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Background: Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder with

unclear etiology, involving complex interactions between genetic and

environmental factors. Current diagnostic methods rely on subjective clinical

assessments, and existing treatments often fail to address cognitive and negative

symptoms adequately. Identifying key biomarkers for SCZ is crucial for improving

diagnosis and developing targeted therapies.

Methods: This study integrated bioinformatics analysis and machine learning

approaches to identify potential biomarkers for SCZ. Transcriptomic data from five

independent cohorts were obtained from the GEO database. Differential expression

analysis and Robust Rank Aggregation (RRA) were used to identify significant

differentially expressed genes (DEGs). Protein-protein interaction (PPI) network,

Least Absolute Shrinkage and Selection Operator (Lasso) regression and Random

Forest (RF) were employed to screen for hub genes. The diagnostic model was

constructed using logistic regression. The receiver operating characteristic (ROC)

curve was used to evaluate diagnostic accuracy of the model, and nomograms and

calibration curves were performed to evaluate their clinical applicability. Functional

enrichment analyses and single-sample Gene Set Enrichment Analysis (ssGSEA)

were conducted to explore the underlying mechanisms of the identified hub genes.

Results: S100A9 and VGLL1 were determined as potential diagnostic biomarkers

for SCZ. The diagnostic model demonstrated robust diagnostic performance in

the training cohorts (AUC = 0.806) and external validation cohorts (AUC = 0.702,

0.666 and 0.739). Functional enrichment analyses revealed that DEGs related to

VGLL1 and S100A9 were primarily involved in immune system regulation and

signaling pathways such as PI3K-Akt signaling pathway. ssGSEA showed

significant increases in the infiltration levels of five immune cell types

(CD56bright natural killer cells, MDSCs, mast cells, natural killer cells, and

plasmacytoid dendritic cells) in SCZ patients, with strong positive correlations

between S100A9 and these immune cell infiltrations.

Conclusion: Our study identified S100A9 and VGLL1 as potential biomarkers for

SCZ, highlighting their roles in immune regulation. These findings provide new

insights into the pathogenesis of SCZ and suggest potential diagnostic targets.
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1 Introduction

Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder

affecting over 20 million individuals worldwide, characterized by a

triad of positive symptoms (e.g., hallucinations), negative symptoms

(e.g., social withdrawal), and cognitive dysfunction (1, 2). Despite its

profound societal burden, the etiology of SCZ remains poorly

understood. It is hypothesized that SCZ is associated with

dysregulation of neurotransmission, defects in synaptic plasticity,

and interactions between the nervous and immune systems (3).

Current diagnosis relies on subjective clinical evaluations, while

first-line antipsychotics (primarily targeting dopamine D2

receptors) exhibit variable efficacy and often fail to ameliorate

cognitive or negative symptoms, accompanied by metabolic and

extrapyramidal side effects (4). These limitations underscore the

critical need for objective diagnostic tools and mechanism-

based therapies.

The identification of biomarkers could bridge this gap by

elucidating disease pathways and enabling targeted interventions.

In oncology, biomarkers such as PD-L1 expression guide

immunotherapy selection (5), while in neurodegenerative diseases,

cerebrospinal fluid Ab42/tau ratios aid Alzheimer’s diagnosis (6). In

contrast, SCZ research faces a stark biomarker deficit. Although

studies have proposed potential candidates (e.g., elevated IL-6 levels,

hippocampal volume reduction, or polygenic risk scores) (7–9), none

have achieved clinical validation due to heterogeneity across cohorts,

low effect sizes, and poor reproducibility. This disparity highlights the

urgency of discovering robust biomarkers specific to SCZ’s

multifactorial pathology.

Emerging advances in machine learning provide powerful tools

to decode complex biomarker patterns from high-dimensional

omics data. Machine learning algorithms such as Least Absolute

Shrinkage and Selection Operator (Lasso) regression and Random

Forest (RF) have demonstrated success in other neuropsychiatric

disorders (10). For example, Lasso-based models identified blood

mRNA biomarkers predictive of major depressive disorder (11),

while RF classifiers achieved >70% accuracy in distinguishing

autism subtypes using metabolomic profiles (12). In addition,

preliminary machine learning have linked gene co-expression

networks to SCZ to stratify patient subgroups (13). This study

aims to combine comprehensive bioinformatics analyses with

machine learning to identify hub genes and molecular pathways
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from transcriptomic datasets. Our findings seek to unravel potential

mechanisms underlying SCZ pathogenesis and propose novel

biomarker candidates for diagnosis and therapeutic development.
2 Materials and methods

2.1 Data acquisition and integration

This study retrieved five SCZ-related microarray datasets

(GSE12654, GSE21935, GSE17612, GSE53987, GSE38481) from

the Gene Expression Omnibus (GEO) database, comprising a

total of 224 brain tissue samples (112 SCZ and 112 controls) and

37 whole blood sample (22 SCZ and 15 controls). Detailed dataset

information is provided in Table 1. Quantile normalization was

performed using the “limma” package to eliminate technical

variability, and the ComBat algorithm was applied to correct

inter-platform batch effects. After quality control, GSE12654 and

GSE21935 were merged as the training cohort, while GSE17612,

GSE53987 and GSE38481 served as independent external validation

cohorts. The effectiveness of data integration was validated using

boxplots and principal component analysis (PCA) generated

by ggplot2.
2.2 Identification of differentially expressed
genes

Differential expression analysis was conducted on the training

cohort, GSE12654 and GSE21935 using the “limma” package, with

screening criteria set at p-value <0.05 and |logFC| > 0.585 (14, 15).

Heatmap and volcano plots of DEGs were generated using

“pheatmap” and “ggplot2” packages, respectively.
2.3 Robust rank aggregation analysis

The RRA algorithm integrates gene ranking information across

datasets via a probabilistic model to identify consistently significant

DEGs across multiple independent datasets. In this study, RRA was

applied to rank up- and down-regulated DEGs from all datasets

based on logFC. Aggregated ranking scores were used to compute
TABLE 1 Detailed information of GEO datasets.

Datasets Platforms Sample source Control SCZ Type

GSE12654 GPL8300 prefrontal cortex (BA10) 15 13 array

GSE21935 GPL570 temporal cortex (BA22) 19 23 array

GSE17612 GPL570 prefrontal cortex (BA10) 23 28 array

GSE53987 GPL570
Hippocampus

Pre-frontal cortex (BA46)
Associative striatum

55 48 array

GSE38481 GPL6883 Whole blood 22 15 array
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p-value, and genes with p-value <0.05 and |logFC| > 0.585 were

selected as DEGs. RRA analysis was implemented using the

“RobustRankAggreg” package.
2.4 Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

using the “clusterProfiler” and “org.Hs.eg.db” packages.

Significantly enriched GO terms and KEGG pathways were

defined as those with p-value <0.05.
2.5 Protein-protein interaction network

PPI networks of DEGs were constructed using the STRING

database and visualized with Cytoscape software. Feature DEGs

were identified using 10 topological network algorithms (MCC,

MNC, etc) via the cytoHubba plugin.
2.6 Machine learning

Lasso regression and RF were employed for hub genes selection.

Lasso regression is a linear regression method used for feature selection

and sparse modeling. It incorporates an L1 regularization term into the

objective function to select fewer features, thereby reducing the risk of

overfitting. In this study, Lasso regression was implemented using the

“glmnet” package with the following parameters: family = binomial,

type.measure = class, alpha = 1, and nfold = 10. RF, an ensemble

learning method based on decision trees, was employed to capture

non-linear relationships and assess feature importance. By constructing

multiple decision trees and combining their predictions, RF enhances

model accuracy and controls overfitting. The RF algorithm was

performed using the “randomForest” package with ntree = 500.

Feature importance was evaluated using the Gini coefficient, with a

threshold of >2 used for selecting features DEGs.
2.7 Construction and validation of the
diagnostic model

We utilized the “glm” function from the “glmnet” package to

construct a logistic regression model. This function is a standard

tool for fitting generalized linear models, particularly suitable for

logistic regression analysis in binary classification problems. The

expression level of feature DEGs was severed as the independent

variable, with the disease diagnosis outcome (SCZ = 1, Control = 0)

as the dependent variable. The parameter was set as family =

binomial (link=‘logit’). The formula of the model: y= b0+b1*X1+

b 2*X2+ b 3*X3+⋯+bi*Xi (b was coefficient, X was the expression

level of genes). Diagnostic performance was evaluated via receiver

operating characteristic (ROC) curve in the training cohort and
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external validation cohorts. The nomogram for predicting disease

risk was constructed using the “rms” package, and the clinical

applicability of the model was assessed through a calibration curve.
2.8 Immune infiltration analysis

single-sample gene set enrichment analysis (ssGSEA) quantified

infiltration levels of 28 immune cell subtypes (16, 17). Wilcoxon

rank-sum test was used to compare immune cell infiltration

between SCZ patients and controls. Spearman’s rank correlation

analyzed associations between hub genes and immune cells.
3 Results

3.1 Identification of DEGs

The study workflow was illustrated in Figure 1. After batch effect

correction, showed significant improvements in sample clustering

(Figures 2A-D). In the training cohort, a total of 29 DEGs were

identified, including 16 downregulated and 13 upregulated genes

(Figure 2E, Supplementary Table S1). Before RRA analysis,

differential expression analyses were conducted separately on the

GSE12654 and GSE21935 datasets, and the results were shown by

volcano plots (Figures 3A, B). After integration using the RRA

algorithm, a total of 98 DEGs were identified, comprising 41

downregulated and 57 upregulated genes (Figure 3C, Supplementary

Table S2). Taking the intersection of these DEGs, we ultimately

identified 22 significant DEGs (Figure 3D).
3.2 Enrichment analysis of DEGs

Subsequently, GO and KEGG enrichment analyses were

performed on the 22 significant DEGs. The biological processes

(BP) with high significance were related to nervous system

development and function, including glial cell differentiation,

astrocyte differentiation; Cellular component (CC) showed

significant enrichment of DEGs in secretory granule lumen,

collagen−containing extracellular matrix; Molecular function

(MF) revealed significant enrichment of DEGs in carboxylic acid

binding and organic acid binding (Figure 4A). KEGG pathway

analysis further indicated that DEGs were enriched in several key

signaling pathways involved in biological processes, such as IL-17,

TNF and Hippo signaling pathways (Figure 4B).
3.3 Identification of hub genes

To systematically identify hub genes associated with disease

pathogenesis, we first constructed PPI network to visualize the

interactions among 22 DEGs. The results showed that 11 of the 22

DEGs had interactions (Figure 5A). Using 10 topological network
frontiersin.org
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algorithms to rank genes, the intersection of the top 10 genes from

each algorithm was taken, with a total of 7 genes (S100A9, CHI3L1,

WWTR1, VGLL1, SERPINA3, S100A8, PVALB) identified as

feature DEGs (Figure 5B). Subsequently, lasso regression and RF

were employed to identify feature DEGs. Lasso regression analysis
Frontiers in Psychiatry 04
selected 13 feature DEGs (MAG, VGLL1, S100A8, SPRR1A,

ZNF345, S100A9, USH1C, NMU, SH2D2A, GPR45, SERPINA3,

ARHGEF5, IGFBP2) (Figures 5C, D). while RF identified six feature

DEGs (SH2D2A, WWTR1, MAG, VGLL1, KLK6, and S100A9)

with Gini coefficients >2 (Figures 5E, F). Ultimately, through the
FIGURE 1

The study workflow.
FIGURE 2

Batch effect correction. (A, B) Boxplots of gene expression distributions before (A) and after (B) batch effect correction using the ComBat algorithm.
(C, D) PCA before (C) and after (D) batch correction using the ComBat algorithm. (E) Heatmap of 29 DEGs in the training cohort.
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intersection analysis of these features DEG subsets, two DEGs

(S100A9 and VGLL1) were determined as the optimal hub genes

for SCZ (Figure 6A).
3.4 Construction and validation of the
diagnostic model

The diagnostic value of the hub genes in SCZ was further

evaluated. In the training cohort, S100A9 and VGLL1 were
Frontiers in Psychiatry 05
significantly upregulated in SCZ groups (Figure 6B). The area

under curve (AUC) values of ROC curve for these genes was

0.702 and 0.694, respectively (Figure 6C), indicating their

diagnostic potential. Subsequently, a logistic diagnostic model was

constructed based on the expression levels of S100A9 and VGLL1,

with the formula: y=−1.4815 + 1.2469×VGLL1 + 0.4252×S100A9.

The model achieved an AUC of 0.806 in the training cohort,

demonstrating good discriminatory ability for SCZ (Figure 6D).

Subsequently, we performed external validation of the predictive

model’s discriminative performance using gene expression profiles
FIGURE 3

RRA analysis. (A, B) Volcano plots of DEGs in GSE12654 and GSE21935 dataset. Red and green dots represent upregulated and downregulated DEGs,
respectively. (C) Heatmap of 50 DEGs (25 upregulated and 25 downregulated) identified through RRA analysis. (D) Venn diagram showing the
intersection of DEGs from the training cohort and RRA analysis.
FIGURE 4

Functional enrichment analysis of 22 DEGs. (A) GO analysis of 22 DEGs. (B) KEGG pathways analysis of 22 DEGs.
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of independent validation cohorts (GSE17612, GSE53987, and

GSE38481). The results demonstrated that the model achieved

AUC values of 0.702, 0.666, and 0.739 in the three external

cohorts, respectively, further confirming its diagnostic efficacy

and generalizability across independent datasets (Figures 6E-G).

Additionally, we constructed a nomogram to predict the risk of SCZ

(Figure 7A), and calibration curve analysis showed high consistency

between predicted and actual SCZ risks (Figure 7B).
3.5 S100A9-related DEGs and functional
enrichment analysis

To elucidate the potential molecular mechanisms of hub genes

in the development of SCZ, we divided the SCZ samples in the

training cohort into high- and low-expression groups based on the

median expression of the hub genes and performed differential

expression and functional enrichment analyses. Based on the

median expression of S100A9, a total of 211 DEGs were

identified, including 67 downregulated and 144 upregulated genes

(Figure 8A, Supplementary Table S3). GO analysis (Figure 8B)

indicated that S100A9-related DEGs were primarily involved in BP

related to immune system regulation, such as regulation of immune

effector process, leukocyte cell−cell adhesion, and cell activation

involved in immune response. In terms of CC, DEGs were

significantly enriched in external side of the plasma membrane

and collagen−containing extracellular matrix. Regarding MF, DEGs

were significantly enriched in cytokine binding, immune receptor
Frontiers in Psychiatry 06
activity, and cell adhesion mediator activity. Additionally, KEGG

pathway analysis showed that DEGs were primarily involved in the

PI3K-Akt, HIF-1, and TNF signaling pathways (Figure 8C).
3.6 VGLL1-related DEGs and functional
enrichment analysis

Based on the median expression of VGLL1, a total of 54 DEGs

were identified, including 30 downregulated and 24 upregulated

genes (Figure 8D, Supplementary Table S4). GO analysis showed

that the main BP enriched by DEGs were also related to the immune

system, such as leukocyte cell-cell adhesion and leukocyte adhesion

to vascular endothelial cells; in addition, collagen-containing

extracellular matrix, transport vesicles, growth factor activity, and

heparin binding were significantly enriched in CC and MF

(Figure 8E). KEGG pathway analysis further revealed that DEGs

were significantly enriched in PI3K-Akt, TNF and IL-17 signaling

pathways (Figure 8F). These results, similar to those of S100A9-

related DEGs, suggest the important regulatory roles of the immune

system and signaling pathways in the pathogenesis of SCZ.
3.7 Immune infiltration analysis

Given the enrichment analysis results indicating the

involvement of hub genes in immune system responses, we

further employed ssGSEA to analyze the infiltration levels of 28
FIGURE 5

Identification of hub genes using PPI networks and machine learning. (A) PPI network of DEGs. (B) Upset of the top 10 DEGs from 10 topological
network algorithms. (C, D) Lasso regression to identify 13 feature DEGs. (E, F) RF algorithm selected 6 feature DEGs.
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immune cell types in the training cohort. The analysis revealed

significant increases in the infiltration levels of five immune cell

types in the SCZ group, including CD56bright natural killer cells,

MDSCs, mast cells, natural killer cells, and plasmacytoid dendritic

cells (Figure 9A). Correlation analysis further showed that S100A9

was significantly positively correlated with these immune cells,

while VGLL1 was negatively correlated with plasmacytoid

dendritic cells (Figures 9B, C). Collectively, our results suggest
Frontiers in Psychiatry 07
that hub genes may be involved in the pathogenesis of SCZ

through the regulation of immune cell infiltration.
4 Discussion

SCZ, a complex neuropsychiatric disorder with an incompletely

elucidated etiology, arises from intricate interactions between
FIGURE 6

Identification and validation of the diagnostic model. (A) Intersection of feature DEGs from PPI network, lasso regression and RF algorithm. (B) Boxplots
showing the differential expression of S100A9 and VGLL1 in training cohort. ** p-value <0.01. (C) ROC curves for individual genes in training cohort. (D) ROC
curve for diagnostic model in training cohort. (E–G) External validation in GSE17612 (E), GSE53987 (F) and GSE38481 (G).
FIGURE 7

Nomogram and calibration curves for the diagnostic model. (A) The nomogram was used to predict the incidence of SCZ. (B) The calibration curve
for evaluated the predictive power of the model.
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genetic predispositions and environmental factors (18). Emerging

evidence highlights its association with dysregulated gene

expression and immune system dysfunction (19). Although

numerous studies have identified multiple genetic loci linked to

SCZ, the critical genes driving its pathogenesis remain to be fully

characterized (20). Given the substantial burden imposed by SCZ,

the identification of novel diagnostic targets, coupled with

exploration of the diversity and complexity of the immune

microenvironment, is pivotal for achieving early diagnosis.

In this study, we employed integrated bioinformatics and

machine learning to systematically screen SCZ-related biomarkers

across multiple dimensions. Initially, differential expression analysis

combined with RRA algorithm identified 22 significant DEGs.

Subsequently the hub genes were further cross-identified through

the PPI network and the RF and LASSO regression. Ultimately, we

determined VGLL1 and S100A9 as potential diagnostic biomarkers

for SCZ. A logistic regression model based on hub genes

demonstrated good diagnostic performance in both the training

cohort (AUC = 0.806) and external validation cohorts

(AUC = 0.702 and 0.666), highlighting their clinical potential as

SCZ biomarkers. Additionally, a nomogram based on the hub genes

further demonstrated their potential for clinical application.

Subsequently, we explored the potential mechanisms of the hub

genes in SCZ pathogenesis. Enrichment analysis revealed that

S100A9- and VGLL1-related DEGs were primarily involved in
Frontiers in Psychiatry 08
immune system regulation and key signaling pathways, including

the PI3K-Akt and TNF signaling pathway. ssGSEA showed

significant increases in the infiltration levels of five immune cell

types in SCZ patients, including CD56bright natural killer cells,

MDSCs, mast cells, natural killer cells, and plasmacytoid dendritic

cells. Notably, S100A9 exhibited strong positive correlations with

the infiltration of these immune cells, while VGLL1 showed a

negative correlation with plasmacytoid dendritic cells.

The S100 protein family, implicated in neuroinflammation and

astrocyte activation, is recognized as a contributor to schizophrenia

pathogenesis. S100 proteins are significantly upregulated in the brain

tissue, blood, and other body fluids of SCZ patients (21). S100A9, a

pro-inflammatory calcium-binding protein within this family, is

involved in various intracellular and extracellular biological

processes, including cell differentiation, inflammatory responses,

immune regulation, and intercellular signaling (22, 23). Recent

studies have highlighted the role of S100A9 in the nervous system,

particularly in neuropsychiatric disorders (24, 25). A recent study

revealed that S100A9 drove microglial hyperactivation via the TLR4/

NF-kB pathway, correlating with elevated neuroinflammatory

markers in the cerebrospinal fluid of SCZ patients (26, 27). As a

marker for MDSCs, S100A9 modulated MDSC-mediated immune

suppression by binding to TLR4 and RAGE (28, 29). CD56bright

natural killer cells, a subset of natural killer cells primarily secreting

cytokines -IFN-g, exhibit increased percentages in acutely relapsed
FIGURE 8

Functional enrichment analysis of hub-related DEGs. (A) Heatmap of S100A9-related DEGs. (B) GO analysis of S100A9-related DEGs. (C) KEGG
pathways analysis of S100A9-related DEGs. (D) Heatmap of VGLL1-related DEGs. (E) GO analysis of VGLL1-related DEGs. (F) KEGG pathways analysis
of VGLL1-related DEGs.
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SCZ patients, potentially serving as a disease trait marker (30, 31).

Additionally, research found that S100A9 enhanced IFN-g
production in NK cells via p38 MAPK pathway activation (32).

Plasmacytoid dendritic cells are an important part of the immune

system and are responsible for antigen presentation and cytokine

secretion. Studies have shown that S100A9 was expressed on the

surface of plasmacytoid dendritic cells, and when activated, S100A9

will be actively transported to the outside of the membrane,

indicating that it may have biological functions (33). However, its

exact role in plasmacytoid dendritic cells remains to be further

confirmed. In summary, S100A9 may play an important role in

immune regulation of schizophrenia through its interaction with

multiple immune cells.
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VGLL1, a transcriptional coactivator, regulates cell proliferation

and differentiation by interacting with TEAD4, a transcription factor in

the Hippo signaling pathway (34). Although its direct role in immune

cells remains unclear, KEGG analysis indicated VGLL1-related DEGs

were enriched in the PI3K-Akt signaling pathway, which is a crucial

pathway for the activation and proliferation of various immune cells

(35, 36). Thus, VGLL1 may modulate immune cell functions by

influencing the PI3K-Akt signaling pathway. MDSCs suppress the

functions of NK cells and T cells by secreting TGF-b and IL-10 (37),

and VGLL1 may indirectly affect the immunosuppressive functions of

MDSCs by regulating these cytokine interactions. While no studies

have explicitly linked VGLL1 to SCZmechanisms, our findings provide

initial insights into this point. Future research should investigate the
FIGURE 9

Immune infiltration analysis. (A) The violin plot showing the differences in immune infiltrating of 28 immune cell subtypes between SCZ and control
groups. (B) Correlation between hub genes and 28 immune cell subtypes. (C) Correlation between hub genes and five significantly infiltrating
immune cells.
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interactions between VGLL1 and immune regulation, as well as its role

in the pathogenesis of SCZ, to determine whether it can serve as a

potential target for diagnosis and treatment.

This study identified VGLL1 and S100A9 as novel diagnostic

biomarkers for SCZ through integrated bioinformatics and machine

learning, revealing their potential roles in disease progression through

immune regulation. However, there are still some limitations. Firstly,

potential limitations exist in the bioinformatics analytical methodology.

For instance, data preprocessing approaches may introduce bias, as

data selection and normalization procedures could lead to divergent

analytical outcomes. Furthermore, the selected analytical tools (e.g.,

limma for differential expression analysis) have inherent limitations in

their ability to fully capture the complexity of biological systems due to

their predefined algorithms and assumptions. Second, all samples were

derived from different public datasets, which may introduce

heterogeneity in disease subtypes and clinical characteristics. This

necessitates validation through independent clinical cohorts to ensure

the robustness and generalizability of our findings. Thirdly, functional

experiments are needed to elucidate the causal roles of the hub genes in

SCZ. Finally, in future research, we could leverage single-cell

sequencing to dissect the molecular interactions between specific

brain regions and immune subpopulations, offering new directions

for precision treatment of SCZ.
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