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Electroconvulsive therapy (ECT) remains one of the most effective interventions

for treatment-resistant depression (TRD), particularly in cases involving severe

symptomatology, suicidality, or psychotic features. Despite advancements aimed

at enhancing the safety and cognitive tolerability of ECT, concerns about

cognitive side effects continue to limit its broader acceptance. A deeper

understanding of the mechanisms underlying ECT is therefore critical for

refining its use and maximizing clinical outcomes. Through a narrative review

of recent literature, this paper synthesizes current evidence comparing the

efficacy of ECT, ketamine, and repetitive transcranial magnetic stimulation

(rTMS) in the treatment of TRD. Then, the review delves into the

neurobiological mechanisms through which ECT exerts its therapeutic effects,

including modulation of neurotransmitter systems, enhancement of

neurogenesis, changes in brain network connectivity, immune response

regulation, neurotrophic signaling, and epigenetic alterations. These

mechanistic insights may inform the identification of biomarkers predictive of

treatment response. Moving forward, future research guided by interaction

mechanisms hypotheses could provide more insights into alternative

neuromodulation techniques, optimize ECT procedures, and improve patient-

specific treatment approaches to enhance therapeutic benefits while minimizing

adverse effects.
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Introduction

Treatment-resistant depression (TRD) represents a subtype of

major depressive disorder (MDD) characterized by an inadequate

response to standard antidepressant treatments. While various

definitions and staging models exist, a commonly accepted

criterion proposed by the U.S. Food and Drug Administration

(FDA) is the failure to achieve a satisfactory response after at

least two adequate trials of different antidepressant medications

(1). This lack of consensus on a precise definition reflects the

complexity of TRD and underscores the need for individualized

treatment approaches. TRD remains a significant clinical challenge,

affecting approximately 30-40% of individuals with MDD. These

patients experience extended periods of illness while struggling with

disabling symptoms such as hopelessness, anhedonia, and cognitive

dysfunction. Additionally, the chronic nature of their condition

increases their risk for a wide range of psychiatric and somatic

comorbidities, such as chronic suicidality, anxiety disorders,

substance abuse, and cardiovascular disease (2).

Introduced in the 1930s, ECT emerged as a groundbreaking

intervention for severe psychiatric conditions. Its application in

treating depression, particularly in cases resistant to other

treatments, has been well-documented. A study from the 1940s

reported that 80% of patients receiving ECT experienced

symptomatic improvement, compared to 50% in the control

group. Additionally, the average length of hospitalization for the

ECT group was significantly shorter, underscoring its efficacy in

managing severe depression (3). In modern clinical practice, ECT

remains a highly effective treatment for TRD and is considered a

first-line treatment for severely depressed patients who require a

fast response because of a high suicide or homicide risk, extreme

agitation, life-threatening inanition, psychosis, or stupor (4).

Beyond its established use for severe TRD, bipolar disorder,

schizophrenia, and catatonia, electroconvulsive therapy (ECT) is

also being investigated for a broader range of psychiatric and

neuropsychiatric conditions. These include post-traumatic stress

disorder (PTSD), Parkinson’s disease with psychiatric symptoms,

neuropsychiatric complications associated with COVID-19, and

perinatal psychiatric disorders, where pharmacologic treatments

may pose risks (5). Additionally, ECT is increasingly being applied

in acute medical scenarios where a rapid therapeutic response is

essential. For medically unstable patients suffering from severe

somatic comorbidities, such as dehydration, malnutrition, or

profound weight loss, ECT can facilitate urgent clinical

stabilization. Emerging evidence also supports its efficacy in

managing intractable delirium, particularly in intensive care

settings, and in select cases of refractory or super-refractory status

epilepticus, where standard treatments have proven ineffective and

ECT has been associated with clinical improvement (6, 7).

Although ECT is highly effective in the rapid treatment of

various psychiatric disorders and symptoms, it continues to be an

underutilized and stigmatized intervention (8), mainly due to its

cognitive side effects, such as anterograde and retrograde amnesia.

However, ongoing research continues to shed light on its

mechanisms of action and develop strategies to mitigate adverse
Frontiers in Psychiatry 02
effects, reinforcing its role as a vital option in treating TRD (9).

Moreover, recent advancements in ECT techniques have

significantly enhanced both its safety and therapeutic efficacy.

Innovations in dosing parameters, electrode placement strategies,

and the integration of augmenting agents have been meticulously

designed to optimize clinical outcomes while minimizing adverse

effects. These refinements emphasize the evolving role of ECT in

contemporary psychiatric practice, broadening its applicability

while ensuring greater precision and safety in treatment delivery.

This review aims to synthesize recent findings on the

effectiveness and biological mechanisms of ECT in treating TRD.

It includes a discussion of studies that compare ECT with ketamine

and repetitive transcranial magnetic stimulation (rTMS), focusing

on differences in clinical outcomes. Furthermore, we highlight

emerging insights into the neurobiological mechanisms

underlying ECT's antidepressant effects, emphasizing pathways

implicated in its therapeutic action. By integrating these findings,

this review offers a comprehensive overview of the current state of

ECT research and outlines promising directions for optimizing its

clinical utility in TRD.
Review methodology

This narrative review was conducted using a targeted literature

search conducted across multiple databases, including PubMed,

PsycINFO, and Scopus. The strategy utilized combinations of terms

such as “electroconvulsive therapy,” “ECT,” treatment-resistant

depression,” “mechanisms,” “efficacy,” “neuroplasticity,”

“cognitive effects,” “biomarkers,”, “rTMS,” and “ketamine,” In

addition to database searches, we performed manual screening of

relevant articles from ECT-specific and interventional psychiatry

journals, including The Journal of ECT, Brain Stimulation, and

Neuropsychopharmacology.

We prioritized peer-reviewed English language publications,

including systematic reviews, meta-analyses, randomized controlled

trials (RCTs), mechanistic studies, and high-impact narrative

reviews. Studies were included if they addressed the clinical

efficacy, biological mechanisms, or safety profile of ECT in TRD

or related neuropsychiatric conditions.

Exclusion criteria included non-peer-reviewed content, case

reports with unclear methodology, or studies focused exclusively on

other disorders without relevance to TRD or ECT. This

methodology aimed to synthesize foundational and emerging

findings while capturing the comparative landscape between ECT,

rTMS, and ketamine. The final selection includes over 80 references,

representing a balance of clinical and mechanistic perspectives to

guide future research and practice.
Comparative efficacy of ECT

Electroconvulsive therapy (ECT), ketamine, and rTMS are

among the most effective treatments for individuals with TRD,

each offering distinct clinical advantages (Table 1). ECT remains
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the gold standard, particularly for patients with severe symptoms,

suicidality, or psychotic features, or late-life depression, where its

efficacy is consistently supported bymeta-analyses and geriatric trials.

Moreover, older adults often respond more robustly to ECT than

younger populations, likely reflecting age-related neurobiological

differences and the distinct clinical characteristics of late-life

depression (10, 11). However, its broader use is limited by the need

for anesthesia and the risk of cognitive side effects, as well as

associated costs. Moreover, ECT’s requirement for general

anesthesia and muscle relaxation imposes procedural constraints

and hospital burdens. In particular, it affects patients with complex

medical conditions. Individuals with cardiovascular conditions, such

as recent myocardial infarction, unstable coronary artery disease,

congestive heart failure, or arrhythmias, as well as those with

pulmonary comorbidities (e.g., COPD or OSA). These patients

require extensive pre-anesthetic evaluation, which may lead to

delays or disqualification from treatment (12). rTMS, on the other

hand, offers a non-invasive alternative that targets specific brain

regions through magnetic pulses, without the need for anesthesia and

with generally good tolerability. Ketamine, an N-methyl-D-aspartate

(NMDA) receptor antagonist, has gained recognition for its rapid

antidepressant effects, more favorable cognitive profile, and ease of

administration. This section examines current evidence comparing

ECT, ketamine, and rTMS in the treatment of TRD, focusing on

onset of therapeutic effects, cognitive outcomes, and durability

of response.

A growing body of literature comparing ECT and ketamine for

TRD underscores the effectiveness of both interventions. However,

they exhibit notable differences in the speed of onset, cognitive effects,

and patient outcomes preference. Basso et al. (13), conducted an open-

label clinical trial demonstrating that, while both treatments were

equally effective, ketamine exerted a more rapid antidepressant effect

and improved neurocognitive functions. In contrast, ECT was

associated with a mild decline in cognitive performance. In line with
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this, Ghasemi et al. (14), found that ketamine led to a significantly

faster reduction in depressive symptoms within 24 hours compared to

ECT. However, its efficacy became comparable to ECT after multiple

treatments. A study by Kheirabadi et al. (15), further supported these

findings, showing no statistically significant difference in

antidepressant efficacy between ECT and ketamine. However,

cognitive performance was slightly better in the ketamine group.

The KetECT, a multicenter randomized controlled study, added

another layer to this evolving comparison, showing that ECT had

superior remission rates (62.6% vs. 46.3% for ketamine) (16). The

ELEKT-D trial, a multicenter randomized controlled study, found that

ketamine was noninferior to ECT in reducing depressive symptoms,

with response rates of 55.4% for ketamine and 41.2% for ECT (17). In

a post hoc secondary analysis, the authors found that patients with the

highest severity appeared to benefit more quickly from ECT,

potentially due to its robust neurobiological impact. However,

ketamine demonstrated higher overall response rates and was

especially effective among outpatients with nonpsychotic depression

who experienced moderate to severe symptoms of depression (18). A

recent meta-analysis encompassing six randomized controlled trials

found that both treatments significantly reduced depressive

symptoms, with no substantial difference in overall efficacy between

the two modalities. Ketamine demonstrated superior memory

function improvement compared to ECT. In terms of adverse

events, ketamine was associated with significantly higher rates of

dissociative symptoms, blurred vision, and dizziness, while

demonstrating a lower incidence of muscle pain (19).

Comparative studies have also shown differences in efficacy

between rTMS and ECT. In a meta-analysis by Ren et al. (2014),

ECT had a higher response rate than high-frequency rTMS (HF-

rTMS) for major depression, with response rates of 52.9% for ECT

versus 38.3% for HF-rTMS. Similarly, Micallef-Trigona (20) found

that ECT was more effective than rTMS, with a significant reduction

in HDRS scores in the ECT group. However, rTMS still showed a
TABLE 1 Comparison of neuromodulation treatments for TRD.

Treatment Pros Cons

Electroconvulsive Therapy (ECT)

• Most effective for severe TRD, especially with psychotic features
or suicidality.

• Particularly effective in older adults, with higher response and
remission rates in late-life depression

• Rapid symptom relief, often within days.
• High remission rates compared to other treatments.
• Long-standing clinical use with well-established efficacy.

• Cognitive side effects, especially memory loss (more
common with bilateral ECT).

• Requires anesthesia and muscle relaxants, increasing
medical risks.

• Stigma and fear surrounding treatment.

Ketamine

• Fast-acting antidepressant effects (within hours to days).
• Fewer cognitive side effects than ECT.
• Non-invasive, no need for anesthesia.
• May reduce suicidal ideation quickly, making it useful for crisis
intervention.

• Can be used in outpatient settings.

• Effects are short-lived, requiring maintenance doses or
additional therapy.

• High cost and limited insurance coverage.
• Risk of dissociation, hallucinations, and blood pressure
spikes during administration.

• Long-term safety and efficacy remain under investigation.
• Potential for misuse or dependence with repeated use.

Repetitive Transcranial Magnetic
Stimulation (rTMS)

• Non-invasive and generally well-tolerated.
• No anesthesia or systemic medications required.
• Minimal cognitive side effects.
• Suitable for patients who are not candidates for ECT
or ketamine.

• Less effective than ECT, particularly in severe TRD.
• Slower onset of symptom relief (weeks to months compared
to days with ketamine or ECT).

• Requires daily sessions over 4–6 weeks.
• Variable response rates; not all patients benefit.
• Less effective for psychotic or highly severe depression.
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notable antidepressant effect, suggesting its potential as a viable

alternative, especially for patients who may not tolerate ECT. On

the other hand, Cano et al. (21), showed that both right unilateral

(RUL) ECT versus left dorsolateral prefrontal cortex (lDLPFC)

rTMS significantly reduced depressive symptoms in patients with

TRD, with QIDS scores decreasing by 30.40% and 36.13%,

respectively. Despite higher baseline severity in the ECT group,

there was no significant difference in clinical response between the

two treatment modalities. A retrospective cohort study showed that

ECT exerted a significantly stronger antidepressant effect than

rTMS in terms of MADRS-S score reduction, response rate,

remission rate, and clinically meaningful change (22). Kaster and

Blumberger (23) emphasized the role of rTMS in sequential

treatment models, noting that while less effective than ECT, it

remains a viable step before ECT for patients seeking non-invasive

options. A recent meta-analysis comparing ECT, rTMS, and

ketamine in adolescents with TRD confirmed that while ECT

remains the most effective, it is often avoided due to stigma and

accessibility issues (24). Similarly, a systematic review of RCTs

found that ECT is superior to both ketamine and rTMS in overall

efficacy. However, ketamine offers faster symptom relief, making it

useful in acute interventions (25). Despite these findings, more

research is needed to better characterize patient-level predictors of

treatment response, which could help guide the selection of optimal

treatment modalities based on individual clinical profiles.

ECT, ketamine, and rTMS are three principal interventions for

TRD, each characterized by distinct advantages and limitations.

ECT has historically been regarded as the most efficacious

treatment, particularly for individuals with severe depression,

psychotic symptoms, suicidality, or late-life depression. Its well-

established effectiveness in older adults should be especially noted,

as this population often shows greater clinical response and

tolerability (10, 11). However, concerns regarding its associated

cognitive impairment, societal stigma, and restricted accessibility

have contributed to a decline in its utilization. Ketamine has

emerged as a promising alternative due to its rapid antidepressant

effects, a more favorable cognitive side effect profile, and its

comparatively less invasive administration. rTMS, a non-invasive

neuromodulation technique, represents another viable therapeutic

option, offering a favorable safety profile but exhibiting more

variable efficacy across patient populations (Table 2).
Cognitive outcomes

Concerns about cognitive side effects are a significant barrier to

the wider acceptance of ECT, despite its effectiveness in treating

TRD (26). While early reports highlighted cognitive risks,

accumulating evidence indicates that many of these effects are

time-limited and, in some cases, reversible. Studies indicate that

impairments in attention, executive function, and processing speed

typically persist for a brief duration. Most studies find a return to

baseline or improvement within weeks to three months after
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treatment, suggesting that these improvements likely result from

both the effects of ECT on the brain and the relief of depressive

symptoms (27–29). A large-scale longitudinal study utilizing data

from 1,498 patients in the Swedish National Quality Register for

ECT found that 25.2% of individuals reported subjective memory

worsening six months after treatment. Notably, the strongest

predictor of long-term cognitive complaints was residual

depressive symptoms, as measured by MADRS-S scores, rather

than ECT technical variables such as electrode placement, pulse

width, or number of sessions. These findings suggest that patients’

perception of cognitive impairment may reflect unresolved mood

symptoms more than the direct neurobiological effects of ECT and

highlight the importance of achieving and maintaining full

remission (30). Xu et al. (31), demonstrated that ECT is effective

in treating young adults with TRD and highlighted the

heterogeneous nature of cognitive outcomes during treatment.

While global cognition, verbal fluency, and working memory

generally remained stable or showed improvement, delayed verbal

recall exhibited a transient decline that typically resolved after

treatment. Importantly, cognitive impairments were more

pronounced among individuals with older age, lower educational

attainment, and pre-existing cognitive deficits. A quasi-

experimental study examining the timing of autobiographical

memory retrieval relative to ECT initiation found that patients

who completed the Autobiographical Memory Interview within 24

hours before their first session showed a decline in memory

performance post-treatment, whereas those who completed it

more than 24 hours in advance demonstrated improvement.

These results support the hypothesis that ECT can interfere with

the reconsolidation of reactivated memories, a process during

which recalled memories become temporarily labile and

susceptible to disruption (32).

A recent consensus guideline, developed by a committee of

clinical and academic experts from Australia and New Zealand,

emphasizes that while most cognitive domains return to baseline or

improve shortly after treatment, autobiographical memory loss may

endure in a subset of individuals and can be distressing and

functionally impairing. Factors influencing cognitive risk include

older age, pre-existing brain vulnerability, concurrent lithium use,

and extended or bilateral treatment protocols. Although the mean

group data suggest recovery, individual-level analyses reveal that

some patients may experience significant impairments that are

masked by group averages (33).

Collectively, these findings suggest that while most cognitive

effects of ECT are transient and may even improve over time,

persistent autobiographical memory loss remains a significant

concern for a subset of patients. Importantly, perceived cognitive

deficits appear to be shaped by both neurobiological and psychological

factors, including symptom resolution and timing of memory

activation. Future work should focus on refining cognitive

monitoring strategies, elucidating individual risk profiles, and

exploring behavioral or procedural adjustments to minimize adverse

cognitive outcomes without compromising therapeutic efficacy.
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Mechanistic insights

Neurotransmitter modulation by ECT

The classical monoamine neurotransmitter theory of depression,

which posits that a depletion of serotonin, norepinephrine, and

dopamine plays a key role in the pathophysiology of the disorder, has

historically influencedourunderstandingof antidepressantmechanisms.

Evidence suggests that ECT enhances the neurotransmission of

these monoamines.

Post-mortem and in vivo imaging studies suggest that ECT

increases the availability of serotonin in synaptic clefts by enhancing

the function of serotonin transporters (5-HTT) and increasing

serotonin receptor sensitivity (34). Hoekstra et al. (35), found an

increase in the plasma levels of tryptophan at approximately 24 h

post-ECT only in those patients who responded to the treatment,

while another study showed total plasma tryptophan levels

remained elevated between 2 and 24 hours following ECT, but
Frontiers in Psychiatry 05
these alterations were reversible within 48 hours (36). Moreover,

studies indicate that serotonin receptor 5-HT1A postsynaptic

density is decreased following ECT in depressed patients (37).

However, other studies have found that 5-HT1A postsynaptic

receptors become more sensitive to serotonin after ECT treatment

(38). A significant decrease in brain 5-HT2 receptors has also been

observed in patients with depression following ECT, mirroring the

effects seen with antidepressant medications (38, 39). A pilot study

examined how patients undergoing ECT altered the loudness

dependency of auditory evoked potentials (LDAEP), a proposed

indicator of central serotonergic activity. The results indicated that

changes in LDAEP measurements after treatment demonstrated

that ECT influences serotonergic activity (40). The differential

effects of ECT on various serotonin receptor subtypes highlight

the nuanced way in which ECT interacts with the serotonergic

system, potentially differing from the more direct actions of

selective serotonin reuptake inhibitors (SSRIs) and serotonin-

norepinephrine reuptake inhibitors (SNRIs).
TABLE 2 Summary of comparative studies evaluating the antidepressant efficacy of ECT and ketamine or rTMS in TRD.

Study Design Sample size Mainfindings Limitations

Basso et al. (13),
Naturalistic, non-
randomized,
comparative study

50 patients

Ketamine and ECT were similarly effective;
ketamine acted faster and improved
attention and executive function. ECT led
to minor cognitive decline.

Non-randomized; Concurrent medication
use; No placebo group.

Ghasemi et al. (14),
Randomized, blinded
comparison

18 patients

Ketamine showed faster antidepressant
effects than ECT within 24h and
throughout the second treatment. Similar
efficacy by the end (1 week).

Small sample; Titration method was used
for ECT; Thiopental as anesthetic
(anticonvulsant properties); Short
treatment and follow-up period; Did not
record seizure durations.

Kheirabadi et al. (15), Randomized controlled trial 32 patients

No significant difference in HDRS
outcomes between ketamine and ECT.
Cognitive state was more favorable (not
significant) in the ketamine group.

Small sample size; Limited generalizability;
No blinding reported.

Ekstrand et al. (16),
Randomized, open-label,
non-inferiority trial

186 inpatients

ECT had higher remission rates than
ketamine (63% vs 46%, p=0.026). Relapse
rates were similar at 12 months. Persistent
amnesia was more common with ECT.

No placebo group; Open-label;
hospitalized patients only; limited data on
long-term cognitive effects.

Anand et al. (17),
Open-label, randomized
noninferiority trial

403 randomized
(365 treated)

Ketamine was noninferior to ECT in
response rates (55.4% vs 41.2%). ECT
appeared to be associated with a decrease
in memory recall after 3 weeks of
treatment, with gradual recovery during
follow-up.

Open-label design; Short initial treatment
phase; Long-term safety and
durability unclear.

Jha et al. (18),
Secondary analysis of an
open-label noninferiority
randomized clinical trial

365 patients

Ketamine had greater effect in moderately
to severely depressed outpatients. ECT was
more effective early in very severe or
inpatient cases, but effects equalized by
week 3.

Secondary analysis; Results not
prespecified; Nonblinded; No formal
cognitive assessment.

Cano et al. (21),
Prospective, non-
randomized
observational study.

32 patients

Did not observe a significant difference in
clinical response between patients treated
with RUL ECT and rTMS (30.40% vs
36.13% change in QIDS score)

Small sample size; Non-randomized;
Concomitant medications not controlled;
Use of self-report (QIDS) over clinician-
rated scales for primary clinical outcomes.

Strandberg et al. (22), Register-based cohort study 138 patients

ECT was more effective than rTMS
(MADRS-S reduction: 15.0 vs 5.6;
Response rates: 38% vs 15%). ECT
superiority was consistent across age and
severity subgroups.

Observational study design; Non-
randomized; No formal
cognitive assessment.
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ECT has also been shown to influence dopaminergic

neurotransmission, which is closely linked to motivation and

reward processing. Masuoka et al. (41), showed that ECT can

decrease striatal dopamine transporter binding, leading to

increased dopamine availability in the synaptic cleft. Preclinical

studies using animal models of depression suggest that ECT

enhances dopamine release in the nucleus accumbens and

striatum, potentially reversing anhedonia, a core symptom of

depression (42, 43). Functional imaging studies further support

this, demonstrating increased dopaminergic activity in reward-

related brain circuits post-ECT (44). These changes might help

reduce the psychomotor slowness and anhedonia that are

frequently seen in depressed people (45).

Beyond monoaminergic changes, ECT significantly impacts the

balance between excitatory and inhibitory neurotransmission,

particularly through GABAergic and glutamatergic systems. ECT

exhibits anticonvulsant properties, leading to a decrease in neural

metabolic activity over the course of treatment (46). Repeated

seizures induced by ECT result in reduced seizure duration and

increased intracortical inhibition, which has been correlated with

clinical improvement (47, 48). Bajbouj et al. (47), showed that ECT

enhances the activity of inhibitory circuits in the motor cortex, as

evidenced by increased intracortical inhibition and cortical silent

period duration. Moreover, studies have shown that ECT

responders tend to have higher GABA levels at baseline and after

a course of ECT when compared to non-responders (49). Moreover,

ECT has been found to increase levels of GABA in the anterior

cingulate cortex, a region implicated in emotional regulation (49). A

proposed neurophysiological theory suggests that mood stability is

enhanced by increasing the activity of GABAergic neurons that

regulate neurocircuits, attributed to the rise in the seizure threshold

caused by the repeated electrically-induced seizures.

The glutamatergic system has also garnered increasing attention

for its role in depression and the effects of ECT. Evidence from proton

magnetic resonance spectroscopy (¹H-MRS) studies indicates that

individuals with MDD exhibit reduced glutamate levels and

glutamate/glutamine (Glx) in the anterior cingulate cortex (ACC), a

region implicated in mood regulation. Notably, these alterations

appear to normalize following successful ECT, correlating with

clinical improvement (50–52). Similarly, Njau et al. (53), found

that, at baseline, patients had lower Glx levels in the subgenual

ACC (sgACC) and higher levels in the left hippocampus compared to

healthy controls. After ECT, Glx levels increased in the sgACC and

decreased in the hippocampus, with these neurochemical changes

correlating with mood improvement. Pfleiderer et al. (54), also

observed significantly reduced Glx levels in the left cingulum of

depressed patients relative to controls. In patients who responded to

ECT, Glx levels normalized and no longer differed from those of

healthy individuals, a pattern not observed in non-responders.

Supporting these findings, Ermis et al. (55), reported in a

longitudinal study that ECT remitters had higher baseline ACC Glx

than non-remitters. Notably, after ECT, ACC Glx levels decreased in

remitters but increased in non-remitters. Collectively, these studies

indicate that severe depression is characterized by regional Glx

deficits or dysregulation and support the "anticonvulsant
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hypothesis" of ECT, which proposes that ECT reverses the GABA/

glutamate imbalance underlying the hyperexcitatory state in MDD

through glutamate receptor modulation (e.g., NMDA receptors) (56).

It is important to note that these neurotransmitter systems do

not function in isolation but rather interact in a complex and

interconnected manner. The therapeutic effects of ECT likely arise

from a synergistic modulation of these systems, leading to a more

balanced neurochemical environment in the brain. The observed

changes in neurotransmitter levels and receptor sensitivity

following ECT may contribute to the neuroplastic and

neuroanatomical changes seen with the treatment, suggesting a

cascade of effects that ultimately lead to symptom alleviation.
Impact of ECT on neurogenesis, brain
network connectivity and function

Preclinical and clinical studies indicate that ECT treatment

leads to an increase in the count of hippocampal granule cells.

Madsen et al. (57), found that ECT induces a more pronounced

neurogenic effect compared to traditional pharmacological

antidepressants, exhibiting a faster onset of action. Nordanskog

et al. (58), showed an increase in hippocampal volumes following

ECT using a 3-Tesla MRI scanner. Subsequent longitudinal MRI

studies and meta-analyses confirmed increases in hippocampal and

amygdala volumes after ECT (59–61).

In a study using longitudinal MRI and neuropsychological

testing in two distinct clinical populations (MDD and

schizophrenia-spectrum disorders), greater hippocampal volume

increases were consistently associated with poorer post-ECT

cognitive performance, despite differences in diagnostic profile,

electrode placement, and treatment parameters. Notably, the

study investigated 42 cortical and subcortical regions and

demonstrated that the cognitive outcomes were specifically related

to the hippocampus (62). Another study focusing on subjective

memory outcomes found that increases in the volume of

hippocampal subregions (the right and left dentate gyrus) were

associated with greater self-reported memory impairment,

particularly in autobiographical recall. Conversely, by the 6-

month follow-up, reductions in dentate gyrus volume compared

to pre-ECT assessments were observed, and these reductions

correlated with improvements in objective cognitive performance

(63). These findings highlight a potential paradox: while

hippocampal enlargement may reflect a form of treatment-

induced neuroplasticity, it may also contribute to cognitive

side effects.

Mechanistically, ECT is known to upregulate neurotrophic

factors and stimulate neurogenesis within the dentate gyrus,

contributing to synaptic remodeling and circuit reorganization.

However, the rapid onset and magnitude of observed volume

changes suggest that neurogenesis alone cannot fully account for

these effects. Corroborating this hypothesis, a study using high-field

MRI in mice found that electroconvulsive stimulation induced

dose-dependent increases in hippocampal volume. Notably, these
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volumetric changes persisted even in mice where neurogenesis was

ablated through X-ray irradiation, implying that other neuroplastic

processes, such as increased synaptic density, contribute to the

observed structural alterations (64). While some studies

hypothesized that the volumetric changes are a result of the

hemodynamic and metabolic shifts that occur during seizures,

potentially leading to vasogenic or cytotoxic edema, several

studies have found no evidence of increased T2 signal intensity or

alterations in diffusivity after ECT, suggesting that edema may not

play a central role in the observed structural changes (58, 65, 66).

Seizure-induced neuroinflammation remains a plausible

contributor, potentially facilitating aberrant neurogenesis and

transient blood-brain barrier disruption, which may further

explain associated cognitive side effects.

Beyond hippocampal changes, large-scale analyses, such as those

from the Global ECT-MRI Research Collaboration (GEMRIC),

demonstrated that ECT-induced brain volume changes extend

beyond the hippocampus, affecting multiple brain regions, with the

most significant changes occurring in the hippocampus and

amygdala (67, 68). The magnitude of these volumetric changes was

found to be dose-dependent and influenced by the electrical field and

induced seizures (69). Moreover, several studies have shown that

volume increase was most pronounced in the dentate gyrus, a region

associated with neurogenesis, aligning with the neuroplasticity

hypothesis (70–72). A recent neuroimaging study by Cano et al.

(21),, using structural MRI, found that only ECT caused notable

increases in gray matter volume, in the right striatum, pallidum,

medial temporal lobe (including the amygdala and hippocampus),

anterior insula, anterior midbrain (substantia nigra/ventral tegmental

area), and subgenual anterior cingulate cortex. In contrast, no

significant structural changes occurred after rTMS, even though

both groups showed similar improvements in depressive

symptoms. Importantly, these volume changes did not relate to the

level of symptom reduction. The findings support the idea that ECT

leads to large-scale structural changes in the brain through

neuroinflammatory or cellular remodeling processes.

Diffusion-weighted imaging (DWI) and diffusion tensor imaging

(DTI) studies provide valuable insights into the microstructural

effects of ECT on brain tissue, complementing volumetric findings.

In white matter, early reports suggested that ECT enhances fiber

integrity, as reflected by increased fractional anisotropy (FA) in

regions such as the anterior cingulum and frontal tracts; however,

more recent findings have revealed increases in mean diffusivity

(MD) and radial diffusivity (RD), which may indicate transient

extracellular fluid shifts or blood–brain barrier permeability rather

than lasting improvements in white matter organization. Gray

matter DWI studies have more consistently reported reductions in

MD within the hippocampus and amygdala following ECT,

potentially reflecting increased cellular complexity (73). Multisite

studies further clarify these effects. Repple et al. (74), found ECT-

specific increases in MD in right-hemispheric white matter tracts,

with baseline white matter integrity (higher FA, lower MD/RD)

predicting greater clinical response. Similarly, Belge et al. (75),

reported increases in FA, MD, and axial diffusivity (AD) across

several white matter pathways post-ECT, notably in cortico-spinal
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and fronto-occipital tracts. Although diffusion changes were not

directly associated with symptom improvement, both studies suggest

that baseline microstructural differences may help identify

individuals more likely to benefit from ECT, reinforcing the role of

ECT in modulating neural circuits implicated in emotion regulation

and neuroplasticity.

Besides these structural modifications, ECT also causes functional

changes in the connectivity of the brain network. An overactive default

mode network (DMN), especially in the medial prefrontal cortex, is

closely associated with ruminative thinking, which is a prevalent

disorder associated with depression (76). According to fMRI studies,

ECT decreases DMN hyperconnectivity, which is linked to symptom

alleviation (77). Additionally, ECT improves stress management and

emotional processing by increasing connections between the prefrontal

cortex and limbic regions like the hippocampus and amygdala (78).

Pang et al. (79), showed that clinical improvement was associated with

improved connections within the DMN and between the DMN and

the central executive network following ECT. Furthermore, Sun et al.

(80), revealed that ECT changed the brain's local and global

information-processing processes, and the increase in network

metrics was associated with clinical remission. A study using resting-

state electroencephalography (RS-EEG) showed that ECT significantly

changed the network's topology, indicating a restructuring of functional

connections that might be the basis for its antidepressant effects (81).

Thus, it is believed that these modifications in functional connectivity

contribute to the strong and rapid antidepressant effects of ETC

(82, 83).

In summary, ECT causes significant structural and functional

changes in the brain, especially in hippocampal circuits, through a

complex interplay of neurogenesis, synaptic plasticity, and

inflammatory signaling. While these changes contribute to its

therapeutic efficacy, they may also explain the temporary

cognitive side effects observed in some patients, as they may

transiently disrupt pre-existing memory circuits (84). Such effects

are commonly observed in the early post-treatment phase, and are

typically time-limited, with most patients recovering cognitive

function over the weeks to months following treatment (27).

These findings underscore the importance of balancing

therapeutic efficacy with individualized cognitive risk assessment,

particularly in patients with baseline memory vulnerabilities.
The role of neurotrophic factors

A significant body of evidence indicates that ECT plays a role in

upregulating neurotrophic factors. Preclinical and clinical studies

have reported that ECT leads to a significant increase in peripheral

Brain-Derived Neurotrophic Factor (BDNF) concentrations (85,

86). A meta-analysis indicated that ECT elevates plasma BDNF

levels, but not in serum, although this increase was not consistently

associated with clinical improvement in depressive symptoms (87).

Another study observed that serum BDNF levels increased

following ECT, irrespective of its effectiveness, suggesting a direct

effect of ECT on BDNF expression (88). More recently, a study
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showed that BDNF in plasma was significantly lower in TRD

patients compared to HCs at baseline but increased following

ECT. More importantly, the authors found a potential positive

dose-response relationship between doublecortin (DCX) levels in

neuron-derived extracellular vesicles (NDEVs) and plasma BDNF,

suggesting that neurogenesis and neuroplasticity may be

interconnected (89). However, some findings on the changes in

BDNF and the response to ECT are controversial, with studies

reporting no influence of ECT on serum or plasma BDNF levels

during or after ECT series (90–92).

Emerging research also highlights the role of vascular

endothelial growth factor (VEGF) in the mechanism of ECT. Pre-

clinical studies have shown that ECT increases VEGF levels in the

hippocampus region of the brain (93). Clinical studies have also

reported increased VEGF levels in the serum and plasma of patients

with TRD following ECT (94, 95). Additionally, reduced VEGF

levels have been associated with a poor response to ECT, suggesting

that this neurotrophin may serve as a predictive biomarker for

treatment outcomes (93, 96).

In summary, the increased neurotrophic factor levels following

ECT might be associated with the structural and functional brain

changes associated with successful treatment. The emerging role of

VEGF in the mechanism of ECT, particularly its potential to

promote neurogenesis and interact with BDNF, suggests a more

complex interplay of neurotrophic factors than initially considered.
Inflammatory aspects of ECT

ECT has been shown to influence the immune system, with

both acute and long-term effects that may contribute to its

therapeutic efficacy. Several studies have documented an

immediate immune response following ECT, characterized by

transient increases in pro-inflammatory cytokines. For example,

interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) levels
have been observed to rise shortly after ECT sessions (97). This

acute inflammatory response is thought to be part of the body’s

physiological reaction to the induced seizure and stress associated

with ECT. The elevation in cytokine levels, however, is typically

short-lived, returning to baseline within hours to days (98).

While the acute phase of ECT elicits a temporary pro-

inflammatory response, long-term effects suggest an overall anti-

inflammatory outcome. Chronic inflammation has been linked to

depressive disorders, with elevated levels of inflammatory markers

such as C-reactive protein (CRP), IL-1b, and TNF-a correlating with

symptom severity. Research indicates that repeated ECT sessions

contribute to a sustained decrease in inflammatory markers,

suggesting an immunoregulatory role (99). Patients who experience

symptom relief post-ECT often exhibit reductions in CRP and IL-6

levels, supporting the hypothesis that ECT's antidepressant effects

may be partially mediated through immune modulation (100)

Emerging studies suggest that baseline inflammatory marker

levels may predict an individual’s response to ECT. Du et al. (101),

observed that the ECT group exhibited higher levels of pro-

inflammatory biomarkers (IL-1b and IL-6) and lower levels of the
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anti-inflammatory biomarker (IL-10) at baseline. The authors also

found a substantial decrease in IL-1b and IL-6 and an increase in

IL-10 levels post-ECT. Moreover, participants who responded to

the treatment showed a significant decline in HAMD-17 scores,

accentuating ECT's therapeutic potential. Hough et al. (102), found

that ECT induces an initial rise in IL-6 and CRP, followed by a post-

treatment decline. While these changes did not predict overall

depression severity improvements, higher post-treatment IL-6

correlated with better affective and cognitive outcomes, while

CRP reductions linked to neurovegetative symptom relief.

In addition to systemic immune responses, ECT has been

shown to influence neuroimmune function, particularly through

microglial activation. Microglia, the resident immune cells of the

brain, play a crucial role in neuroinflammation and neuroplasticity.

Studies suggest that ECT may initially activate microglia but later

promote an anti-inflammatory state, reducing neuroinflammation

associated with psychiatric disorders (103). Studies have also

demonstrated that ECT induced the proliferation of NG2-

expressing glial cells in the adult rat hippocampus and amygdala

(104, 105).

Together, these studies suggest that ECT’s antidepressant effects

may involve resetting immune balance, marked by a predictable

transition from a transient pro-inflammatory spike to longer-term

anti-inflammatory effects. Importantly, the acute increases in

inflammatory markers, such as IL-6 and TNF-a, may not be

harmful or indicative of adverse outcomes. Rather, they might

reflect a normal physiological response to induced seizure activity

and may be necessary for initiating downstream neurotrophic and

immunoregulatory processes. These early immune shifts are

thought to facilitate neuroplasticity and emotional regulation,

ultimately contributing to symptom improvement (106).

Monitoring both acute and longer-term inflammatory trajectories

may offer valuable clinical insights: while short-term elevations are

expected and adaptive, sustained reductions in inflammatory tone

may underlie durable antidepressant effects. Additionally, tracking

post-ECT inflammatory profiles may help identify treatment

responders and inform relapse risk, offering a potential avenue

for early intervention and individualized care. Despite these

promising implications, further research is needed to validate

these biomarkers for clinical application and to better understand

the mechanistic role of inflammation in mediating ECT outcomes.
Genetic and epigenetic modifications

Studies have shown that ECT affects DNAmethylation patterns,

which are essential in neurotrophic signaling, and upregulates genes

linked to neuroplasticity and synaptic function. The antidepressant

benefits of ECT may be maintained by these molecular changes

after the initial post-treatment phase (107). Additionally, a

methylome-wide analysis identifies differentially methylated CpG

sites annotated in TNKS associated with ECT binary response and

one differentially methylated CpG site annotated in FKBP5

associated with continuous response (108). Furthermore (109),

found numerous differentially methylated positions and regions
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(DMPs and DMRs) in genes linked to inflammatory and immune

processes, supporting the inflammatory theory of MDD

pathogenesis and suggesting a potential role for epigenetic

modification in the therapeutic effects of ECT.

A recent study that integrated neuroimaging with

transcriptomic gene expression analyses in patients with MDD

undergoing ECT revealed a correlation between increased gray

matter volume and higher expression levels of MDD risk genes,

including CNR1, HTR1A, MAOA, PDE1A, and SST. It also

identified ECT-related genes such as BDNF, DRD2, APOE,

P2RX7, and TBC1D14 (80). On the other hand, Moschny et al.

(110), found no global DNA methylation differences between

measured time points (before and after the first and last ECT

session) or between ECT responders and non-responders.

These mixed findings highlight the preliminary and

heterogeneous nature of epigenetic research in ECT. While some

studies point to promising epigenetic signatures associated with

treatment response, others report minimal or inconsistent changes,

underscoring the need for larger longitudinal and standardized

studies to clarify the clinical utility of epigenetic biomarkers in ECT.
Limitations and future directions

Although mechanistic studies of ECT have advanced our

understanding of its biological effects, the current body of evidence is

still limited by methodological inconsistencies, underpowered study

designs, and substantial patient heterogeneity. These challenges limit

the reproducibility and clinical applicability of findings, underscoring

the need for more rigorous and standardized research approaches.
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Evidence on the impact of ECT on neuroplasticity, inflammation,

neurotransmitter systems, and epigenetic regulation remains mixed.

Contradictory results across studies, particularly those examining

biomarkers such as BDNF, inflammatory cytokines, and methylation

signatures, reflect wide variability in sampling techniques, timing of

assessments, assay sensitivity, and storage conditions. Similarly,

neuroimaging studies frequently differ in modality, analysis pipelines,

and regions of interest, contributing to inconsistent reports of

hippocampal and network-level changes. These inconsistencies make

it difficult to draw firm conclusions and underscore the need for

methodological harmonization across studies.

One of the most persistent limitations in the current literature is

small sample size. Many mechanistic studies of ECT are conducted

with limited cohorts, which reduces statistical power and increases the

likelihood of spurious findings. This issue is further exacerbated by

heterogeneity in ECT administration protocols, including differences in

electrode placement, stimulus intensity, session number, anesthesia

protocol, and maintenance strategies. Without standardized treatment

and assessment protocols, comparing results across studies or

synthesizing them in meta-analyses remains a challenging task.

Patient heterogeneity adds another layer of complexity. TRD

encompasses a diverse range of clinical presentations influenced by

subtype (e.g., melancholic vs. atypical), age, sex, comorbid medical or

psychiatric conditions, medication history, and genetic background.

Yet many studies fail to stratify or control for these variables. In

particular, the high prevalence of co-occurring disorders such as

PTSD and personality disorders can influence treatment response

and mechanistic signatures, but are often overlooked in study design.

Without accounting for such variation, findings may reflect group

averages that obscure clinically meaningful subgroup effects.
FIGURE 1

Mechanisms underlying electroconvulsive therapy (ECT)-induced clinical improvement. Schematic illustration summarizing the multilevel
mechanisms through which electroconvulsive therapy (ECT) may lead to clinical improvement in individuals with treatment-resistant depression. At
the molecular and cellular level, ECT enhances neurotrophic factor expression, modulates immune responses, induces epigenetic modifications, and
regulates neurotransmitter systems. At the structural level, ECT has been associated with regional brain volume increases, improved microstructural
integrity, and adult neurogenesis, particularly in the hippocampus. Finally, ECT influences functional connectivity and brain network organization.
Together, these converging effects contribute to clinical improvement in depressive symptoms.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1614076
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ruiz et al. 10.3389/fpsyt.2025.1614076
Addressing these limitations will require coordinated efforts to

standardize research methodology, including ECT protocols,

biomarker collection procedures, and cognitive assessments. Multi-

site collaborations are needed to increase sample sizes, enhance

generalizability, and facilitate replication across diverse populations.

Future research should incorporate stratified analyses based on

clinical subtypes and comorbidity profiles and move toward

integrative, systems-level approaches that combine neuroimaging,

molecular, and clinical data. Multi-omics studies will be particularly

valuable in identifying converging biological pathways predictive of

treatment response. Advanced neuroimaging techniques, including

functional MRI and DTI, offer valuable tools for tracking treatment-

related brain changes and may aid in identifying biomarkers of

response and recovery.

In addition to mechanistic investigations, future work must also

prioritize long-term outcomes, particularly in relapse prevention.

Although ECT is highly effective acutely, relapse rates remain high,

often exceeding 50% within the first-year post-treatment, yet many

studies offer limited follow-up. Maintenance strategies involving

adjunctive treatments, such as rTMS or ketamine, represent

promising avenues for sustaining response and minimizing cognitive

burden. For instance, using rTMS as a priming intervention before

ECT or ketamine as a post-ECT maintenance therapy may enhance

the durability of the effect and mitigate side effects, though

these approaches require systematic evaluation. Standardized

neuropsychological assessments should also be consistently integrated

into these trials to better characterize the cognitive effects of ECT and

optimize treatment parameters accordingly. Ultimately, aligning

mechanistic research with emerging precision psychiatry models will

be essential for tailoring interventions, improving prognosis, and

reducing relapse in this complex and high-risk population.
Conclusion

The findings reviewed in this paper highlight the continued

efficacy of ECT in TRD, while shedding light on its mechanistic

underpinnings and potential avenues for refinement. Comparative

analyses highlight ECT’s superiority in severe cases, particularly

when rapid symptom relief is necessary, while alternative

treatments, such as ketamine, offer advantages in tolerability and

cognitive preservation. Mechanistic insights reveal that ECT may

exert its antidepressant effects through the regulation of

neurotransmitters, neurogenesis, modulation of brain networks,

and neuroimmune modulation, suggesting potential biomarkers

for treatment response (Figure 1). These insights collectively

emphasize the potential of integrating mechanistic understanding

with technological advancements, such as fMRI-guided electrode
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placement and biomarker-driven treatment personalization, to

enhance the therapeutic precision of ECT and mitigate its adverse

effects. Future research should focus on refining individualized

treatment protocols, leveraging neurobiological markers for

predicting response, and addressing the stigma surrounding ECT

to maximize its accessibility and clinical impact in TRD.
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