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Background: The disproportionate sequestration of the heterotrimeric G protein 
(Gsa) in lipid raft regions during acute depressive episodes can impair 
neurotransmitter signaling by restricting its interaction with and activation of 
adenylate cyclase and consequently reduce cyclic adenosine monophosphate 
(cAMP) production. In humans, Gsa is measured as a peripheral biomarker from 
platelet samples by using prostaglandin-1 (PGE-1) to stimulate adenylyl cyclase. In 
two previous studies, Gsa biomarker responses were significantly lower in acutely 
depressed subjects with major depressive disorder (MDD) than healthy controls and 
were correlated with the magnitude of symptom severity. 

Methods: The potential utility of Gsa biomarker responses to anticipate 
antidepressant treatment (ADT) response was assessed in 19 acutely depressed 
MDD subjects receiving ADT for 6 weeks. 

Results: Following 6 weeks of ADT, Gsa biomarker responses increased significantly 
in 11 ADT responders compared with 8 non-responders (Mann–Whitney U test; p= 
0.033), particularly in subjects with the lowest Gsa biomarker values at screen. All five 
MDD subjects with Gsa biomarker screen values<1.5 nM cAMP/well became ADT 
responders with mean Gsa biomarker responses increasing >100% at 6 weeks in 
contrast to 10% in subjects with higher screen values (p= 0.012). 

Conclusion: ADT facilitates translocation of Gsa from the lipid raft region, 
particularly in MDD subjects who respond to ADT. The findings from this small 
hypothesis-generating study suggest that the Gsa biomarker assay has potential 
clinical utility to predict ADT response in depressed subjects with low baseline 
biomarker values. However, these are exploratory findings that must be replicated in 
larger studies. 
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1 Introduction 

Major depressive disorder (MDD) is a heterogeneous syndrome 
characterized by a variety of clinical presentations and symptoms 
that generate substantial medical, economic, and social costs (1–6). 
Unfortunately, antidepressant treatment (ADT) is not always 
effective and may require several weeks to work, and nearly one-
third of adequately treated subjects do not achieve remission (7). 
Given the considerable burden caused by MDD, there is a clear need 
for a practical and quantitative method to differentiate and optimize 
treatment options as early as possible. Currently, there is no clinical 
tool that can determine which ADT will be most effective for a 
specific individual (8–10). A simple and easily obtained biomarker 
that might facilitate medication decisions would be a useful tool in 
treatment planning for individuals with MDD. 

The heterotrimeric G protein (Gsa) has been explored as a 
therapeutic target for several disease entities including depression 
(11–13). We have explored the utility of Gsa as a simple protein 
biomarker in individuals with acute MDD where it appears to be 
sensitive to symptomatic change following ADT (14, 15). Gsa is 
normally distributed between two membrane regions: non-raft 
regions and a specialized region called the lipid raft that is associated 
with cytoskeletal elements and is rich in cholesterol (16, 17). It has been 
shown that the distribution of Gsa is skewed during acute depressive 
episodes and becomes more concentrated in the lipid raft region, 
apparently anchored by the structural protein tubulin (18–21). This 
disproportionate sequestration of Gsa in lipid raft regions impairs 
neurotransmitter signaling by restricting its interaction with and 
activation of AC and consequently reduces cAMP production (21). 
Preclinical studies have shown that several approved antidepressants 
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with different mechanisms of action can increase Gsa signaling and 
evoke translocation of Gsa from lipid rafts (22–25). The subsequent, 
enhanced interaction of Gsa with the effector enzyme adenylyl cyclase 
(AC) stimulates its enzymatic activity and leads to an increase in the 
production of cyclic adenosine monophosphate (cAMP). There is 
substantial evidence that cAMP signaling is involved in 
antidepressant action and that the long-term sequelae of ADT may 
be associated with sustained cAMP transmission as well as cAMP

induced transcription of growth factor genes (26–29). 
The identification of this specific molecular pathway in 

preclinical studies has facilitated the exploration of a potential 
Gsa biomarker in individuals with MDD. Figure 1 provides a 
proposed schematic representation of the disposition of Gsa 
during acute depressive episodes and following ADT. In humans, 
Gsa can be measured as a peripheral proxy from white blood cells 
or platelet samples by using prostaglandin-1 (PGE-1), an agonist for 
Gsa-coupled GPCRs to stimulate adenylyl cyclase (25, 30–33). 

In two small clinical studies, we examined the relationship of 
the Gsa biomarker to symptom severity in MDD subjects and 
healthy controls (14, 15). In both studies, Gsa biomarker responses 
distinguished acutely depressed subjects from healthy controls and 
were correlated with the magnitude of symptom severity within the 
MDD group. The first study assessed changes in Gsa biomarker 
responses in MDD subjects following 6 weeks of ADT (14). The 
second study assessed the reliability of the Gsa biomarker in MDD 
subjects and explored the utility of Gsa biomarker response 
thresholds to differentiate between MDD subjects and healthy 
controls (15). In this report, we revisited the first study to explore 
whether the Gsa biomarker thresholds identified in the second 
study could serve as predictors of ADT response. 
FIGURE 1 

Schematic representation of Gsa disposition in depression and with antidepressant treatment. In depressed subjects, Gsa is disproportionately 
localized in lipid raft fractions of the membrane, where the more rigid structure dampens mobility of that protein, preventing interaction with 
adenylyl cyclase. Successful antidepressant treatment displaces Gsa from lipid rafts, facilitating interaction with adenylyl cyclase and augmenting 
cAMP signaling. 
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2 Materials and methods 

Subjects and data for this report come from a 6-week open-label 
ADT study conducted at the Emory University School of Medicine 
Mood and Anxiety Disorders Program between September 2013 
and May 2016 (14). The study was reviewed and approved by the 
institutional review board of the Emory University School of 
Medicine. All study participants signed an IRB-approved consent 
to participate and consent to give blood samples. All participating 
subjects were compensated for their participation in the study. The 
study was conducted in accordance with the Declaration of Helsinki 
(1964) and Good Clinical Practices as outlined by the International 
Conference on Harmonization (1997). 

Full eligibility criteria are presented elsewhere (14). The study 
recruited depressed subjects with non-psychotic MDD and healthy 
controls. Eligible MDD subjects met DSM-IV TR criteria for MDD 
based upon the Structured Clinical Interview for DSM-IV Axis I 
Disorders-Patient Edition (SCID-I/P) and had a score ≥15 on the 
Hamilton rating scale for depression (HamD17) at the screen visit 
(34–36). The DSM-IV TR criterion was the diagnostic criteria used 
in the United States at the time this study was approved by the 
institutional review board in 2013. Eligible depressed subjects had 
not been taking antidepressant or other psychotropic medications 
(except for sedatives) for at least 4 weeks prior to the initiation of 
ADT. Healthy controls had no history of depression and had 
HamD17 scores ≤1. Clinic visits included a screen and 6-week 
visit that followed open-label ADT for participating MDD subjects. 
Whole blood for Gsa marker analysis was collected at screen and 
baseline in all participants and 6 weeks for subjects receiving ADT. 
2.1 Preparation and analysis of Gsa 
biomarker samples 

The blood samples were collected without regard to fasting or 
time of day. After each blood draw, blood samples were centrifuged 
in a 10-mL EDTA collection tube at 500 × g for 5 min at 4°C. The 
platelet-rich plasma layer was transferred into 15-mL conical tubes. 
Subsequently, the platelet samples were centrifuged in 15-mL 
conical tubes at 2,000 x g for 5 min at 4°C. Platelet pellets were 
resuspended in TEM buffer (10 mM Tris HCl, 1 mM Mg Cl2, EDTA 
pH 7.5, protease inhibitor cocktail, Sigma # P2714), frozen, and 
stored at −80°C. Prior to assay, samples were thawed. A BCA 
protein assay was conducted, and the concentration of platelet 
suspensions was adjusted to 1 µg/mL for the adenylyl cyclase assay 
as triplicates. The PerkinElmer AlphaScreen cAMP assay kit was 
performed with a 384-well plate following the manufacturer’s 
directions. The acceptor beads were added in the stimulation 
buffer (1mM HEPES pH 7.5, 500µM IBMX, 0.1% BSA, 25 mM 
MgCl2, 375 mM NaCl, 250 mM ATP, 2.5 mM GDP, and 2.5 nM 
GTP in HBSS). Subsequently, a 5-µL total volume of cells/beads was 
added to each well as triplicates. Adenylyl cyclase activity was 
measured both without a stimulating agent (basal, 5 µL 
stimulation buffer) and in the presence of 10 µM prostaglandin 
E1 (PGE1) in 5 µL of stimulation buffer. The 384-well plate was 
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incubated for 30 min at RT to allow cAMP accumulation. The 
reaction was stopped by adding 15 µL of 1.67xbiotin-cAMP/ 
Streptavidin Donor Bead Detection Mix. The plate was sealed and 
kept in the dark overnight. Plates were read on a Molecular Devices 
SpectraMax i3x plate reader. The cAMP produced was calculated 
from a standard curve run with each assay. The PGE1 stimulation 
cAMP response as reported in this paper reflects the ratio of PGE1 
stimulation of adenylyl cyclase (AC) activity normalized over basal 
AC activity (expressed as cAMP response). More details about the 
preparation and analysis of Gsa biomarker samples are provided in 
previous publications (10, 11). 

The Gsa biomarker response as reported in this paper reflects 
the ratio of PGE-1 stimulation of adenylyl cyclase (AC) activity 
normalized over basal AC activity (expressed as nM cAMP/well). 
This measure has been proven to be quite reliable with consistent 
values that varied by no more than 5% within 2 weeks (11). 
2.2 Data analyses 

The relationship of Gsa biomarker responses to ADT response 
following 6 weeks of treatment was assessed using HamD17. The 
utility of Gsa biomarker response cutoff screen thresholds of<1.5 
and<1.8 were used to examine the prediction of ADT response 
based upon the post-hoc analyses derived from the UnMASCK 
study (Unobtrusive Monitoring of Affective Symptoms and 
Cognition Using Keyboard Dynamics study of mood disorders: 
NCT04358900) conducted at the University of Illinois Chicago (15). 

Subjects were stratified into ADT treatment responders and 
non-responders based upon a criterion of ≥50% HamD17 score 
improvement from the screen visit (37). A value of >30% change of 
the Gsa biomarker response between screen and week 6 was used as 
the criterion for Gsa biomarker response based on our previous 
report (10). This was a small exploratory study, and power analyses 
were not done regarding sample size. Statistical analyses included 
Student’s t test, Fisher exact test, and the Mann–Whitney U test as a 
non-parametric statistical tool for the analysis of Gsa biomarker 
thresholds with different distributions. 
3 Results 

Data were available for 19 treated MDD subjects at both the 
screen and week 6 visits. The antidepressants prescribed were 
escitalopram (7), citalopram (4), fluoxetine (3), duloxetine (2), 
venlafaxine XR (2), and nortriptyline (1). 

There were no significant demographic or ADT differences 
between the treatment responders and non-responders. As shown 
in Table 1, there were 11 ADT responders and 8 non-responders. 

The mean screen Gsa biomarker responses were 2.20 ±1.2 nM 
cAMP/well at the screen visit in the 11 ADT responders compared 
with 3.99 ±3.9 nM cAMP/well in the 8 non-responders (F= 2.06; 
p=0.169). After 6 weeks of treatment, the mean Gsa biomarker 
response was 3.55 ±3.1 nM cAMP/well in the ADT responders (a 
62.0% mean increase from the screen assessment) and 3.67 ±4.2 in 
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the non-responder cohort, reflecting a mean 4.6% decrement from 
the screen value (Mann–Whitney U test; na= 11, nb= 8; z= 2.14; p= 
0.033; effect size= 0.48). Thus, the mean Gsa biomarker value of the 
ADT responders was low at screen but increased significantly and 
was essentially equivalent to the non-responder values after 6 weeks. 
Individually, 8 of the 11 ADT responders (72.7%) had a >30% 
increase of the screen Gsa biomarker response in contrast to two of 
eight non-responders (25%) following 6 weeks of ADT (Fisher exact 
test= 0.07). 

As shown in Table 2, 8 of the 19 MDD subjects had Gsa 
biomarker responses<1.8 nM cAMP/well at the screen visit. After 6 
weeks of ADT, the mean percentage increase of Gsa biomarker 
responses was significantly greater in the MDD subjects with Gsa 
marker values<1.8 at screen compared with subjects with values 
>1.8 (Mann–Whitney U test; na= 11, nb= 8; z=  −2.91; p= 0.004; 
effect size= 0.63). Using a threshold of<1.8 at the screen visit, the 
Gsa biomarker response increased >30% in 8 of the 8 subjects 
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(100%) by week 6 in contrast to 2 of the remaining 11 subjects 
(18.1%) with screen values >1.8 (Fisher exact test= 0.003). 

Five MDD subjects had Gsa biomarker responses<1.5 nM 
cAMP/well at the screen visit. These five subjects received SSRIs 
that included citalopram (2), escitalopram (2), and fluoxetine (1). 

After 6 weeks of ADT, the mean Gsa biomarker response 
increased from 1.36 ±0.16 to 2.77 ±0.98 (>100% increase) in these 
five subjects in contrast to 3.52 ±0.14 to 3.89 0.14 (10% increase) in the 
MDD subjects with screen Gsa biomarker responses >1.5 (Mann– 
Whitney U test; na= 14,  nb= 5; z=  −2.50 p= 0.012; effect size= 0.55). The 
Gsa biomarker responses increased >30% by week 6 in all five ADT 
responders (100%) who had screen values<1.5 in contrast to 5 of the 14 
subjects (36.6%) whose Gsa biomarker responses were >1.5 at the 
screen visit (Fisher exact test= 0.03). In this small sample, all five MDD 
subjects with screen Gsa biomarker responses<1.5 nM cAMP/well 
became ADT responders in contrast to 6 of the 14 other subjects with 
higher screen values (Fisher exact test= 0.045). 
–

TABLE 2 Screen thresholds and Gsa biomarker responses after 6 weeks of antidepressants*. 

n 
HamD17 

screen 
HamD17 

6 weeks Responders 
Gsa biomarker 

at screen 
Gsa biomarker percent 
change from screen** 

Gsa marker response<1.8 
at screen 

8 20.5 9.0 6 (75%) 1.45 81.5% 

Gsa marker response >1.8 
at screen 

11 20.1 9.5 5 (45%) 4.04 -0.6% 

Statistical analysis t= 0.33 t= -0.17 t= -2.24 z= -2.91 

p Gsa marker response<1.8 
or >1.8 

p= 0.75 p= 0.87 p= 0.35*** p= 0.039 p=0.004 

Gsa marker response<1.5 
at screen 

5 19.4 4.6 5 (100%) 1.36 100.8% 

Gsa marker response >1.5 
at screen 

14 20.6 10.9 6 (43%) 3.52 10.1% 

Statistical analysis t= -0.85 t= -2.37 t= -1.56 z= -2.50 

p Gsa marker response<1.5 
or >1.5 

p= 0.41 p= 0.030 p= 0.045*** p= 0.137 p= 0.012 
 

*Gsa biomarker response indicates the change of prostaglandin (PGE-1)-stimulated adenylyl cyclase activity (normalized over basal activity) expressed as nM cAMP/well. Treatment response is
 
defined as ≥50% improvement of the screen HamD17 score after 6 weeks of antidepressant treatment.
 
** Gsa marker percent change from screen reflects the ratio of biomarker change relative to Gsa marker response at screen. Calculation used was non-parametric Mann–Whitney U test.
 
***Fisher exact test
 
–

TABLE 1 Gsa biomarker responses after 6 weeks of antidepressant treatment in the Emory study*. 

n HamD17 

screen 
HamD17 

6 weeks 
Responders Gsa biomarker 

at screen 
Gsa biomarker percent 
change from screen** 

All subjects 19 20.3 9.3 2.95 34.0% 

ADT responders 11 20.4 5.7 11 (58%) 2.20 62.0% 

ADT non-responders 8 20.1 14.1 8 (42%) 3.99 -4.6% 

T test/Mann–Whitney U t= 0.19 t= -4.56 t= -1.44 z= 2.14 

p (responders vs. 
non-responders) 

p= 0.85 p= 0.0003 p= 0.168 p= 0.033 
*Gsa biomarker response indicates the change of prostaglandin (PGE-1)-stimulated adenylyl cyclase activity (normalized over basal activity) expressed as nM cAMP/well. Treatment response is 
defined as ≥50% improvement of the screen HamD17 score after 6 weeks of antidepressant treatment. 
** Gsa marker percent change from screen reflects the ratio of biomarker change relative to Gsa marker response at screen 
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4 Discussion 

Many studies have sought useful biomarkers to facilitate the 
diagnosis and/or treatment of MDD (8–10, 38). We have explored 
the extent of lipid-raft localization of the heterotrimeric G protein 
(Gsa) as a potential biomarker in MDD. In two clinical studies, we 
found that this peripheral Gsa biomarker was significantly lower in 
acutely depressed MDD subjects than healthy controls and 
inversely correlated with symptom severity (14, 15). In this paper, 
we report a new analysis of the initial (Emory) study data, which 
focused on the potential utility of the Gsa biomarker to predict 
ADT response using biomarker response thresholds identified in 
the UnMASCK study (15). 

The mean Gsa biomarker response increased significantly from 
the screen value in the 11 ADT responders versus 8 non-responders 
(p=0.033). The mean Gsa biomarker value of the ADT responders 
was low at screen but increased significantly and was essentially 
equivalent to the non-responder values at 6 weeks. 

Both Gsa biomarker response thresholds assayed at the screen 
visit differentiated the ADT responders from non-responders. After 
6 weeks of ADT, the mean percentage increase of Gsa biomarker 
responses was significantly greater in the MDD subjects with screen 
threshold values of either<1.5 and<1.8 nM cAMP/well compared 
with subjects with higher screen values (p= 0.012 and 0.004, 
respectively). The individual Gsa biomarker responses increased 
>30% in all of the low threshold (<1.5 nM cAMP/well) subjects 
(100%) in contrast to 36.7% and 18.1% of the subjects with screen 
values >1.5 and >1.8, respectively (Fisher exact test: p= 0.03 and 
0.003, respectively). Furthermore, all five MDD subjects with Gsa 
biomarker values<1.5 at screen became ADT responders and 
yielded mean Gsa biomarker responses that increased >100% in 
contrast to 10% in subjects with higher screen biomarker values (p= 
0.011). This latter finding suggests that a low pretreatment Gsa 
biomarker value that increases after the initiation of ADT may 
anticipate treatment response in some depressed patients. Clearly, 
larger studies examining the Gsa marker response shortly after the 
initiation of ADT are needed to explore this possibility. 

The clinical findings of a robust increase of Gsa biomarker 
responses following the initiation of ADT is consistent with 
preclinical findings that Gsa translocation from the lipid raft 
region is facilitated by various classes of antidepressants (38–46). 
In preclinical studies, selective serotonin reuptake inhibitors 
(SSRIs), serotonin–norepinephrine reuptake inhibitors, tricyclic 
antidepressants, monoamine oxidase inhibitors, and ketamine all 
increased Gsa signaling and evoke translocation of Gsa from lipid 
rafts (22–24, 38–46). The findings are also consistent with a PET 
imaging study using 11C-(R)-rolipram that found decreased cAMP 
levels in brain scans of unmedicated MDD patients increased after 8 
weeks of SSRI treatment (46). 

Our findings must be interpreted with caution. First, both 
studies used small sample populations and did not include 
double-blind placebo-controls for differential analysis of 
biomarker changes. Second, it must be acknowledged that the 
choice of Gsa biomarker response thresholds and change 
criterion (>30%) were chosen in a post-hoc fashion and derived 
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from small study samples. The risk of type 1 error is elevated in 
analyses of small samples like this, and larger studies are needed to 
replicate and clarify these criteria. Third, the depressed subjects in 
this open-label study were treated with a variety of antidepressants 
and it is not known if different antidepressants might yield different 
Gsa biomarker responses in humans. Numerous preclinical studies 
have shown that there is little if any variation of Gsa biomarker 
responses regardless of the antidepressant selected, including 
ketamine, whereas antipsychotics, anxiolytics, and mood 
stabilizers do not affect Gsa biomarker responses (22, 23, 44, 45). 
Nonetheless, more studies are needed to elucidate the effect, if any 
of different ADT on the Gsa biomarker response in acutely 
depressed subjects. Fourth, the Gsa biomarker thresholds we 
explored did not identify all acutely depressed subjects or exclude 
all healthy controls (11). Clearly, the heterogeneity of depressive 
disorder is a confounding factor that may affect sensitivity in this 
population (4–6). It is also possible that individuals with lower Gsa 
biomarker responses have a greater risk for MDD whether they 
manifest acute depressive symptoms or not. The apolipoprotein E 
(APOE) marker is a similar type of risk factor used for dementia of 
the Alzheimer’s type, and the measurable residual disease (MRD) 
testing used in oncology reflects the utility of a marker to facilitate 
treatment planning (47, 48). 

MDD is diagnosed primarily by subjective assessments and history 
without biomarker confirmation, and treatment outcome is often 
influenced by multiple behavioral and environmental factors that are 
unrelated to the underlying disease (49–52). Given the complexity of 
the diagnosis and the heterogeneous nature of the disease, a predictive 
biomarker of antidepressant response would be extremely useful. It is 
possible that this Gsa biomarker may be a useful predictor of treatment 
response for some acutely depressed individuals, particularly subjects 
who present with low pretreatment Gsa biomarker responses. In 
humans, the population of circulating platelets turns over 
approximately every 7 to 8 days (53). Consequently, the Gsa 
biomarker assay can be repeated after 1 week of ADT to obtain new 
Gsa response data. Although we have yet to test this hypothesis, it is 
possible that early changes of the pretreatment Gsa biomarker 
response might predict eventual treatment success or failure. Gsa 
biomarker response findings could support treatment decisions 
regarding continuation of the current antidepressant regimen. 
Alternatively, different antidepressants might be tested in an ex vivo 
platform to determine which can increase low pretreatment Gsa 
marker responses in the symptomatic individuals. Therefore, as a 
companion to personalized treatment planning, the Gsa biomarker 
assay may be able to identify the most promising antidepressants for 
specific depressed individuals. Clearly, these are exploratory and 
hypothesis-generating findings that require larger studies to 
understand the potential utility of this protein biomarker assay as a 
predictive marker to assist the treatment of MDD. 
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