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Most methodological Polygenic Risk Score (PRS)-related papers explain the

laborious process of computing the PRS in great depth. Afterwards, as a last

step, it is generally described that to test a possible association between a PRS

and a trait of interest, an analysis through regression models (linear or logistic,

depending on data type) should be carried out adjusting for covariates (e.g., sex,

age, clinical information, or genetic ancestry-based Principal Components).

When covariates are included, measurements such as the increment on the

variance explained by the addition of the PRS to the model or the significance of

the PRS term are usually reported. However, the association study between PRSs

and a trait is a complex concern that requires proper modeling and analysis, since

interactions and validation conditions represent crucial aspects. Even though

excellent papers explain how to use and interpret the results obtained with such

regression models, sometimes important information from the previously

calculated PRS may be lost, partly due to the automation of analyses. With this

guide, we intend to fill a gap in association studies between PRSs and a trait and

to facilitate the analysis, obtaining statistically correct results. It contains a

motivating real data case analyzed exhaustively to illustrate how to face a real

analysis. Besides, it is accompanied by four examples, called Working Examples,

which present different situations the researcher may encounter along with the R

code for analyzing all these data sets and the corresponding application of the

steps in this guide.
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1 Introduction

A Polygenic Risk Score (PRS) is an estimated value of an

individual’s genetic susceptibility to a trait, condition, or disease,

and it is calculated based on the results of a Genome-Wide

Association Study (GWAS). Once it is calculated, a typical

analysis includes testing for association between the PRS and a

trait through a linear or logistic regression model. In the most

common situation, the models include covariates such as sex, age,

clinical diagnosis, or genetic ancestry-based Principal Components

used to control for potential population substructure, among others.

Then, to evaluate the effect of the PRS alone, two models are usually

considered: the so-called null or baseline model and the full model.

The null model consists of the trait as the response variable and the

covariates as predictor variables. The full model incorporates the

PRS into the null model as a predictor. They are nested models,

usually with only one different term, the PRS. Then, both models

are analyzed, and the significance of the PRS and the increase in the

explained variance between the models are evaluated. Usually, the

value of the coefficient of determination R2, or the adjusted

coefficient of determination, R2
adj, is reported in the case of a

continuous trait. Likewise, if it is a binary trait, the value of a

pseudo-R2 coefficient of Nagelkerke is reported.

There are different approaches to computing a PRS. The

traditional Clumping + Thresholding (C+T) method enables the

selection of independent variants through LD-pruning to avoid

redundancy and the inclusion of more or less significantly

associated variants with the discovery trait by establishing

different GWAS p-value thresholds, often resulting in the

generation of several PRSs according to the thresholds used (1).

However, more advanced methods have been developed recently

that re-weight the SNP effect sizes from the GWAS summary

statistics, applying some form of shrinkage and usually allowing

for obtaining a single PRS (2).

Although the literature includes excellent papers explaining

how to use and interpret regression models (3–9), a guideline for

conducting PRS association studies is necessary to assist non-

statistician researchers in performing the statistical analyses

correctly. Below are the guidelines for conducting these

association analyses after calculating the PRS. Therefore, this

guide does not focus on the calculation process used to obtain a

PRS but rather on analyzing the association between a trait and a

previously calculated PRS. This guide features a detailed real case to

illustrate how to approach a real analysis. Additionally, it is

accompanied by four examples, called Working Examples, which

gradually present all the steps explained in increasing order of

difficulty. Moreover, the data sets, R code for the analysis, and PDF

files containing the results with software output are available at:

https://github.com/ItziarI/SupportingMaterial-for-the-guide.

The definitions needed to follow the next sections are reported

in Box 1. The different steps of the proposed guide are presented in

the next section and summarized in Figure 1.
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2 Guidelines for the association
analysis

2.1 Which full model should be
considered?

The researcher should be aware of the possibility of different full

models. In certain situations, it is necessary to consider models that

incorporate interaction terms; however, only those interactions with

biomedical meaning or interest for the researcher should be

considered. Therefore, the number of models with interactions

will not be large, as generally only those related to covariates such

as sex, diagnosis, or age are considered. Therefore, for each PRS we

can assume different full models. For instance, if there are two

categorical covariates of interest, such as sex and diagnosis, four

different full models (FM) can be considered (first panel

in Figure 1):
• FMWI: the model without interaction terms.

• FMSex: the model with the interaction term PRS×Sex.

• FMDiag: the model with the interaction term PRS×Diag.

• FMSex/Diag: the model including the interaction terms

PRS×Sex and PRS×Diag.
2.2 When and how to make a PRS ranking?

This section should only be considered if the researcher has used

a PRS calculation method that has generated several PRSs to analyze

(e.g., using several p-value thresholds in the C+T approach) and

wants to determine which of these PRSs are of greatest interest before

performing the association analysis to avoid having to analyze all of

them. Instead, if the method generates only a single PRS, this step

should be skipped, and the next step is in subsection 2.3.

We propose a semi-automated procedure to reduce the number

of PRSs that need detailed analysis. If the trait is continuous, for

each PRS and each possible full model (including and excluding

interaction terms), calculate the coefficient of determination R2 and

let S be the sum of all of them. Similarly, if the trait is binary,

calculate the pseudo-R2 coefficient of Nagelkerke or the

discrimination coefficient D for each full model and the sum S of

these values. Next, rank the PRSs by S in decreasing order. This

ranking is generated automatically, and the top PRSs, which explain

more phenotypic variance across all full models, deserve a more

careful analysis. Note that this sum incorporates information from

all considered models and its use prevents the need to rank all

possible models across different PRSs.

The PRSs should be analyzed individually, following the

ranking established by S until no association is found for a given

PRS. The possible gap in the S values between two consecutive PRSs

can also be used as a stopping rule.
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A visualization of this PRS rank is possible, as shown in panel 2

of Figure 1. The x-axis represents the S values, and vertical lines can

be drawn at different points, such as the mean, median, or

percentiles of S. Each horizontal line represents a PRS. Black dots

symbolize the S value for each PRS, and adjacent whiskers represent

the standard deviation of the R2 values (pseudo-R2 coefficient of

Nagelkerke or the discrimination coefficient D, respectively)

obtained from all possible full models. Thus, the length of these

horizontal bars can be interpreted as an indicator of the importance

of considering interactions between a PRS and the covariates.
2.3 Which model among all the possible
ones is the most appropriate?

For a fixed PRS, it is necessary to determine which is the most

appropriate full model. First, it must be determined if the model

should contain interaction terms, and if so, which ones.

For a continuous trait, scatterplots of the trait and PRS by

categorical predictors are useful for visually checking the

homogeneity of slopes and determining whether interaction terms

should be included. For example, panel 3 of Figure 1 contains four

scatterplots, each showing the relationship between a trait and

PRS.4, separated by sex and diagnosis. Different slopes are
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observed. For diagnosis 1, the slopes increase (for both sexes 0

and 1); whereas for diagnosis 0, the slopes are very gentle, either

slightly increasing (sex = 0) or slightly decreasing (sex = 1).

Therefore, the interaction term “PRS×Diagnosis” should be

included in the full model.

For a binary trait, compute the model with all possible

interactions and plot the predicted logit values against the PRS. If

interaction terms are relevant, different logit behaviors

should appear.

At this point, a full model candidate is established; it is crucial to

verify whether it meets the conditions required by the statistical

analysis, as explained below. However, this validation is not

typically performed in automated analyses.
2.4 For a continuous trait, what steps
should be followed for a correct analysis?

If the outcome variable is a continuous trait, the focus must be

placed on different issues (panel 4 in Figure 1).

2.4.1 How is the candidate model validated?
To validate the full model for a continuous trait, linearity (by

scatter plots of trait and PRS), normality (by QQ-plots and
BOX 1 Definitions.

Null model: the trait is the response, and the covariates are the predictors.
Full model: the trait is the response; the PRS and covariates are the predictors.
Nested model: a regression model that includes only a subset of the predictor variables from the other regression model.
Coefficient of Determination R2: it gives the percentage variation in the response variable explained by the predictor variables. The range is 0 to 1 (i.e., 0% to 100% of the
variation in the response can be explained by the predictor variables).

Adjusted Coefficient of Determination R2
adj : it also indicates the goodness of the model, but adjusts for the number of predictors.

Pseudo-R2 coefficient of Nagelkerke: similar to R2 when the response variable is binary.
Akaike Information Criterion (AIC): metric used to compare the fit of different regression models. The model with the lowest AIC offers the best fit.
Discrimination coefficient D:measure of the discriminant capacity of the two-class logistic regression model. The range is between 0 and 1, with large values indicating the
logistic model discriminates better between the classes.
Logit values: also known as “log-odds”, is the natural logarithm of the odds concerning one event. If p is the probability of an event, the odds is given by the ratio p/(1-p).
The bigger this value, the greater the chances for the event to occur.
Validation of a linear regression model:

• Linearity: there is a linear relationship between each predictor and the response.
• Normality: the errors follow a normal distribution with a mean equal to zero

C QQ-plot: short for “quantile-quantile” plot, is used to assess whether or not a set of data potentially came from some theoretical distribution.

C Shapiro’s test: is used to determine whether or not a given dataset follows a normal distribution (H0: data is normally distributed vs H1: data is not
normally distributed)

• Constant variance or homoscedasticity: constant variance for all subjects

C Levene’s test: is used to determine whether or not the variance is constant

C Heteroscedasticity: there is no homoscedasticity

Skewed data: if one tail is longer than the other, the distribution is skewed (or asymmetrical)
Nonparametric approach: a method that makes statistical inference without regard to any underlying distribution
Permutation test: permutation tests work by resampling the observed data many times to determine a p-value for the test
Box-Cox transformation: it is a useful family of transformations to convert a non-normal behaving data set into an approximately normal distribution.
Overdispersion: occurs when the discrepancies between the observed responses and their predictions according to the model are larger than what the binomial model
would predict.
Binomial and quasi-binomial distribution: probability distributions that arise when counting the number of times an event of interest happens given a fixed number of
trials. In the binomial distribution, the variance is completely determined by the probability of the event of interest. The quasi-binomial distribution has an extra parameter
allowing additional variance compared to the binomial distribution.
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FIGURE 1

Workflow of the association analysis described in Section 2. Each panel is associated with one of the steps. Panel 1: describes the different possible
models to consider, as explained in subsection 2.1; Panel 2: shows a plot related to subsection 2.2 where a semi-automated procedure to reduce
the number of PRSs to be analyzed is presented; Panel 3: related to subsection 2.3 where it is discused how stablish the most appropiate model
among all the possible ones; Panel 4: in this panel subsection 2.4 is summarized with the validation of the model and the different strategies to
follow depending if the model is validated or not; Panel 5: shows the steps that should be followed for a correct analysis with a binary trait, as it is
described in subsection 2.5.
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Shapiro’s test), and constant variance or homoscedasticity (by

Levene’s test) must be checked. The fourth validity condition, the

independence of the observations, is generally guaranteed by the

design of the experiment itself. Remember that the analysis does not

assume normality for either the predictors or the trait. The

assumption is that errors are normally distributed, with a mean

of zero. The verification of these conditions is relevant in the

context of inference regarding the interpretability and significance

of the coefficients. For instance, heteroscedasticity tends to produce

smaller p-values than they should be (10). Consequently, this

problem can lead to the conclusion that a model term is

stat is t ica l ly s ignificant when it is not . Furthermore ,

heteroscedasticity persists as a problem, regardless of sample size.

2.4.2 What can be done if any validation
condition fails?

Different strategies will be considered depending on the failed

validation condition (panel 4.2 in Figure 1).

When it is suspected that the normality of errors fails, but the

model is homoscedastic, and the linearity is maintained, try

transforming the response variable. For instance, take the

logarithm for positively skewed data or the square root for more

moderate skewness situations. Such a transformation aims to rebuild

a valid candidate model that allows for assessing the association

between the PRS and the trait. However, a nonparametric approach

is also possible. A permutation test allows researchers to measure

whether the increase in the determination coefficient observed

between the null model and the candidate full model is significant.

However, with this type of nonparametric approach, it will not be

possible to establish if the association is significant or how the

variation (of one unit) of the PRS affects the trait. Furthermore, it will

not be possible to evaluate the different behavior of the PRS in the

groups generated by the categorical variable.

If heteroscedasticity is suspected but the linearity of the model is

maintained, it would be advisable to try a Box-Cox transformation

of the response variable. The Box-Cox transformations for different

values of l are given by: (trait – 1)/l, if l ≠ 0, and log(trait) if l = 0.

Again, it is possible to consider a nonparametric approach. Now,

use a weighted permutation test to measure whether the increase in

the determination coefficient observed between the null and the

selected full model is significant. During its construction process,

the weighted permutation test considers heteroscedasticity, making

the underlying residuals interchangeable.

If the problem lies in the linearity, try a transformation of the

response variable or include new non-linear terms.

2.4.3 How is a possible association established?
Once the PRS, the model, and its validation have been established,

analyze the possible association by checking the value and significance

of the regression coefficients. At this point, great care must be taken

when interpreting the lists provided by the most common software.

This is extremely important if the model contains interaction terms, as

the value of the PRS coefficient and its significance can vary depending

on the group to which each individual belongs.
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The detailedWorking Examples 1-3, included in the Supporting

material (see Section 8), aim to understand the necessity of

performing these steps and how to perform them correctly

(Working Example 1: Continuous trait, and model fulfilling all

assumptions; Working Example 2: Continuous trait and steps taken

to address the non-normality of errors; Working Example 3:

Continuous trait and the steps taken to address issues in the

initial fitted model with non-constant variance.)
2.5 For a binary trait, what steps should be
followed for a correct analysis?

If the outcome variable is a binary trait, given a PRS, check

overdispersion once the full model has been established. When the

ratio comparing the residual deviance with the degrees of freedom is

considerably larger than 1, the assumption of binomial variation is

violated, and then overdispersion occurs. Overdispersion can also

be checked by fitting a logistic regression under two different

models using a binomial and a quasi-binomial distribution,

respectively. If there is statistical evidence that the expected

variance of the two models is significantly different, we can

conclude that there is overdispersion. If the candidate full model

has no overdispersion, check the significance of the PRS, and

analyze the possible association with the trait.

On the contrary, if overdispersion is detected (panel 5 in

Figure 1), a simple solution to overdispersion would be to

estimate an additional parameter that indicates the amount of

overdispersion and specify a quasi-binomial family instead of a

binomial in the logistic regression model. Again, when the model

includes interaction terms, it is crucial to interpret correctly possible

significant associations (see the detailed explanations in Working

Example 4).

When working with binary traits, it is also possible to use a

nonparametric approach by a permutation test to assess whether

the increase in the pseudo-R2 coefficient of Nagelkerke or the

coefficient of discrimination D is significant. However, the

limitations of this approach must be kept in mind, as it will not

be possible to determine regression coefficients or their significance.
2.6 Is it necessary to consider all the steps
mentioned above?

The answer is Yes. Not considering interaction terms may mask

associations between PRS and trait in some groups determined by

the corresponding categorical covariate. Ignoring model validation

can lead to negative consequences, such as mistakenly concluding

that the PRS is significantly associated with the trait when it isn’t.

TheWorking Examples and the real data set demonstrate how poor

analysis leads to erroneous conclusions. Finally, the real data set

illustrates the difficulties that can arise with real data and how they

can be solved following this guide, for both continuous and

binary traits.
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3 Analysing a real data set

The real data set contains a PRS for psychotic-like experiences

(PLEs) computed for 227 healthy individuals, including 64 men

(28.1%) and 164 women (71.9%). PLEs are similar to psychotic

experiences to those experienced by patients with schizophrenia,

but are found in an attenuated form in healthy subjects. PLEs are

considered to be normally distributed in the general population,

with just a few individuals presenting high levels of PLEs and thus

being the ones at risk of developing psychosis (11–13). The PRS in

this example was calculated based on the latest GWAS on PLEs (14)

with the classical Clumping + Thresholding method (1), using 106

p-value thresholds ranging from 5×10−8 to 1 to allow us to

exemplify the second step of this guide. This motivational

example aims to determine which PRSs for PLEs (PLE-PRSs) are

associated with a phenotypic measure of PLEs in non-

clinical individuals.

Specifically, participants in this data set completed the

Community Assessment of Psychic Experiences (CAPE)

questionnaire (15), which assesses three dimensions of PLEs:

positive, negative, and depressive dimensions. For this tutorial, we

used the information on the positive and negative dimensions of

PLEs (CAPE Positive and CAPE Negative, respectively).

We considered CAPE Negative as a continuous trait and CAPE

Positive as a binary trait separating individuals with high and low

levels of PLEs to illustrate how to apply the steps of this guide for

both linear and logistic regression models, respectively. In both

situations, sex, age, and the first two ancestry-based Principal

Components are used as covariates. A larger number of PCs have

not been included as usual since it would not add meaningful

insight for our purpose and would only lengthen the results tables.

The descriptive characteristics of this real data set are in Table 1.

The question is: out of the 106 PRSs that were built, which are

the most important to carry out a detailed association analysis?

Furthermore, does it make sense to consider models that include

interaction terms, for example, between PRS and sex or between

PRS and age? Note that if these interaction terms are included and

they are significant, we will obtain information regarding how the

increase/decrease in PRS values affects the Positive CAPE or

Negative CAPE values depending on whether the individual is

male (coded by 0) or female (coded by 1), or depending on their age.

This information will be lost if interactions are not introduced into

the model.

For a better understanding of the results detailed below, it is

recommended to run the scripts (see Section 8) simultaneously.
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3.1 CAPE negative as the trait

Considering the biomedical meaning of the analysis, only the

fullmodels FMWI (without interaction terms) and FMSex (including

the interaction term PRS×Sex) are considered. For each model, we

calculated the coefficient of determination R2 and the sum S   =

 R2
WI   +  R

2
Sex . We ranked the PRSs, and we identified PRS.13 (i.e.,

the PRS derived from GWAS p-value threshold = 0.07) as the top-

ranked. Note that if the method used to compute the PLE-PRSs had

been one that generates a single PRS, this step would have

been omitted.

For PRS.13, the first of the PRSs rank, the short length of the

horizontal bars in Figure 2, and the scatter plots of Trait vs. PRS.13

according to sex (Figure 3), which was the only categorical

predictor, indicated the lack of interaction. Thus, we considered

the following model, FMWI: CAPE_Neg versus PRS.13 + Sex + Age

+ PC1 + PC2, as a candidate full model.

The residuals did not follow a normal distribution (Shapiro test

p-value = 4.335e-06; see Figure 4a), so a square root transformation

was applied. With this transformation, the normality condition is

already met (Shapiro test p-value = 0.0811), and the

homoscedasticity assumption also holds (Levene’s test p-value =

0.5846; Figure 4b). The results showed that PRS.13 was significantly

(p-value = 0.045) related to the sqrt(CAPE_Neg) in the following

way:

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAPE _Neg

p
= 3:013 − 0:101 · PRS:13 − 0:142 · Sex + 0:009 · Age

+ 3:797 · PC1 + 8:409 · PC2

and then,

dCAPE _Neg = (3:013 − 0:101 · PRS:13 − 0:142 · Sex + 0:009 · Age

+ 3:797 · PC1 + 8:409 · PC2)2

The effect of the change of one unit in PRS.13 in CAPE_Neg can

be measured as follows. Compute the estimations at the indicated

values of PRS.13

d(CAPE _Neg0) and PRS :13 + 1  d(CAPE _Neg1):

dCAPE _Neg0 = (3:013 − 0:101 · PRS:13 − 0:142 · Sex + 0:009 · Age

+ 3:797 · PC1 + 8:409 · PC2)2

and

dCAPENeg1
= (3:013 − 0:101 · (PRS:13 + 1) − 0:142 · Sex + 0:009

· Age + 3:797 · PC1 + 8:409 · PC2)2

= ( − 0:101 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidCAPE _Neg0

q
Þ2

then, difference

dCAPE _Neg1 − dCAPE _Neg0
TABLE 1 Descriptive characteristics of the real data set.

Variables Mean SD
Observed
range

Possible
range

Age 19.95 2.801 17 - 44

CAPE Positive 8.48 5.042 0 - 23 0 - 60

CAPE Negative 10.31 5.619 0 - 35 0 - 42

CAPE Depressive 5.94 2.957 1 -18 0 - 24
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is given by:

( − 0:101)2 + 2 · ( − 0:101) ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidCAPE _Neg0

q
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Thus, if the current CAPE_Neg is, for instance, 5, 10, or 25,

increasing one unit in PRS.13 is associated with a change of −

0:4415,  −0:6286,   and − 0:9998 in CAPE_Neg, respectively.
FIGURE 2

Real data set. On the x-axis, the S values described in section 2.2 are plotted. On the y-axis, the PRSs are ranked in decreasing order according to S.
Black dots represent the S for each PRS, and the adjacent whiskers represent the standard deviation of the R2 values obtained for the possible full
models (including and not including interaction terms).
FIGURE 3

Real data set. In each panel, a scatter plot showing the relationship between negative CAPE and PRS.13 separated by sex. The similar slope of the
lines indicated the lack of interaction.
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With the permutation test, we obtained a significant (p-value =

0.0033) increase of 0.0197 in the coefficient of determination when

the PRS.13 was included in the baseline model.

The next PRS in the ordered list was PRS.12, and Figure 5

indicated that the interaction term should be considered. Again, the

residuals did not follow a normal distribution, and neither with a

transformation nor using the permutation test, a significant

association was found between PRS.12 and CAPE_Neg (p-value =

0.7170 and 0.0956, respectively). Therefore, there is no need to

study more candidate PRSs.
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3.2 CAPE positive as the trait

Finally, we considered CAPE Positive as a binary trait

separating individuals with high and low levels of PLEs. This

scale has no fixed criterion to decide who scores high and who

scores low. However, based on its histogram, we considered a

threshold of 15 to indicate those individuals who would score

high (the 1% of the sample). According to the discrimination

coefficient D, the top PRS was PRS.15 (i.e., the PRS derived from

GWAS p-value threshold = 0.09). The plot of the predicted logit
FIGURE 4

Real data set. Validation conditions for the model FMWI: CAPE_Neg versus PRS.13 + Sex + Age + PC1 + PC2. (a) QQ-plot for normality, deviations
from the diagonal line indicate that the errors’ distribution differs from a normal distribution. (b) Plot for homocedasticity after squared root
transformation, each panel shows the scatter plot of residuals versus fitted values according to sex.
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values against the PRS.15 indicated that the interaction term was

relevant (Figure 6).

As overdispersion was not detected (p-value = 0.2651), we

analyzed the possible association with CAPE_Pos. Note that in

Table 2 (standard output given by the R package), values associated

with PRS.15 for Sex=0 are in the second line (coefficient b1). Those

for Sex=1 are, for the intercept, in lines 1 and 3 (coefficients b0 and

b3); for the PRS.15 coefficient in lines 2 and 7 (coefficients b2 and
Frontiers in Psychiatry 09
b6). Thus, the PRS.15 coefficient that varies depending on the sex

(Table 2), is given by:
• If Sex = 0,
d
log(

p
1 − p

) = 0:055 + 0:746 · PRS:15 − 0:118 · Age + 1:951 · PC1

+ 2:867 · PC2
FIGURE 5

Real data set. In each panel, a scatter plot shows the relationship between CAPE negative and PRS.12 separated by sex. The different slopes of the
lines indicated the presence of interaction.
FIGURE 6

Real data set. In each panel, a scatter plot of fitted logit predictions shows the relationship between positive CAPE and PRS.15 separated by sex. The
different slopes of the lines indicated the presence of interaction.
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Fron
• If Sex = 1,
d
log(

p
1 − p

) = (0:055  +  0:139) + (0:746 − 0:749) · PRS:15 − 0:118

· Age + 1:951 · PC1 + 2:867 · PC2

That means that for those with Sex=1, the PRS.15 is not related

(p-value = 0.9910) to CAPE_Pos with odds = exp(− 0.002) = 0.998.

For those with Sex = 0, the model indicates that PRS.15 is
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significantly associated (p-value = 0.0101) with the CAPE_Pos

with a coefficient 0.7463, so the odds increase exp(0.7463) = 2.109

for an incremental of one unit in PRS.15 (see Table 3). It is very

important to note that if the interaction is not included in the

model, meaning that if the model assumes the association of PRS.15

to be the same for both sex categories, then the association of

PRS.15 with CAPE_Pos might be lost (p-value = 0.0764). Most

importantly, the different behavior regarding sex would not have

been detected.

The analysis continued, studying the possible association with

the following PRS from the list obtained. For the first six ranked

PRSs, Table 4 shows a clear association with CAPE_Pos in group Sex

equal to 0, but not when Sex is 1. Note that all these associations

would have been lost if the interaction term had not been considered.
4 Concluding remarks

This paper presents a guide based on simple steps to help

researchers in PRS studies. We describe these steps and present

different situations and solutions through Working Examples and

with a real data set. The situations presented in this guide do not

cover all possible scenarios. For this reason, we have prioritized the

most common ones. In our opinion, this is not about showing all

possible options, but rather highlighting the need for a more

detailed study for some (not all) PRS that appear as prioritized

candidates with a possible association with the trait. In this work, we

have not considered the case of having a categorical trait with more

than two categories. Since it is a situation of great interest, we will

give the attention it deserves in future work. Finally, this guide is

focused on the analysis of the association of a PRS with a trait, and it

does not delve into which methodology is the most appropriate or

up-to-date for calculating the PRS. Nevertheless, it is important to
TABLE 2 For the real data set with a binary Trait, logistic regression results for CAPE Positive versus PRS.15, considering interaction with Sex.

Model terms Parameter Null hypothesis Estimate Std. error z value p-value

Intercept b0 b0 = 0 0.0549 2.2242 0.025 0.9803

PRS.15 b1 b1 = 0 0.7463 0.2900 2.574 0.0101

Sex1 b2 b2 = 0 0.1390 0.6671 0.208 0.8350

Age b3 b3 = 0 -0.1183 0.1070 -1.106 0.2686

PC1 b4 b4 = 0 1.9513 14.5402 0.134 0.8932

PC2 b5 b5 = 0 2.8671 14.9406 0.192 0.8478

PRS.15:Sex1 b6 b6 = 0 -0.7487 0.3588 -2.087 0.0369
TABLE 3 For the real data set with a binary Trait, and according to sex, parameters, null hypothesis, estimates, standard errors, z statistics, and p-
values using model FMSex.

Sex condition Parameter Null hypothesis Estimate Std. error z value p-value

Sex 0 b1 b1 = 0 0.7463 0.290 2.574 0.0101

Sex 1 b1 + b6 b1 + b6 = 0 -0.0024 0.212 -0.011 0.9910
TABLE 4 For the real data set with a binary Trait and according to sex,
estimates, p-values, and odds using model FM_Sex

PRS Sex Estimate p-value p-adjusted Odds

PRS.15 0 0.746 0.0101 0.0367 2.109

1 -0.002 0.9910 0.9910 0.998

PRS.16 0 0.719 0.0127 0.0367 2.052

1 0.058 0.7810 0.9112 0.060

PRS.17 0 0.657 0.0204 0.0476 1.921

1 0.031 0.8820 0.9498 1.031

PRS.14 0 0.726 0.0131 0.0367 2.067

1 -0.072 0.7350 0.9112 0.931

PRS.10 0 0.897 0.0120 0.0367 2.452

1 -0.124 0.6120 0.9112 0.883

PRS.11 0 0.880 0.0114 0.0367 2.411

1 -0.093 0.6900 0.9112 0.911

PRS.74 0 0.510 0.0466 0.0932 1.665

1 0.120 0.5270 0.9112 1.127
In bold, statistically significant terms (p < 0.05).
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recognize that each step in the process, from GWAS discovery to

PRS calculation and the subsequent association analyses, introduces

potential sources of error (e.g., limited GWAS power, imputational

inaccuracies, or suboptimal PRS parameter choices), and the

accumulation of these can influence the robustness and

interpretation of the final results (16). Furthermore, it should not

be forgotten that the accuracy of a PRS depends on the genetic

ancestry of the group used to obtain it, and that it may present

significantly lower accuracy when applied to other groups (17, 18).

Finally, it does not detail the concepts or statistical techniques it

encourages to use, since it only aims to indicate which steps should

be followed to perform a correct analysis.
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