced GV23, PC7 – – ↓ DA and 5-HT in ↓ Bacteroidetes/Firmicutes ratio 
depression rats serum 

and hippocampus 

Li J et al (64) CUMS-induced 
depression rats 

GV16, GV23 ↑ GABAB in the 
lateral 
habenula nucleus 

↓ IL-1b and IL-6 in 
the lateral habenular 
nucleus 

↓ NF-kB/NLRP3 
in the lateral 
habenular nucleus 

– 

↑ IL-10 levels in the ↑ DA、5-HT、 
lateral NE in the lateral 
habenular nucleus habenular 

and serum. 

Bai J et al (55) Chronic restraint 
stress-induced 

GV20, the tail – – – ↑ Phylum Candidatus_Melainabacteria; 
↑ Family Prevotellaceae and 

anxiety unclassified_o_Vampirovibrionales; 
disorders mouse ↑ Genus Faecalimonas, Vampirovibrio 

and Lachnoclostridium; 
↑ Species Faecalimonas_umbilicata, 
Vampirovibrio_chlorellavorus 
and unclassified_g_Lachnoclostridium 

Jiang J et al (54) Alzheimer’s disease GV20, GV29 – ↓ IL-1b, IL-6 and – ↑ Bacteroidia and Clostridia 
models using TNF-a in serum 
SAMP8 mice and hippocampus 

Xiao M et al (57) D-galactose
induced 
Alzheimer’s 
disease rats 

ST36, GV20 – – ↓ 5-HT in the 
colon 
and hippocamp 

↑ Lactobacillus and Bifidobacterium 
↓ Streptococcus and Enterococcus 

Tang L et al (68) Isoflurane-induced GV20, – ↓ IL-b、IL-6 and ↑ Lactobacillaceae 
PND mice PC6, LI4 TNF-a in 

the hippocamp 

Vega-Garcia A Kainic acid DM26 ↑ GABA – – – 
et al (62) induced status 

epilepticus rats 
F
rontiers in Psychiatr
y 
0
5 
Notes: ↑, upregulated by EA/acupuncture; ↓, downregulated by EA/acupuncture. GABA, g-aminobutyric acid; PCPA, p-chlorophenylalanine; CUMS, chronic unpredictable mild stress; PND, 
perioperative neurocognitive disorders. 
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serotonin (5-HT), DA, and norepinephrine (NE), GABAB receptors 
thereby influence essential neural mechanisms encompassing 
synaptic transmission, plasticity, precursor cell proliferation, and 
survival pathways in neurons (63). Postsynaptically, in models of 
chronic unpredictable mild stress-induced depression in Sprague-
Dawley rats, EA at Shangxing (GV23) and Fengfu (GV16) elevated 
GABAB receptor expression, promoting synaptic plasticity while 
suppressing NF-kB/NLRP3-driven neuroinflammation (64). In 
addition, EA exerts its neuroprotective effects primarily by 
suppressing inflammation in the hippocampus. IL-1b has been 
demonstrated to potentiate GABAergic neurotransmission in a 
bidirectional manner, with the capacity to enhance presynaptic 
GABA release in preoptic/anterior hypothalamic neurons and to 
amplify postsynaptic GABA responses across a range of 
experimental models (65). 

Cytokines or Inflammatory  Markers:  EA  has  been  
demonstrated to attenuate sleep deprivation-induced upregulation 
of pro-inflammatory cytokines (IL-1b, MCP-1,  TNF-a) while

elevating anti-inflammatory IL-10 expression (66). Similarly, in 
models of acute colitis, EA intervention has been observed to 
induce parallel cytokine modulation in plasma (67). Concurrently, 
EA reduces circulating pro-inflammatory cytokines (such as IL-6 
and TNF-a), creating an optimal microenvironment for 
GABAergic neurotransmission (68, 69). Integrated cytokine or 
inflammatory  markers  effects  converge  on  wakefulness  
modulation through three principal aspects: spatially via 
vigilance-regulating brain regions (hypothalamus, basal forebrain, 
brainstem) where IL-1b alters neuronal discharge and IL-1b/TNF-a 
exhibit diurnal rhythms (65, 70–72); neurally through vagus nerve 
signaling where peripheral IL-1b binds paraganglia receptors 
projecting to brainstem solitary nucleus (73); and molecularly via 
biochemical cascades involving adenosine/NF-kB/PGD2, 
neurotransmitters (GABA/glutamate/NE), and somnogenic 
Frontiers in Psychiatry 06
hormones (GHRH/CRH) (65). It is hypothesized that pro-
inflammatory cytokines may also exert some of their sleep-
modulating effects via GHRH (65). 

Circadian Rhythm: It has been demonstrated that glutamatergic 
and GABAergic synapses exhibit significant molecular enrichment 
with regard to the regulation of the sleep-wake cycle. The regulation 
of cortical arousal and wakefulness is primarily governed by dual 
neurochemical systems. These systems consist of brainstem 
monoaminergic cell groups (noradrenergic cells, serotonergic 
cells, histaminergic neurons, and dopaminergic neurons) and 
basal forebrain (BF) neurons. The latter are predominantly 
cholinergic and GABAergic subtypes (65). The basal forebrain 
functions as a pivotal relay station where hypocretin (Hcrt) 
neurons from the lateral hypothalamus regulate arousal states 
(74), and the absence of Hcrt neurotransmission leads to frequent 
transitions between wakeful and sleep states (75). Acupuncture 
modulates sleep-wake regulation through convergent main areas of 
the brain’s structures as well as balancing  wake-promoting

neurotransmitters (NE, serotonin, histamine, dopamine, 
acetylcholine) and sleep-promoting substances (GABA, opioids) 
through comprehensive coordination of multiple targets, levels, 
links, and pathways (76, 77). Furthermore, the most significant 
enriched phosphor-proteins and phosphosites are involved in post-
synapse and glutamatergic synapses. EA has been demonstrated to 
induce circadian resynchronization through phosphoproteomic 
remodeling in the suprachiasmatic nucleus (SCN), with 
phosphorylation events serving as the primary regulatory 
mechanism. The sleep-wake cycle is subject to modulation by 
glutamatergic and GABAergic synaptic pathways, which adjust 
the levels of glutamate and GABA within the SCN (78). 

Clinical Evidence: Randomized controlled trials (RCTs) provide 
compelling clinical evidence for these mechanisms (Table 2). In a 
multicenter RCT, EA significantly reduced Insomnia Severity Index 
TABLE 2 Clinical studies included in this mini review. 

Refs. Frequency and duration Severity of disease Age Acupoint 
selection 

Lee B et al (79) A 30-minute treatment, 10 sessions 
(2–3 times a week for 4 weeks) 

1. Patients with insomnia 
2. Difficulty in initiating or maintaining sleep, or early 

awakening, occurring at least three times per week for a 
period of three months or more. 

3. ISI score of at least 15. 

Aged 19 to 
64 years 

GV20, EX-HN3, 
bilateral HT7, PC6, 
BL63, and KI4 

Yin X et al (80) A 30-minute treatment, 3 times per 
week (once every other day except 
Sunday) for 8 weeks 

1. Patients with insomnia and depression diagnosed from 
Diagnostic and Statistical Manual of Mental Disorders 
(Fifth Edition) criteria for depression 

2. PSQI was greater than 7 
3. HDRS-17 score of 20 to 35 

Aged 18 to 
70 years 

GV20, GV24, GV29, 
EX-HN22, HT7, PC6, 
and SP6 

Guo J et al (81) A 30-minute treatment, 1 time every 
other day for six weeks 

1. Patients with insomnia diagnosed from DSM-IV-TR 
(Fourth Edition) 

2. Experienced insomnia for 4 weeks or longer 

Aged 25 to 
75 years 

DU24, EX-HN1, DU20, 
SP-6, and HT-7 

Liu C et al (82) A 30-minute treatment, 3 times a 
week (once every other day) for 
4 weeks 

1. Patients with insomnia diagnosed from the ICSD-3 
2. PSQI score >5 points 
3. HAMA score ≥7 points 
4. HAMD score ≥14 points 

Aged 18 to 
70 years 

GV20, GV29, HT7 
(bilateral), and 
SP6 (bilateral) 
 

SI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index; HDRS-17, 17-item Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression 
Rating Scale. 
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(ISI) scores compared to sham-EA and usual care, with effects 
sustained at 8-week and 12-week follow-ups (79). In a multicenter 
study of 270 patients with comorbid insomnia and depression, EA 
with standard care outperforms sham acupuncture with standard 
care and standard care alone in sleep quality (80). In a double-
dummy, single-blinded RCT involving patients with primary 
insomnia, six-week acupuncture treatment demonstrated 
significantly greater improvements in sleep quality, total sleep 
time, sleep efficiency, and daytime functioning compared to sham 
acupuncture, effectively facilitating the reestablishment of normal 
sleep-wake cycles (81). In a single-blind RCT, patients diagnosed 
with chronic insomnia were administered acupuncture at Baihui 
(GV20), Yintang (GV29), bilateral Shenmen (HT7), and bilateral 
Sanyinjiao (SP6). The intervention was administered thrice weekly 
(every other day) for four weeks, and it was found to have a 
significant effect on the quality, efficiency, and latency of sleep 
(82). In addition, a systematic review and meta-analysis also 
demonstrated EA’s efficacy in managing cancer-related insomnia, 
evidenced by significant increases in total sleep duration and 
reductions in sleep disruptions (83). Although multicenter RCTs 
validate EA’s clinical efficacy, reproducibility remains limited by 
heterogeneous stimulation parameters and non-standardized 
acupoint selection protocols varied across studies. 
 

 

4 Future perspectives 

It is recommended that subsequent studies examine EA’s 
parameters in greater detail, with particular attention to 
stimulation intensity, frequency, duration, and repetition rate, 
to optimize intervention efficacy. Multi-omics integration 
(metagenomic/metabolomic/proteomic) to decode strain-
specific microbial-GABA interactions and  their neurocircuitry

impacts should be considered, particularly in aging populations 
with metabolic dysfunction. Our recently published study 
protocol in Frontiers in Neurology (84) has provided a 
methodological foundation for such studies. Finally, it is 
necessary to explore synergistic interventions combining EA 
with probiotics to potentiate MGBA modulation and amplify 
therapeutic outcomes. 
5 Conclusion 

EA presents a transformative non-pharmacological intervention 
for insomnia management, offering superior safety through 
multilevel MGBA modulation. This modulation simultaneously 
normalizes HPA axis activity, enriches GABA-producing 
microbiota, enhances vagal tone, and suppresses neuroinflammation. 
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