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Most methodological Polygenic Risk Score (PRS)-related papers explain the
laborious process of computing the PRS in great depth. Afterwards, as a last
step, it is generally described that to test a possible association between a PRS
and a trait of interest, an analysis through regression models (linear or logistic,
depending on data type) should be carried out adjusting for covariates (e.g., sex,
age, clinical information, or genetic ancestry-based Principal Components).
When covariates are included, measurements such as the increment on the
variance explained by the addition of the PRS to the model or the significance of
the PRS term are usually reported. However, the association study between PRSs
and a trait is a complex concern that requires proper modeling and analysis, since
interactions and validation conditions represent crucial aspects. Even though
excellent papers explain how to use and interpret the results obtained with such
regression models, sometimes important information from the previously
calculated PRS may be lost, partly due to the automation of analyses. With this
guide, we intend to fill a gap in association studies between PRSs and a trait and
to facilitate the analysis, obtaining statistically correct results. It contains a
motivating real data case analyzed exhaustively to illustrate how to face a real
analysis. Besides, it is accompanied by four examples, called Working Examples,
which present different situations the researcher may encounter along with the R
code for analyzing all these data sets and the corresponding application of the
steps in this guide.
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1 Introduction

A Polygenic Risk Score (PRS) is an estimated value of an
individual’s genetic susceptibility to a trait, condition, or disease,
and it is calculated based on the results of a Genome-Wide
Association Study (GWAS). Once it is calculated, a typical
analysis includes testing for association between the PRS and a
trait through a linear or logistic regression model. In the most
common situation, the models include covariates such as sex, age,
clinical diagnosis, or genetic ancestry-based Principal Components
used to control for potential population substructure, among others.
Then, to evaluate the effect of the PRS alone, two models are usually
considered: the so-called null or baseline model and the full model.
The null model consists of the trait as the response variable and the
covariates as predictor variables. The full model incorporates the
PRS into the null model as a predictor. They are nested models,
usually with only one different term, the PRS. Then, both models
are analyzed, and the significance of the PRS and the increase in the
explained variance between the models are evaluated. Usually, the
value of the coefficient of determination R’ or the adjusted
coefficient of determination, Rﬁdj, is reported in the case of a
continuous trait. Likewise, if it is a binary trait, the value of a
pseudo-R* coefficient of Nagelkerke is reported.

There are different approaches to computing a PRS. The
traditional Clumping + Thresholding (C+T) method enables the
selection of independent variants through LD-pruning to avoid
redundancy and the inclusion of more or less significantly
associated variants with the discovery trait by establishing
different GWAS p-value thresholds, often resulting in the
generation of several PRSs according to the thresholds used (1).
However, more advanced methods have been developed recently
that re-weight the SNP effect sizes from the GWAS summary
statistics, applying some form of shrinkage and usually allowing
for obtaining a single PRS (2).

Although the literature includes excellent papers explaining
how to use and interpret regression models (3-9), a guideline for
conducting PRS association studies is necessary to assist non-
statistician researchers in performing the statistical analyses
correctly. Below are the guidelines for conducting these
association analyses after calculating the PRS. Therefore, this
guide does not focus on the calculation process used to obtain a
PRS but rather on analyzing the association between a trait and a
previously calculated PRS. This guide features a detailed real case to
illustrate how to approach a real analysis. Additionally, it is
accompanied by four examples, called Working Examples, which
gradually present all the steps explained in increasing order of
difficulty. Moreover, the data sets, R code for the analysis, and PDF
files containing the results with software output are available at:
https://github.com/Itziarl/SupportingMaterial-for-the-guide.

The definitions needed to follow the next sections are reported
in Box 1. The different steps of the proposed guide are presented in
the next section and summarized in Figure 1.
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2 Guidelines for the association
analysis

2.1 Which full model should be
considered?

The researcher should be aware of the possibility of different full
models. In certain situations, it is necessary to consider models that
incorporate interaction terms; however, only those interactions with
biomedical meaning or interest for the researcher should be
considered. Therefore, the number of models with interactions
will not be large, as generally only those related to covariates such
as sex, diagnosis, or age are considered. Therefore, for each PRS we
can assume different full models. For instance, if there are two
categorical covariates of interest, such as sex and diagnosis, four
different full models (FM) can be considered (first panel
in Figure 1):

*  FMyyr: the model without interaction terms.

e FMg.: the model with the interaction term PRSxSex.

¢ FMpj,g the model with the interaction term PRSxDiag.

*  FMgex/piag: the model including the interaction terms
PRSxSex and PRSxDiag.

2.2 When and how to make a PRS ranking?

This section should only be considered if the researcher has used
a PRS calculation method that has generated several PRSs to analyze
(e.g., using several p-value thresholds in the C+T approach) and
wants to determine which of these PRSs are of greatest interest before
performing the association analysis to avoid having to analyze all of
them. Instead, if the method generates only a single PRS, this step
should be skipped, and the next step is in subsection 2.3.

We propose a semi-automated procedure to reduce the number
of PRSs that need detailed analysis. If the trait is continuous, for
each PRS and each possible full model (including and excluding
interaction terms), calculate the coefficient of determination R? and
let S be the sum of all of them. Similarly, if the trait is binary,
calculate the pseudo-R> coefficient of Nagelkerke or the
discrimination coefficient D for each full model and the sum S of
these values. Next, rank the PRSs by S in decreasing order. This
ranking is generated automatically, and the top PRSs, which explain
more phenotypic variance across all full models, deserve a more
careful analysis. Note that this sum incorporates information from
all considered models and its use prevents the need to rank all
possible models across different PRSs.

The PRSs should be analyzed individually, following the
ranking established by S until no association is found for a given
PRS. The possible gap in the S values between two consecutive PRSs
can also be used as a stopping rule.
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BOX 1 Definitions.

Null model: the trait is the response, and the covariates are the predictors.

Full model: the trait is the response; the PRS and covariates are the predictors.

Nested model: a regression model that includes only a subset of the predictor variables from the other regression model.

Coefficient of Determination R’: it gives the percentage variation in the response variable explained by the predictor variables. The range is 0 to 1 (i.e., 0% to 100% of the
variation in the response can be explained by the predictor variables).

Adjusted Coefficient of Determination R, it also indicates the goodness of the model, but adjusts for the number of predictors.

Pseudo-R® coefficient of Nagelkerke: similar to R when the response variable is binary.

Akaike Information Criterion (AIC): metric used to compare the fit of different regression models. The model with the lowest AIC offers the best fit.

Discrimination coefficient D: measure of the discriminant capacity of the two-class logistic regression model. The range is between 0 and 1, with large values indicating the
logistic model discriminates better between the classes.

Logit values: also known as “log-odds”, is the natural logarithm of the odds concerning one event. If p is the probability of an event, the odds is given by the ratio p/(1-p).
The bigger this value, the greater the chances for the event to occur.

Validation of a linear regression model:

* Linearity: there is a linear relationship between each predictor and the response.
*  Normality: the errors follow a normal distribution with a mean equal to zero

O QQ-plot: short for “quantile-quantile” plot, is used to assess whether or not a set of data potentially came from some theoretical distribution.

O Shapiro’s test: is used to determine whether or not a given dataset follows a normal distribution (Ho: data is normally distributed vs H;: data is not
normally distributed)
» Constant variance or homoscedasticity: constant variance for all subjects

O Levene’s test: is used to determine whether or not the variance is constant

O Heteroscedasticity: there is no homoscedasticity
Skewed data: if one tail is longer than the other, the distribution is skewed (or asymmetrical)
Nonparametric approach: a method that makes statistical inference without regard to any underlying distribution
Permutation test: permutation tests work by resampling the observed data many times to determine a p-value for the test
Box-Cox transformation: it is a useful family of transformations to convert a non-normal behaving data set into an approximately normal distribution.
Overdispersion: occurs when the discrepancies between the observed responses and their predictions according to the model are larger than what the binomial model
would predict.
Binomial and quasi-binomial distribution: probability distributions that arise when counting the number of times an event of interest happens given a fixed number of
trials. In the binomial distribution, the variance is completely determined by the probability of the event of interest. The quasi-binomial distribution has an extra parameter

allowing additional variance compared to the binomial distribution.

A visualization of this PRS rank is possible, as shown in panel 2
of Figure 1. The x-axis represents the S values, and vertical lines can
be drawn at different points, such as the mean, median, or
percentiles of S. Each horizontal line represents a PRS. Black dots
symbolize the S value for each PRS, and adjacent whiskers represent
the standard deviation of the R* values (pseudo-R* coefficient of
Nagelkerke or the discrimination coefficient D, respectively)
obtained from all possible full models. Thus, the length of these
horizontal bars can be interpreted as an indicator of the importance
of considering interactions between a PRS and the covariates.

2.3 Which model among all the possible
ones is the most appropriate?

For a fixed PRS, it is necessary to determine which is the most
appropriate full model. First, it must be determined if the model
should contain interaction terms, and if so, which ones.

For a continuous trait, scatterplots of the trait and PRS by
categorical predictors are useful for visually checking the
homogeneity of slopes and determining whether interaction terms
should be included. For example, panel 3 of Figure 1 contains four
scatterplots, each showing the relationship between a trait and
PRS.4, separated by sex and diagnosis. Different slopes are
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observed. For diagnosis 1, the slopes increase (for both sexes 0
and 1); whereas for diagnosis 0, the slopes are very gentle, either
slightly increasing (sex = 0) or slightly decreasing (sex = 1).
Therefore, the interaction term “PRSxDiagnosis” should be
included in the full model.

For a binary trait, compute the model with all possible
interactions and plot the predicted logit values against the PRS. If
interaction terms are relevant, different logit behaviors
should appear.

At this point, a full model candidate is established; it is crucial to
verify whether it meets the conditions required by the statistical
analysis, as explained below. However, this validation is not
typically performed in automated analyses.

2.4 For a continuous trait, what steps
should be followed for a correct analysis?

If the outcome variable is a continuous trait, the focus must be
placed on different issues (panel 4 in Figure 1).

2.4.1 How is the candidate model validated?

To validate the full model for a continuous trait, linearity (by
scatter plots of trait and PRS), normality (by QQ-plots and
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PRy
1. What full model to consider? Contintions Trait- Y = Trait
Binary Trait: Y = log (I.TPP)' with p probability to present the Trait
Null model: the model does not include any PRS Y ~ Sex + Diag
Full models (FM):
FMy; : the model does not include interaction terms Y ~PRS + Sex + Diag
FMg,,: the model includes the interaction term PRSxSex Y ~PRS + Sex + Diag + PRS*Sex
FMp;,: the model includes the interaction term PRSxDiag Y ~PRS + Sex + Diag + PRS*Diag
FMgepiag: the model includes the interaction terms PRSxSexand PRS*Diag Y ~PRS + Sex + Diag + PRS*Sex + PRS*Diag
2. How to make a PRS rank? 3. Which model should be used?
Diagnostic 0 Diagnostic 1
—— PRS7
— PRS 8
— PRS 1 Z
— PRS2 > =
o PRS 3 » ]
— PRS 4 v & :
e PRS 5 i g
5 7]
— PRS 9 S / .8
o PRS 6 I
- PRS 10 5 °
Sum § - PRS 4
Continuous trait? goto4
Binary trait? goto5
4. Continuous Trait, what steps for a correct analysis?
4.1. How to validate the model?
Linearity Normality Homocedasticity
Dugaostic 0 Diagnostic 1
d
. £- 7 3
c i yd a
L = .- % S
" s ' fitted
IF MODELIS NOT VALIDATED IF MODELIS VALIDATED
4.2. What can be done?
i[ No normality, homoscedasticity, linearity | Check PRS association
--» (Try a transformation or run a per test]
if /
=
L..;[ Try a Box-Cox transformation or run a weighted permutation test
if
k4
BN (Try a transformation or add a new non-linear terms |
5. Binary Trait, what steps for a correct analysis?
Check for overdispersion
[ If overdispersion is present ] [ If overdispersion is not present ] \
] Check PRS association
se ¢ amily or run a permutation fest
FIGURE 1

Workflow of the association analysis described in Section 2. Each panel is associated with one of the steps. Panel 1. describes the different possible
models to consider, as explained in subsection 2.1; Panel 2: shows a plot related to subsection 2.2 where a semi-automated procedure to reduce
the number of PRSs to be analyzed is presented; Panel 3: related to subsection 2.3 where it is discused how stablish the most appropiate model
among all the possible ones; Panel 4: in this panel subsection 2.4 is summarized with the validation of the model and the different strategies to
follow depending if the model is validated or not; Panel 5: shows the steps that should be followed for a correct analysis with a binary trait, as it is

described in subsection 2.5.
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Shapiro’s test), and constant variance or homoscedasticity (by
Levene’s test) must be checked. The fourth validity condition, the
independence of the observations, is generally guaranteed by the
design of the experiment itself. Remember that the analysis does not
assume normality for either the predictors or the trait. The
assumption is that errors are normally distributed, with a mean
of zero. The verification of these conditions is relevant in the
context of inference regarding the interpretability and significance
of the coefficients. For instance, heteroscedasticity tends to produce
smaller p-values than they should be (10). Consequently, this
problem can lead to the conclusion that a model term is
statistically significant when it is not. Furthermore,
heteroscedasticity persists as a problem, regardless of sample size.

2.4.2 What can be done if any validation
condition fails?

Different strategies will be considered depending on the failed
validation condition (panel 4.2 in Figure 1).

When it is suspected that the normality of errors fails, but the
model is homoscedastic, and the linearity is maintained, try
transforming the response variable. For instance, take the
logarithm for positively skewed data or the square root for more
moderate skewness situations. Such a transformation aims to rebuild
a valid candidate model that allows for assessing the association
between the PRS and the trait. However, a nonparametric approach
is also possible. A permutation test allows researchers to measure
whether the increase in the determination coefficient observed
between the null model and the candidate full model is significant.
However, with this type of nonparametric approach, it will not be
possible to establish if the association is significant or how the
variation (of one unit) of the PRS affects the trait. Furthermore, it will
not be possible to evaluate the different behavior of the PRS in the
groups generated by the categorical variable.

If heteroscedasticity is suspected but the linearity of the model is
maintained, it would be advisable to try a Box-Cox transformation
of the response variable. The Box-Cox transformations for different
values of A are given by: (trait - 1)/A, if A # 0, and log(trait) if 1 = 0.
Again, it is possible to consider a nonparametric approach. Now,
use a weighted permutation test to measure whether the increase in
the determination coefficient observed between the null and the
selected full model is significant. During its construction process,
the weighted permutation test considers heteroscedasticity, making
the underlying residuals interchangeable.

If the problem lies in the linearity, try a transformation of the
response variable or include new non-linear terms.

2.4.3 How is a possible association established?

Once the PRS, the model, and its validation have been established,
analyze the possible association by checking the value and significance
of the regression coefficients. At this point, great care must be taken
when interpreting the lists provided by the most common software.
This is extremely important if the model contains interaction terms, as
the value of the PRS coefficient and its significance can vary depending
on the group to which each individual belongs.
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The detailed Working Examples 1-3, included in the Supporting
material (see Section 8), aim to understand the necessity of
performing these steps and how to perform them correctly
(Working Example 1: Continuous trait, and model fulfilling all
assumptions; Working Example 2: Continuous trait and steps taken
to address the non-normality of errors; Working Example 3:
Continuous trait and the steps taken to address issues in the
initial fitted model with non-constant variance.)

2.5 For a binary trait, what steps should be
followed for a correct analysis?

If the outcome variable is a binary trait, given a PRS, check
overdispersion once the full model has been established. When the
ratio comparing the residual deviance with the degrees of freedom is
considerably larger than 1, the assumption of binomial variation is
violated, and then overdispersion occurs. Overdispersion can also
be checked by fitting a logistic regression under two different
models using a binomial and a quasi-binomial distribution,
respectively. If there is statistical evidence that the expected
variance of the two models is significantly different, we can
conclude that there is overdispersion. If the candidate full model
has no overdispersion, check the significance of the PRS, and
analyze the possible association with the trait.

On the contrary, if overdispersion is detected (panel 5 in
Figure 1), a simple solution to overdispersion would be to
estimate an additional parameter that indicates the amount of
overdispersion and specify a quasi-binomial family instead of a
binomial in the logistic regression model. Again, when the model
includes interaction terms, it is crucial to interpret correctly possible
significant associations (see the detailed explanations in Working
Example 4).

When working with binary traits, it is also possible to use a
nonparametric approach by a permutation test to assess whether
the increase in the pseudo-R* coefficient of Nagelkerke or the
coefficient of discrimination D is significant. However, the
limitations of this approach must be kept in mind, as it will not
be possible to determine regression coefficients or their significance.

2.6 Is it necessary to consider all the steps
mentioned above?

The answer is Yes. Not considering interaction terms may mask
associations between PRS and trait in some groups determined by
the corresponding categorical covariate. Ignoring model validation
can lead to negative consequences, such as mistakenly concluding
that the PRS is significantly associated with the trait when it isn’t.
The Working Examples and the real data set demonstrate how poor
analysis leads to erroneous conclusions. Finally, the real data set
illustrates the difficulties that can arise with real data and how they
can be solved following this guide, for both continuous and
binary traits.
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3 Analysing a real data set

The real data set contains a PRS for psychotic-like experiences
(PLEs) computed for 227 healthy individuals, including 64 men
(28.1%) and 164 women (71.9%). PLEs are similar to psychotic
experiences to those experienced by patients with schizophrenia,
but are found in an attenuated form in healthy subjects. PLEs are
considered to be normally distributed in the general population,
with just a few individuals presenting high levels of PLEs and thus
being the ones at risk of developing psychosis (11-13). The PRS in
this example was calculated based on the latest GWAS on PLEs (14)
with the classical Clumping + Thresholding method (1), using 106
p-value thresholds ranging from 5x107° to 1 to allow us to
exemplify the second step of this guide. This motivational
example aims to determine which PRSs for PLEs (PLE-PRSs) are
associated with a phenotypic measure of PLEs in non-
clinical individuals.

Specifically, participants in this data set completed the
Community Assessment of Psychic Experiences (CAPE)
questionnaire (15), which assesses three dimensions of PLEs:
positive, negative, and depressive dimensions. For this tutorial, we
used the information on the positive and negative dimensions of
PLEs (CAPE Positive and CAPE Negative, respectively).

We considered CAPE Negative as a continuous trait and CAPE
Positive as a binary trait separating individuals with high and low
levels of PLEs to illustrate how to apply the steps of this guide for
both linear and logistic regression models, respectively. In both
situations, sex, age, and the first two ancestry-based Principal
Components are used as covariates. A larger number of PCs have
not been included as usual since it would not add meaningful
insight for our purpose and would only lengthen the results tables.
The descriptive characteristics of this real data set are in Table 1.

The question is: out of the 106 PRSs that were built, which are
the most important to carry out a detailed association analysis?
Furthermore, does it make sense to consider models that include
interaction terms, for example, between PRS and sex or between
PRS and age? Note that if these interaction terms are included and
they are significant, we will obtain information regarding how the
increase/decrease in PRS values affects the Positive CAPE or
Negative CAPE values depending on whether the individual is
male (coded by 0) or female (coded by 1), or depending on their age.
This information will be lost if interactions are not introduced into
the model.

For a better understanding of the results detailed below, it is
recommended to run the scripts (see Section 8) simultaneously.

TABLE 1 Descriptive characteristics of the real data set.

Variables Mean  SD Observed  Possible
range range

Age 19.95 2.801 17 - 44

CAPE Positive 8.48 5.042 0-23 0-60

CAPE Negative 10.31 5.619 0-35 0-42

CAPE Depressive | 5.94 2.957 1-18 0-24
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3.1 CAPE negative as the trait

Considering the biomedical meaning of the analysis, only the
full models FMyy; (without interaction terms) and FMg., (including
the interaction term PRSxSex) are considered. For each model, we
calculated the coefficient of determination R’ and the sum S =

R}, + R3},. We ranked the PRSs, and we identified PRS.13 (i.e.,
the PRS derived from GWAS p-value threshold = 0.07) as the top-
ranked. Note that if the method used to compute the PLE-PRSs had
been one that generates a single PRS, this step would have
been omitted.

For PRS.13, the first of the PRSs rank, the short length of the
horizontal bars in Figure 2, and the scatter plots of Trait vs. PRS.13
according to sex (Figure 3), which was the only categorical
predictor, indicated the lack of interaction. Thus, we considered
the following model, FMyy;: CAPE_Neg versus PRS.13 + Sex + Age
+ PC1 + PC2, as a candidate full model.

The residuals did not follow a normal distribution (Shapiro test
p-value = 4.335e-06; see Figure 4a), so a square root transformation
was applied. With this transformation, the normality condition is
0.0811), and the
homoscedasticity assumption also holds (Levene’s test p-value =
0.5846; Figure 4b). The results showed that PRS.13 was significantly
(p-value = 0.045) related to the sqrt(CAPE_Neg) in the following
way:

already met (Shapiro test p-value

v/ CAPE _Neg = 3.013 - 0.101 - PRS.13 - 0.142 - Sex + 0.009 - Age
+3.797 - PC1 + 8.409 - PC2

and then,
CAPE_ Neg = (3.013 - 0.101 - PRS.13 — 0.142 - Sex + 0.009 - Age

+3.797 - PC1 + 8.409 - PC2)*

The effect of the change of one unit in PRS.13 in CAPE_Neg can
be measured as follows. Compute the estimations at the indicated
values of PRS.13

(CAPE _Neg,) and PRS .13 + 1 (CAPE_ Neg,):

CAPE_Neg, = (3.013 —0.101 - PRS.13 — 0.142 - Sex + 0.009 - Age
+3.797 - PC1 + 8.409 - PC2)*
and

CAPE,

Neg, = (3.013-0.101 - (PRS.13 + 1) — 0.142 - Sex + 0.009

- Age +3.797 - PC1 + 8.409 - PC2)?

= (-0.101 + \/CAPE _Neg, )

then, difference

CAPE_Neg, — CAPE _Neg,
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FIGURE 2

Sum R*2

0.10

Real data set. On the x-axis, the S values described in section 2.2 are plotted. On the y-axis, the PRSs are ranked in decreasing order according to S.
Black dots represent the S for each PRS, and the adjacent whiskers represent the standard deviation of the R? values obtained for the possible full

models (including and not including interaction terms).

is given by:

(-0.101)*+2-(-0.101) - / CAPE _Neg,

Thus, if the current CAPE_Neg is, for instance, 5, 10, or 25,
increasing one unit in PRS.13 is associated with a change of —
0.4415, —0.6286, and —0.9998 in CAPE_Neg, respectively.

-4 -2 0 2
| ] | | | | ]
0 1
o
30 —
o o
[0)
= o
© o
D 20 o©
o]
ZI @° 05 o)
w (@]
o © %0
O 10 H o % ® "5
o o o
CO?O@O o
o o o4
0 o]
T T T T T T T
-4 -2 0
PRS.13

FIGURE 3

Real data set. In each panel, a scatter plot showing the relationship between negative CAPE and PRS.13 separated by sex. The similar slope of the
lines indicated the lack of interaction.
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FIGURE 4

Real data set. Validation conditions for the model FMyy;: CAPE_Neg versus PRS.13 + Sex + Age + PC1 + PC2. (a) QQ-plot for normality, deviations
from the diagonal line indicate that the errors’ distribution differs from a normal distribution. (b) Plot for homocedasticity after squared root
transformation, each panel shows the scatter plot of residuals versus fitted values according to sex.

With the permutation test, we obtained a significant (p-value =
0.0033) increase of 0.0197 in the coefficient of determination when
the PRS.13 was included in the baseline model.

The next PRS in the ordered list was PRS.12, and Figure 5
indicated that the interaction term should be considered. Again, the
residuals did not follow a normal distribution, and neither with a
transformation nor using the permutation test, a significant
association was found between PRS.12 and CAPE_Neg (p-value =
0.7170 and 0.0956, respectively). Therefore, there is no need to
study more candidate PRSs.

Frontiers in Psychiatry 08

3.2 CAPE positive as the trait

Finally, we considered CAPE Positive as a binary trait
separating individuals with high and low levels of PLEs. This
scale has no fixed criterion to decide who scores high and who
scores low. However, based on its histogram, we considered a
threshold of 15 to indicate those individuals who would score
high (the 1% of the sample). According to the discrimination
coefficient D, the top PRS was PRS.15 (i.e., the PRS derived from
GWAS p-value threshold = 0.09). The plot of the predicted logit
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FIGURE 5

Real data set. In each panel, a scatter plot shows the relationship between CAPE negative and PRS.12 separated by sex. The different slopes of the

lines indicated the presence of interaction.

values against the PRS.15 indicated that the interaction term was
relevant (Figure 6).

As overdispersion was not detected (p-value = 0.2651), we
analyzed the possible association with CAPE_Pos. Note that in
Table 2 (standard output given by the R package), values associated
with PRS.15 for Sex=0 are in the second line (coefficient b;). Those
for Sex=1 are, for the intercept, in lines 1 and 3 (coefficients b, and

bs); for the PRS.15 coefficient in lines 2 and 7 (coefficients b, and

be). Thus, the PRS.15 coefficient that varies depending on the sex
(Table 2), is given by:

e IfSex =0,

log(l";p) =0.055+0.746 - PRS.15-0.118 - Age + 1.951 - PC1

+2.867 - PC2

log(pre/(pre + 1))

-5

FIGURE 6

T
4

PRS.15

Real data set. In each panel, a scatter plot of fitted logit predictions shows the relationship between positive CAPE and PRS.15 separated by sex. The

different slopes of the lines indicated the presence of interaction.
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TABLE 2 For the real data set with a binary Trait, logistic regression results for CAPE Positive versus PRS.15, considering interaction with Sex.

Model terms Parameter Null hypothesis Estimate Std. error z value p-value
Intercept bo by =0 0.0549 22242 0.025 0.9803
PRS.15 b, by =0 0.7463 0.2900 2574 0.0101
Sexl b, b, =0 0.1390 0.6671 0.208 0.8350
Age bs by =0 -0.1183 0.1070 -1.106 0.2686
PC1 b, by=0 1.9513 14.5402 0.134 0.8932
PC2 bs bs=0 2.8671 14.9406 0.192 0.8478
PRS.15:Sex1 be b =0 -0.7487 03588 -2.087 0.0369

TABLE 3 For the real data set with a binary Trait, and according to sex, parameters, null hypothesis, estimates, standard errors, z statistics, and p-
values using model FMgc,.

Sex condition Parameter Null hypothesis Estimate Std. error
Sex 0 b, ‘ by =0 ‘ 0.7463 0.290 2574 ‘ 0.0101
Sex 1 b, + be ‘ by + b =0 ‘ -0.0024 0212 -0.011 ‘ 0.9910
o IfSex=1, significantly associated (p-value = 0.0101) with the CAPE_Pos

. with a coefficient 0.7463, so the odds increase exp(0.7463) = 2.109
10g(1L) =(0.055 + 0.139) + (0.746 — 0.749) - PRS.15 — 0.118 for an incremental of one unit in PRS.15 (see Table 3). It is very
—P important to note that if the interaction is not included in the

-Age +1.951 - PC1 +2.867 - PC2 model, meaning that if the model assumes the association of PRS.15

That means that for those with Sex=1, the PRS.15 is not related  © be the same for both sex categories, then the association of
(p-value — 09910) to CAPE_Pos with odds = CXP(— 0002) =0.998. PRS.15 with CAPE_Pos mlght be lost (p—value = 00764) Most

For those with Sex = 0. the model indicates that PRS.15 is importantly, the different behavior regarding sex would not have
been detected.

The analysis continued, studying the possible association with
the following PRS from the list obtained. For the first six ranked
PRSs, Table 4 shows a clear association with CAPE_Pos in group Sex

TABLE 4 For the real data set with a binary Trait and according to sex,
estimates, p-values, and odds using model FM_Sex

PRS Sex Estimate p-value p-adjusted Odds equal to 0, but not when Sex is 1. Note that all these associations
would have been lost if the interaction term had not been considered.
PRS.15 0 0.746 0.0101 0.0367 2.109
1 -0.002 0.9910 0.9910 0.998
RSI6 0 o5 0o 0ok 22 4 Concluding remarks
1 0.058 0.7810 09112 0.060 ) ) .
This paper presents a guide based on simple steps to help
PRS.17 0 0.657 0.0204 0.0476 1.921 researchers in PRS studies. We describe these steps and present
1 0.031 0.8820 0.9498 1.031 different situations and solutions through Working Examples and
with a real data set. The situations presented in this guide do not
PRS.14 0 0.726 0.0131 0.0367 2.067 . . . L
cover all possible scenarios. For this reason, we have prioritized the
1 -0.072 0.7350 0.9112 0.931 most common ones. In our opinion, this is not about showing all
PRS.10 0 0.897 0.0120 0.0367 2452 possible options, but rather highlighting the need for a more
detailed study for some (not all) PRS that appear as prioritized
1 -0.124 0.6120 09112 0.883 i ) . o i i i
candidates with a possible association with the trait. In this work, we
PRS.11 0 0.880 0.0114 0.0367 2411 have not considered the case of having a categorical trait with more
1 0.093 0.6900 0.9112 0911 than two categories. Since it is a situation of great interest, we will
give the attention it deserves in future work. Finally, this guide is
PRS.74 0 0510 0.0466 0.0932 1.665 ) o ] : )
focused on the analysis of the association of a PRS with a trait, and it
1 0.120 0.5270 0.9112 1127 does not delve into which methodology is the most appropriate or
In bold, statistically significant terms (p < 0.05). up-to-date for calculating the PRS. Nevertheless, it is important to
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recognize that each step in the process, from GWAS discovery to
PRS calculation and the subsequent association analyses, introduces
potential sources of error (e.g., limited GWAS power, imputational
inaccuracies, or suboptimal PRS parameter choices), and the
accumulation of these can influence the robustness and
interpretation of the final results (16). Furthermore, it should not
be forgotten that the accuracy of a PRS depends on the genetic
ancestry of the group used to obtain it, and that it may present
significantly lower accuracy when applied to other groups (17, 18).
Finally, it does not detail the concepts or statistical techniques it
encourages to use, since it only aims to indicate which steps should
be followed to perform a correct analysis.
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