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Introduction: Accurately distinguishing individuals with autism spectrum

disorder (ASD) from those with schizophrenia spectrum disorder (SSD) can be

challenging, especially in individuals with an at-risk mental state (ARMS) for

psychosis. Given the need for objective markers, we focused on mismatch

negativity (MMN). This study aimed to determine whether ARMS individuals

with ASD traits exhibit different MMN patterns compared to ARMS individuals

without such traits and healthy controls.

Methods: Forty-nine individuals with ARMS and 45 healthy controls were

enrolled. The Autism-Spectrum Quotient Japanese Version (AQ-J) was used to

assess ASD traits, with a cut-off of 33+ indicating high ASD traits [AQ(+)] and

scores below that low ASD traits [AQ(-)]. An electroencephalogram was recorded

while the participants heard standard and deviant tones in two auditory oddball

paradigms: a duration-deviant (dMMN) and a frequency-deviant (fMMN). MMN

amplitude and latency were analyzed at Fz and group differences were compared

between patients with ARMS and healthy controls. Further, within the ARMS

group, AQ(-) (n = 33) vs. AQ(+) (n = 16) subgroups were examined. Correlation

analyses were also performed to explore the relationships between MMN

measures and clinical/cognitive indices.

Results: No significant differences in MMN amplitude or latency were observed

between the ARMS group and healthy controls. In contrast, fMMN latency in the

AQ (+) group was significantly shorter than that in the AQ(-) group. Within the

entire ARMS group, fMMN latency had a significant negative correlation with total

AQ-J scores, especially the Communication subscale, i.e., higher ASD traits were

associated with shorter fMMN latency.
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Conclusion: The key finding of this study was that ARMS individuals with higher

ASD traits showed a shortened fMMN latency compared to those without.

Distinguishing ARMS from ASD based solely on clinical symptoms is sometimes

difficult, and using an objective measurement tool such as MMN latency could

help identify underlying ASD features and guide more tailored interventions.
KEYWORDS

at-risk mental state, psychosis, event-related potential, mismatch negativity, autism
spectrum disorder, autism-spectrum quotient
1 Introduction

Several studies have described individuals with both autism

spectrum disorder (ASD) and schizophrenia; the broader

phenotypes of these disorders clearly overlap (1). While there is

considerable variation between reports, the prevalence of

schizophrenia in individuals with ASD has been reported to range

from 0-34.8% (2–5), which is clearly higher than that in adult general

population (0.45%; World Health Organization, 2022), and ASD in

schizophrenia is between 3.6-60% (6–10). Accurate diagnosis is

important because of the distinct clinical courses and intervention

approaches between schizophrenia and ASD patients, but they are

sometimes difficult to clearly separate due to partly overlapping

clinical phenotypes, such as recurrent hallucinations in ASD (2) and

similar negative symptomatology (11). By contrast, there are clear

phenomenological and pathophysiological differences between the

schizophrenia and ASD in the following respects: onset age

(adolescence or childhood), presence/absence of anomalous self-

experience and reality monitoring (12, 13), behavioral pattern

(repetitive, rule-based behaviors in ASD contrast with the formal

thought disorder and disorganization observed in schizophrenia) (14),

forms of sensory impairment (ASD shows hyper-/hypo-reactivity to

sensory input, while schizophrenia has impaired sensory gating) (15,

16). Recently, the concept of at-risk mental state (ARMS) individuals

was proposed (17), who are at an increased risk of developing

psychosis within a relatively short period of time (approximately

30% in 2 years) (18). Their symptoms are milder and more

nonspecific than those of schizophrenia, and it is more difficult to

differentiate ASD and ARMS individuals. A systematic review

reported that the prevalence of ASD in ARMS ranged from 1.1% to

39.6% and that of ARMS in ASD ranged from 0% to 78.0% (19).

Further, a recent survey study using the PRIME Screen-Revised, a self-

reported instrument for prodromal symptoms of psychosis (20)

demonstrated that substantial number of first-visit ASD outpatients

had subthreshold or sporadic psychotic symptoms similar to ARMS

individuals (21). These data show the difficulty of distinguishing

between ASD and schizophrenia-spectrum disorders (SSD),

especially in early stages for psychosis, based on clinical symptoms

alone, indicating the need for objective biomarkers useful for

differential diagnosis.
02
There are several candidate biomarkers of schizophrenia,

including brain structure, function, and blood markers (22).

Among these, mismatch negativity (MMN), which indexes pre-

attentive sensory processing using oddball tasks (e.g., changing the

duration or frequency of auditory stimuli) (23–25), has emerged as

a potential biomarker for psychosis (26–28). Reduced amplitude of

duration MMN (dMMN) has been reported in individuals with

chronic schizophrenia and early stages of psychosis, such as first-

episode schizophrenia (FES) and ARMS (29–35). More specifically,

MMN amplitude has consistently been reported to be reduced in

schizophrenia, with a large effect size of approximately 0.9 (36, 37).

Subsequent early-intervention studies indicated that smaller

baseline dMMN amplitudes in individuals with an at-risk mental

state (ARMS) predicted conversion to psychosis and were

associated with poorer functional outcomes (38, 39). Because the

generation of dMMN is dependent on N-methyl-D-aspartate

(NMDA) receptor-mediated neurotransmission—a pathway long

implicated in the pathophysiology of schizophrenia, dMMN has

thus been viewed as a potentially useful objective biomarker for the

disorder. On the other hand, the amplitude of frequency MMN

(fMMN) is reportedly reduced in chronic schizophrenia but not in

FES or ARMS patients (36, 40). Regarding MMN latency, the

findings in schizophrenia have been inconsistent [prolonged (41,

42), shortened (43), no change (44) or not documented].

Many MMN studies have been conducted also in patients with

ASD; according to a meta-analysis of 22 studies (45), dMMN

amplitude is likely to be reduced especially in children/adolescents

with ASD, while its latency does not appear to change in ASD

regardless of age. There were no significant differences between

ASD patients and controls in fMMN amplitude/latency, but low-

function ASD may be characterized by shortened fMMN latency (46).

Taken together with the findings in schizophrenia, MMNmay serve as

a biomarker of both psychosis and ASD. However, summarizing the

limitations of the previous studies, MMN studies in ASD show highly

variable findings across age groups and intellectual-functioning levels.

In ARMS cohorts, the most robust result is a reduction in dMMN

amplitude; however, fMMN, particularly latency has received little

attention. Only a report has examined MMN in ASD patients who

also display ARMS traits, and most ARMS studies neither control for

nor stratify neurodevelopmental factors such as ASD. Although a
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theoretical ASD–ARMS/psychosis continuity model posits a shared

abnormality in prediction-error processing (e.g., Sterzer et al., 2018)

(47), no empirical work has yet asked how the ARMS subgroup with

pronounced ASD traits manifests MMN alterations. Accordingly,

research that explicitly examines MMN amplitude and latency in

ARMS individuals stratified by ASD traits is needed to test the

proposed neurophysiological continuum between ASD features and

psychosis risk.

The AQ is a simple and convenient screening tool that can be

easily administered to individuals with ASD traits (48). Owing to its

ease of use, it has been widely employed in clinical settings both in

Japan and internationally. According to the validation study of the

Japanese version (AQ-J), individuals exceeding the cutoff value

accounted for approximately 90% of those with ASD, and the tool

demonstrated high specificity (3%) in the general population as well

as strong measurement reliability (49). Having said that, the AQ is a

self-report test for ASD “trait” and has the aspect that it captures

only dimensional ASD traits across the broader spectrum rather

than diagnoses.

This study aimed to investigate the relationship between ASD

features and MMN in individuals with ARMS and to examine

whether MMN could serve as a useful biomarker for identifying

individuals with ASD traits in ARMS. We predicted that individuals

with ARMS who have ASD traits would show different results in

MMN compared to those who do not. This study may contribute to

the early detection, differential diagnosis, and development of

individualized interventions for both ARMS and ASD.
2 Materials and methods

2.1 Participants

A total of 49 subjects with ARMS (19 male and 30 female; mean

age ± standard deviation, 18.9 ± 4.7 years), recruited from the

University of Toyama Hospital or Toyama Prefectural Mental

Health Centre (46) participated in this study (50). Individuals

with ARMS were identified by experienced psychiatrists using the

Comprehensive Assessment of At-Risk Mental State (CAARMS)

(17). Subgroups of ARMS included attenuated psychotic symptoms

(APS), genetic risk and worsening syndrome (GRD) and/or short-

term limited intermittent psychotic symptoms (BLIPS). Eligible

subjects were confirmed to have good hearing ability and physical

health, based on physical examinations and standard laboratory

tests. Subjects were excluded if they had a history of substance abuse

or dependence, seizures, head injury, or an estimated premorbid

Intelligence Quotient (IQ) <70 based on the Japanese Adult Reading

Test (51). Of the 49 ARMS, 8 received antipsychotic medication

(0.12 ± 0.33 mg/day, risperidone equivalent). We also recruited 45

healthy controls (H) (23 male and 22 female participants; mean age,

22.6 ± 2.6 years) from our community, university students, and

hospital staff. Participants were screened for past or current Axis I

disorders based on the Structured Clinical Interview for DSM-IV

(SCID) (52). Additional exclusion criteria for H (in addition to
Frontiers in Psychiatry 03
those listed above) were a history of psychiatric disorders in the

participants themselves or their first-degree relatives.

The Committee on Medical Ethics of the University of Toyama

approved the study protocol (no. I2013006 on February 5, 2014).

Written informed consent was obtained from all participants in

accordance with the Declaration of Helsinki. If the participants were

under 20 years old, written consent was also obtained from a parent

or legal guardian.
2.2 Clinical assessment

Experienced psychiatrists or psychologists evaluated clinical

symptoms in individuals with ARMS using the PANSS (53). The

Brief Assessment of Cognition in Schizophrenia (BACS) Japanese

version (54, 55), Schizophrenia Cognition Rating Scale (SCoRS)

Japanese version (56, 57) and modified Global Assessment of

Functioning (mGAF) (58) were used to evaluate each participant’s

cognitive and social functioning. The BACS composite score was

calculated by averaging the z-scores of the six primary

BACS measurements.

The Autism-Spectrum Quotient (AQ) was used to assess traits

associated with ASD (48). It was translated into Japanese,

standardized, and is widely used in Japan as AQ-J (AQ-Japanese

version) (49). The AQ-J consists of 50 items divided into five

subscales with 10 questions each. The scale assesses five areas of

cognitive strengths and difficulties related to ASD traits:

Communication, Social Skills, Imagination, Attention to Detail,

and Attention Switching. Higher scores on each subscale suggest

poor communication skills, poor social skills, poor imaginations,

exceptional attention to detail, and difficulties in attention switching

or strong focus on attention, respectively (48). We set a score of 33

or greater, indicating a high possibility of having ASD traits [AQ

(+)], and 32 or lower as AQ(-) (49).
2.3 MMN recording

MMNs were recorded using an auditory oddball paradigm

based on an established method performed in our institute (34,

59, 60). Briefly, Electroencephalogram (EEG) recordings were

obtained using a Nihon Kohden EEG device (EEG-1250 version

07-02, Nihon Kohden Corp.) or Polymate AP1532 (TEAC Corp.)

and 32-channel Electrocap (Electrocap Inc.) or 32-channel MCS

cap (Medical Computer Systems Ltd.) in a wave-shielded and

sound-attenuated room. Auditory stimuli were delivered

binaurally through headphones while participants were seated

while watching a silent cartoon to stay alert without auditory

interference. Two auditory oddball paradigms were employed

using duration- and frequency-deviant stimuli. For the dMMN,

1500 stimuli consisting of 90% standard tones (1,000 Hz, 50 ms)

and 10% deviant tones (1,000 Hz, 100 ms) were used. For the

fMMN, 1,500 stimuli consisting of 90% standard tones (1,000 Hz,

50 ms) and 10% deviant tones (1,500 Hz, 50 ms) were used. The
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inter-stimulus interval (ISI) was fixed at 500 ms, resulting in a

stimulus-onset asynchrony (SOA) of 550 ms for standard tones (50

ms) and 600 ms for dMMN deviant tones (100 ms). Auditory

parameters were delivered at a 60-dB sound pressure level a 10 ms

rise/fall time. The data were collected at a sampling rate of 500 Hz.

The bandwidth was set at 0.53–120 Hz with a 60 Hz notch filter.

The reference electrode was located at Aav and the ground electrode

was at Z. Electrode impedance was less than 10 kW. Auditory

stimuli were presented in two consecutive blocks: dMMN (first) and

fMMN (second). There was 1 min break time between the two

blocks. Epochs were averaged with EPLYZER II (Kissei Comtec Co.,

Ltd.): 600 ms (dMMN) or 500 ms (fMMN) epochs, each including a

100 ms pre-stimulus baseline. Epochs containing voltage excursions

> ± 100 mV by blink, eye-movement, and body movement were

manually discarded. Artifact-free epochs were averaged separately

for target and non-target. The target waveforms were subtracted

from the non-target ones to yield the MMN. Each epoch was

baseline-corrected by subtracting the mean voltage in the −100 to

0 ms window. The amplitude and latency of the dMMN and fMMN

were used as parameters. For dMMN, the peak observed 130−250

ms after the start of the sound was used as its amplitude (zero-point

to peak) and latency (0 ms to peak). For fMMN, the peak observed

60−180 ms after the start of the sound was used. For statistical

analyses, only the recording at Fz, which generally has the greatest

amplitude compared with the other electrodes, was used as a

representative of the MMN for each individual, according to

previous literature (61, 62). The detailed data are provided in

Supplementary Table 1.
2.4 Statistical analysis

Statistical analyses were performed using the Statistical Package

for Social Sciences version 25 (SPSS Japan Inc.) and Jamovi

Software (https://www.jamovi.org). The analyses covered dMMN

and fMMN parameters (amplitude and latency), the AQ-J and 5

subscales (Communication, Social Skills, Imagination, Attention to

Detail, and Attention Switching) as well as the PANSS, BACS,

mGAF, and SCoRS scores. We used parametric statistics because

the data were normally distributed (tested using the Shapiro-Wilk

test). For the MMN amplitude, the polarities were negative in all

participants, and their absolute values were used in the statistical

analysis. Demographic and clinical data were compared between

the groups using the chi-square test or two-tailed Student’s t-test.

Analysis of covariance (ANCOVA) with age as a covariate was used

to assess group differences in MMN parameters (amplitude and

latency), because a previous study found effects of aging on MMN

parameters (63). Bonferroni correction was applied within 4

parameters (k = 4), yielding a significance threshold of p <

0.0125. Degrees of freedom for each correlation were df = 47.

Analysis of variance (ANOVA) with Bonferroni correction was

used to assess group differences in AQ-J and its subscales in H, AQ

(-) and AQ(+) group. Pearson’s correlation coefficient with a semi-

partial correlation was used to calculate the correlation between

MMN parameters and clinical data, with only MMN parameters
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controlled by age. Because a significant correlation was found

between fMMN latency and AQ-J, we also investigated the

relationship between fMMN latency and AQ-J subscale scores.

Bonferroni correction was applied within 5 subscales (k = 5),

yielding a significance threshold of p < 0.01. Degrees of freedom

for each correlation were df = 47. The significance level was set at p

< 0.05, however, when comparing multiple variables, only those that

were significant even after the post-hoc analysis were

considered significant.
3 Results

3.1 Characteristics of study population

Demographic and clinical data of the H and ARMS groups are

shown in Table 1. There were significant group differences in the

AQ-J score, age, JART, and BACS, whereas the male/female ratio

did not differ. Similarly, data of the AQ(-) and AQ(+) ARMS

subgroups are shown in Table 2; no significant group difference

was found for age, gender, JART, antipsychotic dose, percent of

medication, PANSS, BACS, mGAF and SCoRS scores. The

conversion ratio to psychosis did not differ between the groups.

Detailed information on the AQ-J subscales is provided in

Supplementary Table 2.
3.2 Comparisons of MMNs between H and
ARMS groups

As shown in Table 3A, there were no statistically significant

differences in MMN parameters between the H and ARMS groups.

The dMMN amplitude was smaller in ARMS than in H, but this was

at trend-level significance [F(1,93) = 3.4, p = 0.07]. The grand

average MMN waveforms are shown in Figures 1A, B, with

additional detailed scatterplots and waveforms presented in

Supplementary Figures 3, 5.
TABLE 1 Demographic and clinical data for groups H and ARMS.

H ARMS
Group differencea

n=45 n=49

AQ-J score 18.0 (5.7) 27.5 (7.9) t45,49 = 6.60, p<0.001

Age (years) 22.6 (2.6) 18.9 (4.7) t45,49 = -4.63, p<0.001

Gender (male/female) 23/22 19/30 c² = 1.44, p=0.23

JART 109.0 (4.3) 99.1 (9.7) t43,48 = -6.16, p<0.001

BACSb 0.3 (0.6) -0.5 (0.7) t43,49 = -5.13, p<0.001
All values are shown as means (standard deviations).
ARMS, at-risk mental state; AQ-J, Autism-Spectrum Quotient Japanese version; BACS, Brief
Assessment of Cognition in Schizophrenia; H, healthy controls; JART, Japanese Adult
Reading Test.
aDemographic differences between groups were examined by chi-square or Student’s t-test.
bBACS composite score was calculated by averaging all z-scores of the six primary measures
from the BACS.
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3.3 Comparisons of MMNs between AQ(-)
and AQ(+) ARMS subgroups

The results are shown in Table 3B. The fMMN latency was

significantly shorter in AQ(+) than in AQ(-) ARMS subgroups [F

(1,46) = 9.8, p = 0.003, h2p = 0.18]. This difference remained

significant after Bonferroni correction (p<0.0125). There were no

significant group differences in other MMN parameters (dMMN

amplitude, latency, and fMMN amplitude). To examine the sample

size justification, a post-hoc power analysis was performed with h²p
= 0.18 [fMMN latency, AQ(+) vs. AQ(–)], corresponding to

Cohen’s d = 0.94. With group sizes of AQ(+) (n = 16) and AQ(–)

(n = 33) and a = 0.05 (two-tailed), the achieved power was 0.85,

indicating that the study was adequately powered to detect the

observed effect. The grand average MMN waveforms are shown in

Figures 1C, D, with additional detailed scatterplots and waveforms

presented in Supplementary Figures 4, 6.
3.4 Relationships between MMN
parameters and clinical/cognitive indices

The fMMN latency in entire ARMS group was negatively

correlated with the AQ-J score (r=-0.41, p=0.004) (Figure 2A). No

significant correlations were found between other MMN measures
Frontiers in Psychiatry 05
(dMMN amplitude and latency, and fMMN amplitude) and

PANSS, BACS, mGAF, or SCoRS scores (Supplementary Table 7).

We then investigated the correlations between the fMMN

latency and each AQ-J subscale score; the fMMN latency showed

a significant negative correlation with the Communication subscale

(r=-0.40, p=0.005) (Figure 2B, Supplementary Table 8). Imagination

was also correlated with fMMN latency, but it did not remain

significant after the Bonferroni correction.
4 Discussion

To our knowledge, this is the first study demonstrating that

fMMN latency is shortened in the ARMS group specifically in

individuals who had ASD traits. The fMMN latency was negatively

correlated with the AQ-J score in ARMS, suggesting a relationship

between the clinical phenotype and underlying neuropsychological

mechanisms associated with ASD traits. In previous studies, MMN

has been separately studied in ASD and ARMS with only few

reports on participants with both ARMS and ASD features. As it is

difficult to identify the ASD traits contained in ARMS based on

symptoms alone, we believe that the development of biomarkers is

important for a more accurate understanding of patient

characteristics and for providing with more appropriate support.
TABLE 2 Demographic and clinical data for AQ(-) and AQ(+) ARMS subgroups.

AQ (-) AQ (+)
Group differencea

n=33 n=16

AQ-J score 23.2 (5.7) 36.2 (3.3) t33,16 = -8.39, p<0.001

Age (years) 18.1 (3.7) 20.5 (6.1) t33,16 = -1.70, p = 0.09

Gender (male/female) 12/21 7/9 c² = 0.25, p=0.62

JART 99.7 (8.9) 98.0 (11.3) t32,16 = 0.57, p=0.58

Antipsychotic dose (mg/day, risperidone equivalent) 0.1 (0.4) 0.1 (0.3) t32,16 = 0.57, p=0.67

Antipsychotic medication (yes/no) (%) 5/28 (15%) 3/13 (18%) c² = 0.062, p=0.80

PANSS: Total 52.0 (9.8) 55.4 (12.3) t31,16 = -1.04, p=0.30

PANSS: Positive 11.8 (3.4) 13.8 (4.0) t31,16 = -1.79, p=0.08

PANSS: Negative 13.4 (5.7) 13.4 (4.4) t31,16 = -0.01, p=0.99

PANSS: General psychopathology 26.8 (5.4) 28.2 (5.8) t31,16 = -0.83, p=0.41

BACSb -0.5 (0.9) -0.5 (0.7) t33,16 = 0.10, p=0.92

mGAFc 42.0 (6.1) 41.1 (7.3) t30,16 = 0.46, p=0.65

SCoRSd 5.1 (2.0) 6.1 (2.0) t31,16 = -1.57, p=0.12

Conversion to psychosis (yes/no) (%)e 3/30 (9%) 3/13 (18%) c² = 0.94, p=0.33
All values are shown as means (standard deviations).
ARMS, at-risk mental state; AQ-J, Autism-Spectrum Quotient Japanese version; BACS, Brief Assessment of Cognition in Schizophrenia; H, healthy controls; JART, Japanese Adult Reading Test;
mGAF, modified Global Assessment Functioning; PANSS, positive and negative syndrome scale; SCoRS, Schizophrenia Cognition Rating Scale.
aDemographic differences between groups were examined by chi-square or Student’s t-test.
bBACS composite score was calculated by averaging all z-scores of the six primary measures from the BACS.
cData are ranging from 0 to 100. Healthy subjects generally have a score ranging from 90 to 100.
dData are ranging from 0 to 10, with larger number representing more worse function.
eConversion to psychosis was defined according to the psychotic disorder criteria in the Comprehensive Assessment of At-Risk Mental State (Yung et al., 2005).
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In conducting this study, we considered several advantages of

using MMN. First, MMN is elicited automatically and is minimally

influenced by task demands or antipsychotic exposure, allowing for a

direct comparison of neurophysiological processes across subgroups

that may differ in clinical status, treatment, or even the ability to

comply with task instructions (64). Second, a meta-analysis had

shown that individuals with ASD typically exhibit preserved or even
Frontiers in Psychiatry 06
shortened MMN latency with relatively intact amplitude, whereas

schizophrenia was characterized by marked amplitude reduction and

latency prolongation (37, 45, 65). Third, computational models

proposed that ASD involves “hyper-precise” predictive coding,

accelerating deviance detection, whereas schizophrenia involved

hypo-precision and NMDA-receptor dysfunction, damping the

same response (61, 66). While NMDA-related dysfunction has been
TABLE 3 dMMN and fMMN parameters.

A.

H ARMS Group differencea

n=45 n=49 F(1, 93) p h2p

dMMN amplitude [mV] 5.6 (2.2) 5.0 (2.0) 3.4 0.07† 0.036

dMMN latency [msec] 172.9 (19.4) 177.4 (18.6) 0.33 0.57 0.004

fMMN amplitude [mV] 5.8 (2.3) 5.0 (1.8) 0.15 0.70 0.002

fMMN latency [msec] 113.2 (21.0) 115.3 (21.0) 0.38 0.54 0.004

B.

AQ(-) AQ(+) Group differencea

n=33 n=16 F(1, 46) p h2p

dMMN amplitude [mV] 5.2 (2.1) 4.6 (1.7) 0.38 0.54 0.008

dMMN latency [msec] 178.0 (20.0) 176.1 (17.2) 0.001 0.98 < 0.001

fMMN amplitude [mV] 5.1 (2.0) 4.7 (1.6) 0.25 0.62 0.005

fMMN latency [msec] 120.8 (21.8) 104.1 (14.5) 9.8 0.003** 0.18
A. Parameters of H vs ARMS, B. AQ(-) vs AQ(+). Values represent MMN peak amplitudes [mV] and latencies [msec] for each group [mean (SD)].
ARMS, at-risk mental state; AQ, Autism-Spectrum Quotient; dMMN, duration mismatch negativity; fMMN, frequency mismatch negativity; H, healthy controls.
aDifferences between groups were examined by ANCOVA with age as a covariate (†p<0.1, **p<0.01).
Bold values denote significant differences.
FIGURE 1

Grand average dMMN and fMMN waveforms at Fz. (A, B) show the dMMN and fMMN waveforms of the H (black) and ARMS (blue) groups.
(C, D) show the dMMN and fMMN waveforms of the AQ(-) (green) and AQ(+) (red) ARMS subgroups. ARMS, at-risk mental state; AQ, Autism
-Spectrum Quotient; dMMN, duration mismatch negativity; fMMN, frequency mismatch negativity; H, healthy controls.
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implicated in individuals at risk for psychosis (67), there was no

evidence to suggest similar abnormalities in ASD. Based on these

considerations, we considered that employing both paradigms would

enhance discriminatory power.

To date, as far as we know, only one MMN study has focused on

both ASD and psychosis high-risk status; Di Lorenzo et al. (68)

compared dMMN and fMMN in youth (9–18 years old) affected by

ASD with and without co-occurrent APS (a DSM-5 criteria, and it is

nearly equivalent to APS in the CAARMS). They found reduced

amplitude particularly for dMMN and somewhat prolonged fMMN

latency in the whole ASD group (n = 37), but the presence of a

concurrent APS condition (n = 16) did not affect their MMN

findings. However, their results suggested an interaction of ASD

and subthreshold psychotic status in showing a robust relationship

between higher levels of autistic symptoms and reduced fMMN

latency (r = -0.81, p < 0.001) specifically in the ASD+APS group.

Due to differences in strategy and small sample size of subjects with

both ASD and high-risk features (n = 16 also for this study), it is

difficult to directly compare their results with ours; the current

study was conducted in the opposite direction (i.e., ARMS cohort as

a parent population) to examine MMN features in subjects with

overlapping phenotype of ASD and ARMS. Nevertheless, it may be

worth noting that both studies suggest a significant role for fMMN

latency in the severity of ASD traits, which should be further tested

in larger cohorts.

Consistent with previous studies showing reduced dMMN

amplitude in various stages of psychosis (i.e., ARMS, FES, and

chronic schizophrenia) (29–35), the dMMN amplitude of the entire

ARMS group in this study tended to be reduced compared to the H

group (Table 3A, Figure 1A). This finding may reflect the deviation

detection disability of the patients in the later part of the temporal time

window, which corresponds to the duration of auditory sensory

memory in patients with schizophrenia (69, 70). In contrast, as

demonstrated in the present (Table 3A, Figure 1B) and previous

(36, 40) studies, the fMMN amplitude does not seem to change in the

ARMS group. Similar patterns of reduced dMMN and intact fMMN
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amplitudes have also been reported in ASD patients (45), implicating

that MMN amplitude cannot be useful to distinguish ARMS

individuals with ASD traits. Indeed, reduced dMMN amplitude

seems to commonly correlate with ASD traits assessed by poor

theory of mind in schizophrenia patients, their first-degree relatives,

and healthy subjects (71). These findings may also be consistent with a

recent study using emotion-related visual task that demonstrated

significant association between the interpersonal difficulty, which

was commonly indexed as ASD and SSD traits, and MMN

amplitude in healthy adults (72).

One major finding of the present study was the shorter fMMN

latency in AQ(+) than in AQ(-) ARMS subgroups. Further, the

fMMN latency was negatively correlated with the AQ-J score,

especially in Communication subscale, in the entire ARMS group.

Regarding MMN latency, previous findings have been inconsistent or

not well-documented in the SSD or ARMS (41–44). However, it has

been hypothesized that MMN indicates the functional state of NMDA

(N-methyl-d-aspartate) receptor-mediated neurotransmission, which

is associated with the pathophysiology of psychosis (73). NMDA

antagonists, such as ketamine and phencyclidine, induce transient

schizophrenia-like symptoms in healthy participants and also cause a

reduction in dMMN/fMMN amplitude and prolonged fMMN latency

(74). Importantly, such prolonged latency is contrary to the finding in

ASD, where fMMN latency is shortened at least in certain subtypes

(45). Given the role of MMN in predictive coding, where deviant

stimulus cause an excessive neural response (75), it is plausible that

patients with ASD traits who are characterized by auditory

hypersensitivity (76) exhibit a short MMN latency. Taken together,

as demonstrated in the present finding, the fMMN latency could help

identify underlying ASD traits within the ARMS cohort and guide

more tailored interventions. On the other hand, deficiency of

communication or interpersonal difficulty, which was associated

with shortened fMMN latency in this study, can be a shared ASD

and SSD trait phenotype (72). A previous magnetoencephalography

study suggested that such phenotype may be associated with dMMN

latency ‘delay’ (77). Thus, the role of MMN latency in ASD traits
FIGURE 2

Relationships between fMMN latency and AQ-J total (A) or communication subscale (B) scores. ARMS, at-risk mental state; AQ-J, Autism-Spectrum
Quotient Japanese version; fMMN, frequency mismatch negativity.
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appears to be complex and further research on influencing factors

(e.g., stimulation paradigms, demographic and clinical factors) will

be required.

To provide a more detailed explanation, within the predictive-

coding framework, MMN reflects the brain’s automatic comparison

between top-down priors and bottom-up sensory input (78). In

schizophrenia and ARMS, reduced dMMN amplitude is thought to

be an imprecise index and impaired deviance detection (79),

consistent with NMDA-receptor hypofunction and frontotemporal

dysconnectivity. Shorter fMMN latency in our AQ(+) subgroup aligns

with this “hypo-prior” account: a weaker predictive model would

allow deviant tones to breach the threshold for prediction error more

rapidly, producing an earlier MMN peak (47, 80). The significant

negative correlation between fMMN latency and AQ-Communication

further suggests that accelerated prediction-error signaling may

underly the social-communication difficulties characteristic of

ARMS individuals with ASD traits. Importantly, dMMN amplitude

remained blunted across all ARMS participants (although only at a

trend level), implying that psychosis-related deviance-detection

deficits coexist with ASD-related timing shifts in those who carry

both liabilities. These double-dissociated alterations—latency

shortening in ASD trait carriers, amplitude reduction in ARMS

more broadly—support the notion of a graded neurodevelopmental

continuum rather than mutually exclusive pathophysiology.

Elucidating such mechanistic heterogeneity is critical for refining

early-intervention strategies and for developing MMN-based

biomarkers that move beyond diagnosis to personalized stratification.

Although ASD and SSD present distinct clinical features, they

may share a common neurobiological mechanism—aberrant

prediction error processing (47). Within the predictive coding

framework, ASD is associated with weak priors, while

schizophrenia is linked to overestimation of prediction errors

(80). MMN serves as a neural marker of this process; although it

may reflect shared neurophysiological mechanisms, it also has the

potential to serve as a valuable tool for differentiation depending on

the paradigm employed.

In our cohort, the AQ(+) subgroup exhibited significantly shorter

fMMN latency than the AQ(–) subgroup, whereas no group

differences were observed in PANSS, BACS, mGAF and SCoRS (see

Table 2). These findings suggested that the shortened latency was not a

marker of general ARMS severity but rather reflected an ASD-linked

alteration in pre-attentive sensory prediction. Consistent with this

interpretation, fMMN latency correlated negatively with the AQ-

Communication subscale (r = –0.46, p = 0.003), while showing no

association with PANSS, BACS, mGAF and SCoRS (see

Supplementary Table 7). Predictive-coding accounts posit that ASD

traits are characterized by overly precise sensory priors, leading novel

inputs to be processed more rapidly (66); such a mechanism could

explain the shortened latency we observed and its specific link to

impaired social-communication skills.

This study has some limitations that need to be addressed. First,

the sample size was relatively small, limiting the statistical power and

generalizability of our results. Second, although the present cohort

included more females than males, supplementary analyses indicated

that sex had no significant effect on MMN measures and did not
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influence the main AQ-related findings. These results suggest that the

observed effects are unlikely to be attributable to sampling bias.

Nonetheless, future studies with more balanced sex ratios are

warranted to confirm the generalizability of the findings. Third,

eight ARMS patients were taking antipsychotic medication. Two

supplementary analyses were performed, and the main results

remained unchanged even when the dosage was added as a

covariate, and even when patients receiving medication were

excluded, the significant difference remained. MMN is less

susceptible to the effects of antipsychotics, so it was included in the

study, however, for a more rigorous confirmation, it would be

desirable to report the results using a cohort consisting only drug-

naive participants. Fourth, there were significant group differences in

age and premorbid IQ (HC > ARMS), which could influence MMN

in both healthy individuals and ARMS. However, there was no

difference in age and premorbid IQ between the AQ(-) and AQ(+)

groups. Hence, the essential findings of this study are unlikely to have

been affected. Fifth, in this study, the ASD traits were assessed using

the AQ-J. Although the AQ is a widely used and reliable screening

test (48), and validation study was also performed in Japanese version

(49), it can only assess the ASD “traits”. For a more accurate

assessment, structured tests, for example Autism Diagnostic

Observation Schedule, Second Edition (ADOS-2) (81) should be

used, and the clinical course, symptoms, and past developmental

history should also be rigorously recorded by caregivers. Sixth,

because a part of participants was not followed longitudinally to

confirm formal diagnoses, the present MMN findings should be

viewed only as a screening tool rather than a diagnostic marker.

Prospective studies combining MMN with standardized follow-up

assessments are warranted to establish diagnostic utility. Seventh, we

acknowledge that the classical oddball paradigm does not completely

rule out the contribution of stimulus-specific adaptation (SSA). To

more rigorously disentangle genuine MMN from N1 adaptation,

future studies should consider incorporating paradigms such as the

Equiprobable Control Paradigm (82), which better control for

refractoriness effects. Eighth, we lacked a reverse-control

(counterbalanced) oddball design. We understood this was the

most stringent way, however each participant already completed

two 1500 trial blocks, and the recording time to include two

additional reverse blocks would have substantially increased

participant fatigue and artefact contamination, as has been

previously reported in long EEG sessions (83). Ninth, our data

lacked onset latency data. Peak-latency was retained as our primary

result because simulation work indicates that onset-latency shifts

were essentially the same extent as peak-latency shifts (84).

In conclusion, our findings support the potential role of MMN

as an objective biomarker in clinical settings for early intervention,

where the shortening of the fMMN latency in ARMS suggests the

possibility of underlying ASD traits. In other words, if there is a

shortened fMMN latency in an ARMS case, it could be a trigger for

investigating the possibility of ASD traits lurking in the background.

As the MMN can be measured easily and noninvasively, our

findings may be useful in providing appropriate responses to

patients, such as introducing social support tailored to individuals

with ASD traits.
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