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Abnormal resting-state effective
connectivity of triple network
predicts smoking motivations
among males
Mengzhe Zhang, Jieping Sun, Qiuying Tao, Jinghan Dang,
Weijian Wang, Shaoqiang Han, Yarui Wei, Jingliang Cheng*

and Yong Zhang*

Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Background: The causal or direct connectivity alterations of triple network

including salience network (SN), central executive network (CEN), and default

mode network (DMN) in tobacco use disorder (TUD) and the neurobiological

features associated with smoking motivation are still unclear, which hampered

the development of a targeted intervention for TUD.

Method:We recruited 93 male smokers and 55 male non-smokers and obtained

their resting-state functional MRI (rs-fMRI) and smoking-related clinical scales.

We applied dynamic causal modeling (DCM) to rs-fMRI to characterize changes

of effective connectivity (EC) among seven major hubs from triple networks in

TUD. Leave-one-out (LOO) cross-validation was used to investigate whether the

altered EC could predict the smoking motivations (evaluated by Russell Reason

for Smoking Questionnaire).

Results: Compared with the control group, the TUD group displayed inhibitory

extrinsic effective connectivity within SN. The abnormal ECs between networks

were mainly characterized by uncoordinated switching between DMN and ECN

activities in TUD individuals, with insula acting as a causal hub in this process.

Moreover, increased EC from the right dorsolateral prefrontal cortex (R-DLPFC)

and medial prefrontal cortex (MPFC) could predict the smoking motivations

related to physical dependence.

Conclusions: This study revealed aberrant causal connectivity in triple network

and clarified the potential neural mechanism of smoking behavior driven by

physical dependence. These findings suggested that a network-derived indicator

could be a potential bio-marker of TUD and help to identify the heterogeneity in

the motivation of smoking behavior.
KEYWORDS

tobacco use disorder, triple network, smoking motivations, dynamic causal modeling,
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Introduction

Tobacco use disorder (TUD) is a chronic and recurring

psychiatric disorder marked by diminished inhibitory control and

a compulsive persistent smoking behavior (1, 2). The motivations

for smoking are diverse and have significant individual

heterogeneity, mainly including psychological and physical

dependence, which related to different stages of addiction. The

efficacy of current treatments for TUD remains unsatisfactory—for

instance, varenicline, acting as a partial agonist of the a4b2
nicotinic acetylcholine receptor, is applied to TUD treatment but

achieves only a 30% success rate in helping individuals quit (3),

which emphasizes the limited understanding in the etiology and

pathophysiology of TUD. Previous research have reported that

executive and salience network presented a blunted response

during social–emotional tasks and demonstrated increased

activation during exposure to drug-related cues in substance

addicts (4). However, the exact mechanism of TUD induced by

diverse motivations is still unknown.

TUD is a multifaceted addictive disorder, distinguished by

abnormalities in both the function and structure of specific brain

areas (5). Previous research found that TUD individuals displayed

decreased local functional connectivity (measured by regional

homogeneity (ReHo)) in the inferior frontal cortex and higher

local functional connections in the superior parietal lobe compared

with controls (6). In addition to these localized or single

connections, substantial interactions occur both within and across

the primary core neurocognitive networks (7–9). Menon’s study

clarified a triple network model for neuropsychiatric diseases and

concentrated on the manner in which disruptions in widespread

brain areas functioned within large-scale network systems,

including default mode network (DMN), salience network (SN),

and central executive network (CEN) (10). The posterior cingulate

cortex (PCC) and the medial prefrontal cortex (MPFC) are the key

nodes of DMN and participated in self-referential process and

coordinating brain endogenous activity in resting-state (11, 12).

CEN is involved in several high-level brain tasks, especially

cognitive control and decision-making process (13, 14). SN,

including anterior cingulate cortex (ACC) and anterior insula,

dynamically distributes attentional and cognitive resources

between the CEN and DMN to facilitate the transition between

varying physical states (10, 15). This kind of systematic connection

within or between networks has proven to be an anomaly in other

substance use disorders, such as with cannabis. Ma’s study

demonstrated that the cannabis use group exhibited aberrant

effective connectivity within SN and between the DMN and SN

regions (insula and PCC) relative to the control group (16). A

previous study has shown a dysfunction in the MPFC–PCC–

inferior parietal lobe loop within DMN among TUD individuals

(17). However, the malfunction in one key network may affect the

functioning of other interconnected networks (18). Thus, a

comprehensive in-depth understanding of TUD from the

perspective of integrated network interactions is needed.

Moreover, the CEN and SN exhibited a blunted response during

social–emotional tasks and showed increased engagement when
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exposed to drug cues among individuals with substance addiction

(4). Heavy smokers, but not light smokers, showed decreased

functional connectivity between SN and DMN and showed higher

functional connectivity between CEN/DMN and SN after smoking

replenishment (19). So, we hypothesized that the disconnection of

triple network was related to the different levels of severity of TUD

and induced by different motivations.

Previous studies investigated the abnormal intrinsic

connectivity of TUD by using functional connectivity (FC)

method. Shen ’s study indicated that smokers showed a

significantly decreased FC between bilateral Crus I and the brain

areas involved in DMN, sensorimotor area and prefrontal cortex,

compared with the controls (20). During the first day of quitting,

smokers who could resist smoking showed significant FC between

the left anterior insula (LAI) and the dorsolateral prefrontal cortex

(DLPFC), while there was no such connectivity in relapse (21).

However, while FC can quantify the statistical relationships between

neurophysiological signals, it is unable to reveal the directed

effective/causal effects that are behind these relationships (22).

The available findings could not support sequitur about a directed

or causal connection among large-scale networks implicated by

smoking. In order to solve the abovementioned limitations and

further reveal the brain information flows, some researchers

proposed to apply the dynamic causal modeling (DCM) method

to rs-fMRI, called spectral DCM (23). Spectral DCM could not only

estimate DCM parameters more efficiently but also detect group

differences sensitively by using parametric empirical Bayes (PEB)

analysis, which considers both the mean and variance of effective

connectivity (EC) estimation to infer group differences (24, 25).

This approach was recently used to explore the dysregulated cross-

network interactions among SN, CEN, and DMN among

schizophrenia patients and showed a great hypothesis testing

capability (18). For TUD individuals, Tang et al. conduct a

preliminary study of EC in DMN using spectral DCM, but the

authors only focused on four key nodes of DMN to conduct the

fully connected DCM modeling while ignoring the dysregulated

cross-network interactions among SN, CEN, and DMN (17). The

integration of functional networks and directed information flows

among large-scale networks of TUD needs to be further understood.

In this current study, we aimed to assess causal or direct

connectivity alterations focused on DMN, CEN, and SN networks

among TUD individuals by using spectral DCM method. Then, we

explored the relationship between the altered ECs with group

difference and smoking-related scales. Finally, we explored

whether such altered ECs could predict smoking motivations in

TUD individuals. Previous studies have identified that alterations in

functional connectivity within specific brain networks (including

DMN, CEN, and SN) underlie the neurobiological basis of TUD,

and the DLPFC played a critical role in cue-induced craving (26).

Based on the studies reviewed above, we hypothesized that (i)

individuals with TUD would exhibit abnormalities within the SN

or between the DMN and SN regions compared with the control

group, and these anomalies could be associated with the severity of

addiction and (ii) the ECs related to CEN regions would predict the

smoking behaviors driven by physical dependence.
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Methods

Subjects

A total of 148 participants were recruited in Henan Province,

China, including 93 smokers and 55 non-smoking healthy controls.

All of the participants were male adults, right-handed, and aged

from 18 to 55. The smokers were defined as individuals who have

smoked at least 10 cigarettes per day in the past 2 years and met the

DSM-V criteria for TUD (27). For the healthy controls, we recruited

subjects who did not smoke or smoked less than five cigarettes up to

now (28). The exclusion criteria for all subjects were as follows: (i)

with a clinical diagnosis of neuropsychiatric diseases, such as

schizophrenia, depression, and epilepsy, (ii) currently using

psychotropic drugs or simultaneously abusing other addictive

substances or drugs, such as heroin and alcohol, (iii) with organic

brain lesions, or (iv) subjects who have contraindications to

magnetic resonance imaging, such as claustrophobia, and

postoperative implantation of ferromagnetic devices. The

experiment was approved by the Medical Ethics Committee of

First Affiliated Hospital of Zhengzhou University, and informed

consent forms were obtained from each subject (2019-KY-297).
Smoking-related clinical data

Demographic data were collected by two experienced

physicians. We collected clinical scales and information related to

smoking including the FTND scale, Russell Reason for Smoking

Questionnaire (RRSQ) scale, age of onset, duration, number of

cigarettes consumed per day, and the pack-year (years of smoking ×

cigarettes smoked per day/20). We used the FTND scale to measure

the severity of TUD and used the RRSQ scale to investigate the

motivations for smoking. There was a total of six items in the FTND

scale: items 1, 3, and 5 assess the urgency of restoring the nicotine

levels to a given threshold after nighttime withdrawal and items 2, 4,

and 6 reflect the persistence of nicotine levels keeping around the

threshold while awake (29). There was a total of 24 items in the

RRSQ scale, including eight subscales. The eight subscales were

divided into two dimensions: (i) psychosocial dimension related to

psychosocial factors of smoking (subscales I–III) and (ii)

pharmacological dimension related to substance dependence and

addiction (subscales IV–VIII) (30).
Image acquisition

MRI data were obtained using a 3.0-T German Siemens

Magnetom Skyra magnetic resonance imaging equipment with a

16-channel prototype quadrature birdcage head coil at First

Affiliated Hospital of Zhengzhou University, Henan Province,

China. All smokers were required to smoke a cigarette within 30–

45 min before entering the scanner to exclude withdrawal

symptoms. The participants were instructed to rest with their eyes
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closed, to keep awake, to not think of anything, and to keep their

head motionless during scanning. Earplugs were used to protect the

hearing of the subjects, and spongy pads were used to fix their head

to minimize head movement. No external stimuli was exerted

during image acquisition. The parameters were repetition time

(TR)/echo time (TE) = 2,000/30 ms, flip angle = 80°, matrix

size = 64 × 64, field of view = 220 mm × 220 mm, voxel size =

3.4 mm × 3.4 mm × 4 mm, slices = 36, and slice thickness = 4 mm,

with a total of 180 volumes. All slices along the AC–PC line were

acquired with a total scan time of 360 s.
Image preprocessing

In this study, data processing was conducted by using the

DPARSF (data processing assistant for resting-state fMRI)

toolbox based on MATLAB platform. It mainly included the

following steps: First, format conversion (DICOM to NIFTI),

discarding the first five volumes, slice timing, and realignment

(cutoff < 2.5° or 2.5 mm). The images were spatially normalized

to the standard EPI template and re-sampled to 3 × 3 × 3 mm.

Functional images were spatially smoothed with a Gaussian kernel

of full-width at half-maximum of 6 mm. Finally, linear detrending

and scrubbing further eliminated the influence of head motion

and noise.
Dynamic causal modeling

Spectral DCM, as implemented in SPM12, was used for effective

connectivity analysis. First, a general linear model was established in

SPM with cosine basis function from 1/128 to 0.1 Hz as the interest

effects and the movement parameters and with cerebrospinal fluid

and white matter signals as nuisance regressors (31). Based on

previous studies, a total of seven regions of interest (ROIs) were

selected, including two DMN regions (medial prefrontal cortex

[MPFC] and posterior cingulate cortex [PCC]), three SN regions

(anterior cingulate cortex [ACC] and bilateral anterior insula [LAI/

RAI]), and two CEN regions (bilateral dorsolateral prefrontal cortex

[L-DLPFC/R-DLPFC]) (17, 32, 33). ROIs were defined as 6-mm-

radius spheres centered at the spatial coordinates of Montreal

Neurological Institute (MNI) reported in previous studies (for the

MNI coordinate, see Table 1). Next, we extracted the time series

signal of each ROI, and the center of the sphere was fixed. The

signal and spatial position of ROIs are shown in Figure 1. For each

ROI, the first principal component of the time series from all voxels

included in the sphere was calculated (corrected for confounders).

Without any external stimuli, a fully connected seven-node DCM

model was built for each subject (including self-connection of each

node, with a total of 49 connections). Then, the full DCM of each

subject was inverted to obtain estimates of their free energy and the

posterior probability (34). Finally, diagnostics of the model

inversion were performed to assess the estimated parameters and

the percentage variance explained by the model.
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Parametric empirical Bayes analyses

A group level analysis of each EC (a total of 49 tested

connections) was performed using the parametric empirical Bayes

(PEB) method (35). PEB is a between-subject hierarchical or

empirical Bayesian model over parameters that models how

individual connections relate to group or condition means. This

hierarchical approach treats each connection as a random (between-

subject) effect, which is modeled by adding a random Gaussian

variation to subject-specific predictions based upon the group

mean connectivity as well as between-subject effects (35). This
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density over the parameters from each subject’s DCM to inform

the group-level result (36). This hierarchical modeling of random

parametric effects could increase the sensitivity of the approach and

renders it robust to outlier subjects with noisy data (35). To evaluate

how the connectivity of TUD individuals differs from HCs, we then

used Bayesian model reduction (BMR) to search over PEB models

with different combinations of connections and group differences

(37). BMR was used to iteratively prune connection parameters from

the full PEB model, until model–evidence started to decrease. The

parameters of the best 256 pruned models were then averaged,
TABLE 1 MNI coordinates of seven ROIs.

Region ROI abbreviation X Y Z

Default mode network (17)

Posterior cingulate cortex PCC 0 -52 26

Medial prefrontal cortex MPFC 3 54 -2

Central executive network (33)

Left dorsolateral prefrontal cortex L DLPFC -43.4 20.9 38.1

Right dorsolateral prefrontal cortex R DLPFC 43.4 20.9 38.1

Salience network (32)

Anterior cingulate cortex ACC -2 28 28

Left anterior insular LAI -30 22 -6

Right anterior insular RAI 32 20 -6
MNI, Montreal Neurological Institute; ROI, region of interest.
FIGURE 1

Seven ROIs are selected for DCM analysis. The left panel shows the spatial location of the ROIs. Red represents default mode network (MPFC and
PCC). Green represents central executive network (L-DLPFC and R-DLPFC). Yellow represents salience network (ACC, LAI, and RAI). Blood-oxygen-
level-dependent time series data of ROIs from one subject (middle and right panel). These time series were used to invert the spectral DCM with the
(fully connected) architecture. DCM, dynamic causal modeling; ROI, region of interest; RAI, right anterior insula; LAI, left anterior insula; ACC,
anterior cingulate cortex; PCC, posterior cingulate cortex; MPFC, medial prefrontal cortex; R-DLPFC, right dorsolateral prefrontal cortex; L-DLPFC,
left dorsolateral prefrontal cortex.
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weighted by their evidence. In PEB, group-level analyses are

conducted using Bayesian posterior inference, which does not need

to contend with the multiple-comparison problem because of the lack

of false positives (38). Bayesian posterior probability (Bayesian-PP)

was used as an indicator of the confidence. The higher Bayesian-PP

indicated the greater confidence. Here the results were considered

reliable if Bayesian-PP >0.95 (16).
Leave-one-out cross-validation

In order to investigate whether the altered EC could predict the

motivations of smoking in each subject, we performed leave-one-

out cross validation analysis to explore the relationship between

RRSQ scores (including two dimensions) and ECs with group

difference. A PEB model was fitted to all but one subject, and the

RRSQ scores for the left-out subject were predicted, with age and

years of education as covariates of non-interest (39). This was

repeated with each subject left out, and the accuracy of the

prediction was recorded. The Pearson correlation coefficient and

normalized root mean squared error (NRMSE) were calculated

between the actual and predicted scores to assess predictive

performance (39).
Statistical analyses

SPSS 22 software was used for data statistics. Clinical data was

expressed as mean ± standard deviation. Two-sample t-tests were

conducted to assess differences in age and years of education

between the TUD group and the control group. Pearson’s

correlations were performed to explore the relationships between

altered ECs based on the PEB analysis and the severity of the

disease, such as FTND score and pack-year.
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Results

Demographic and clinical data

Table 2 summarizes the demographics, clinical information

related to smoking, nicotine dependence scores, and motivations

for smoking. No significant differences are found in age and years of

education between the TUD group and the control group.
Group comparison

Compared with healthy controls, TUD individuals show

increased ECs from RAI to R-DLPFC, R-DLPFC to MPFC, and

LAI to PCC and decreased ECs from MPFC to ACC, ACC to LAI,

and ACC to RAI (free energy, Bayesian-PP >0.95). Besides that,

LAI, MPFC, and PCC show enhanced self-connections in TUD

individuals (Figure 2). The group differences for each EC and

corresponding Bayesian PP are shown in Table 3.
Leave-one-out cross-validation

The RRSQIV–VIII scores predicted by EC from R-DLPFC to

MPFC are significantly correlated with the actual scores in TUD

individuals (r = 0.32, p = 0.002, NRMSE = 0.23, FDR-corrected) (see

Figure 3). Therefore, the effect size estimated by DCM could predict

the smoking motivations related to physical dependence.
Correlation analyses

No significant correlations were found between altered ECs and

severity of disease, including FTND score and pack-year (all

pcorrected >0.05).
TABLE 2 Demographic and smoking behavior.

Demographics TUD (n = 93) Healthy controls (n = 55) ta p

Age (year) 34.1 ± 7.8 32.3 ± 7.4 1.434 0.154

Education (year) 15.1 ± 2.0 15.9 ± 3.1 -1.679 0.097

Age onset 19.1 ± 3.0 – – –

Smoking years 16.6 ± 7.2 – – –

Pack-year 18.1 ± 12.4 – – –

Cigarettes/day 21.0 ± 9.0 – – –

FTNDtotal 4.2 ± 2.3 – – –

FTND1,3,5 2.3 ± 1.5 – – –

FTND2,4,6 1.9 ± 1.3 – – –

RRSQI–III 8.4 ± 5.0 – – –

RRSQIV–VIII 19.1 ± 7.7 – – –
Data represent mean ± standard deviation.
FTND, Fagerström Test for Nicotine Dependence; RRSQ, Russell Reason for Smoking Questionnaire; Pack-year, years of smoking × cigarettes smoked per day/20; TUD, tobacco use disorder.
aTwo-sample t-test.
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Discussion

This study examined the anomalies in causal connections

within triple network among TUD individuals by using spectral

DCM. Compared with the control group, the TUD group displayed

inhibitory extrinsic EC within SN and uncoordinated switching

between DMN and CEN activities. Besides that, increased EC from

R-DLPFC and MPFC could predict the smoking motivations

related to physical dependence. These results help us further in
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realizing the neural mechanism of TUD and its interaction within

and between triple networks.
Self-connection changes in TUD

Firstly, we observed that the DMN and SN regions exhibited

enhanced self-connection in TUD individuals compared with the

control group. Given that the self-connection within the DCM is
FIGURE 2

Results of the group comparison. (A) EC difference between TUD group and control group. (B) Decreased EC in TUD individuals compared with
healthy controls (blue arrow). (C) Increased EC in TUD individuals compared with healthy controls (yellow arrow and yellow ball represent enhanced
self-connection in this brain region). EC, effective connectivity; TUD, tobacco use disorder.
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consistently inhibitory, the findings of increased self-inhibition

in the DMN and SN regions suggest that these brain areas are

more self-inhibited (17, 39). According to a previous study, it is

probably due to the lower activation of these regions in chronic

smokers (40). Interestingly, such self-inhibitory feature comes

with an increased feedback connection between the inhibited

nodes and other external nodes. Another potential biological

explanation is that the heightened self-inhibition adjusts the

balance between inhibitory and excitatory activities within each

area, thereby preserving functional integration among specialized

regions (41).
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EC aberrance within networks

Dysfunction of brain network (particularly SN) that mediates

salience is crucial to the progression of TUD (42). SN is involved in

integrating internal emotion (craving and withdrawal) and external

stimuli (tobacco cues) to guide behaviors, which is associated with the

motivation of smoking (43). Consistent with our findings, the self-

inhibitory feature of the key nodes in SN (ACC and AI) implies

inefficient internal/external information processing and cognitive

resource allocation (10, 15). In terms of connections within network,

we found decreased EC from ACC to bilateral AI in TUD individuals

compared with healthy controls. The ACC and AI exhibit substantial

topographical connectivity, forming a tightly integrated anatomical

network, with highly specialized neurons (44). A previous study

reported that young adult smokers exhibited decreased functional

connectivity between ACC and right insula, and it showed an inverse

relationship with the errors made during the Stroop color-word task,

indicating compromised cognition controlling progress among

smokers (45). The functional connectivity within SN exhibited

varying characteristics across different smoking conditions, such as

during nighttime abstinence (when deprived) and after smoking (when

satiated) (46). After more than 12 h of abstinence, the connection

between insula and ACCwas highly increased in TUD individuals (19).

On this basis, our findings further clarify the connection between ACC

and AI is directional, and the EC from ACC to AI might be associated

with craving and withdrawal of TUD.
EC aberrance between networks

The dysfunction of SN could impact the other networks. The

critical role of SN is to initiate network switching and allocate
TABLE 3 EC difference between the TUD group and the control group.

Group Connectivity EC (HZ) Bayesian-PP

TUD < HC MPFC→ACC -0.076 1.00

ACC→LAI -0.110 1.00

ACC→RAI -0.081 1.00

TUD > HC RAI→R-DLPFC 0.116 1.00

R-DLPFC→MPFC 0.077 1.00

LAI→PCC 0.086 1.00

LAI→LAI 0.134 1.00

MPFC→MPFC 0.112 1.00

PCC→PCC 0.099 1.00
EC, effective connectivity; PP, posterior probability; TUD, tobacco use disorder; HC, healthy
control; RAI, right anterior insula; LAI, left anterior insula; ACC, anterior cingulate cortex;
PCC, posterior cingulate cortex; MPFC, medial prefrontal cortex; R-DLPFC, right dorsolateral
prefrontal cortex.
Arrow means EC from A to B.
FIGURE 3

Leave-one-out cross-validation results. Left: Actual and (out‐of‐sample) predicted RRSQIV–VIII scores based on EC from R-DLPFC to MPFC (after
mean correction and standardization). The yellow dashed line is the actual values. The red line is the predicted values. The shaded area represents
90% confidence interval. Right: Out-of-samples correlation of the actual RRSQIV–VIII scores against the predicted scores based on EC from R-DLPFC
to MPFC for each left-out subject. EC, effective connectivity; MPFC, medial prefrontal cortex; R-DLPFC, right dorsolateral prefrontal cortex; RRSQ,
Russell Reason for Smoking Questionnaire.
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attentional and cognitive resources dynamically between the CEN

and DMN to achieve the transformation of a different physical

status (10, 15). Consistent with our hypothesis, we found disrupted

EC between the DMN and SN regions in TUD individuals

compared with healthy controls. One recent research proposed

that the insula acted as a causal outflow hub to mediate dynamic

switching between DMN and CEN activity (47). The activity in the

insula being excessively coupled with the activity in DMN suggests

that smokers indulge in more internal mental processes to deal with

anxiety, stress, and other negative emotions (10). A previous study

has demonstrated that during the initial phase of smoking

abstinence, the interaction between the AI and DMN brain

regions played a crucial role in redirecting attention to address

the internal turmoil caused by nicotine deprivation. This shift in

network dynamics biases cognitive processing toward the DMN

while moving away from the CEN (48).

SN also acts on CEN; more specifically, TUD individuals

showed that R-DLPFC has enhanced sensitivity to afferent

coupling from the RAI compared with healthy controls. As

discussed above, the dysfunction of SN results in compromised

detection and mapping of salient external stimuli and internal

events, leading to the abnormal activation of the CEN. This has

substantial impacts on both cognitive processes and self-monitoring

(10). The aberrance of CEN was thought to be associated with

cognitive deficits in TUD individuals (49). Compared with neutral

cues, TUD individuals showed increased bold activation in the right

CEN when presented with smoking cues (50). Consistent with our

findings, Wang’s research also demonstrated that smokers exhibited

increased intrinsic connectivity between AI and CEN compared

with non-smokers (47). A recent study has reported that smokers

would show lower coupling between SN and DMN while

demonstrating greater connections between SN and CEN when

tobacco administration facilitated externally directed attention (48).

Therefore, our results suggested that enhanced EC from SN (RAI)

to CEN (R-DLPFC) in TUD individuals might be related to external

stimulus-driven cognitive information processing, and more

recruitment of CEN was needed in the face of external stimuli

(especially smoking-related stimuli) as the severity of dependence

increases (10, 51).
EC predicted smoking motivations

Interestingly, the association between interactions of triple

network and motivations for driving smoking behaviors was

observed in TUD group. Our findings showed that EC from R-

DLPFC to MPFC could predict RRSQIV–VIII scores in TUD

individuals, which suggested that the adaptive modifications in

this circuit could potentially serve as the neural biomarker

underlying smoking behavior driven by physical dependence. The

RRSQ subscales could assess an individual’s motivations for

smoking, including psychological and physical dependence, which

have been utilized to explore the interacting pathways among

depressive symptom, stress, and smoking (30). The conventional

understanding of addiction posits that tobacco use is largely
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governed by the level of nicotine in the body and directly related

to the pharmacological effects of nicotine (52, 53), but a previous

study has proposed the notion of social smokers who smoke

exclusively in social settings and in the presence of other smokers,

which may associate with their psychosocial image (54–56).

Therefore, we hypothesized that multiple causes of smoking may be

mediated by different neural circuits. The dual-system theory holds that

the failure of self-control is caused by the conflict between automatic

and deliberative modes of behavioral control (57). The DLPFC is

responsible for governing and regulating action patterns as well as

decision-making processes, while the MPFC plays a role in modulating

limbic system activation and emotional processing (58, 59). The

imbalance between the two systems is considered to play a role in

increasing susceptibility to reinforce or relapse in addiction (57). Our

current results lend support to the hypothesis that the abnormal

communication of DLPFC and MPFC underlies the mediation of

smoking behaviors associated with substance dependence and

addiction rather than psychosocial factors.
Significance

Dysfunctional connectivity patterns of DLPFC and MPFC may

identify subgroups of smokers with distinct motivational drivers. A

previous study has demonstrated that a transcranial magnetic

stimulation (TMS) strategy targeting both the MPFC and DLPFC

could significantly increase the 1-month abstinence rates and

reduce cigarette consumption compared with sham treatment

(59). Our findings provide a potential target to develop effective

treatments for TUD individuals who smoke driven by physical

dependence. Moreover, our study indicated the dysfunctional

activity within SN uncoordinated switching between DMN and

CEN activities in TUD, providing a rationale for individualized

attentional bias training for SN dysregulation to address network-

specific deficits. While large-scale implementation requires further

validation, our study identifies a tractable target for pilot trials.
Limitations

There are still some limitations in our research. First, despite

uncovering the anomalies in causal connections within triple

networks among TUD individuals, the current cross-sectional

study is insufficient to explain how EC evolves over time and its

relationship with clinical features over time. Second, gender

differences of brain functional abnormalities are still unclear

because only male subjects were recruited. A previous study has

shown that male smokers are more sensitive to the reinforcing

effects of tobacco than female smokers (60). Multicenter datasets

and female subjects are needed to further verify these findings.

Third, our current study did not stratify the participants based on

the severity of disease. Future studies should focus on the abnormal

communication patterns within/between the triple brain networks

across individuals with TUD of different severity levels. Fourth,

based on the current algorithm, the large number of connectivity
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parameters could inflate model complexity, leading to potential

problems with overfitting. We only selected the key nodes of DMN,

SN, and CEN as ROIs rather than all regions of networks. Future

studies could constrain the number of external coupling parameters

by using plausible priors, allowing for a more comprehensive evaluation

of ECs in triple networks among TUD individuals (61, 62). Finally,

evidence showed that reliability and similarity of functional connectivity

estimates can be greatly improved by increasing the scan lengths from

5 min up to 13 min, but our study collected 6-min resting-state

scanning (63).
Conclusion

Overall, this study revealed aberrant causal connectivity in a

large-scale brain organization focused on triple networks and

emphasized their distinct roles of cognition and internal mental

processes in TUD individuals. Our findings indicated the

dysfunctional activity within SN uncoordinated switching

between DMN and CEN activities in TUD and also clarified the

pivotal role of AI in this process. Moreover, the abnormal

communication of DLPFC and MPFC might be the basis of

mediating smoking behavior driven by physical dependence

rather than psychosocial factors. Network-derived indicators have

the potential to serve as biomarkers for TUD and assist in

elucidating the diverse motivations behind smoking behavior.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author/s.
Ethics statement

The experiment was approved by the Medical Ethics Committee

of First Affiliated Hospital of Zhengzhou University, and informed

consent was obtained from each participant. The studies were

conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

MZ: Methodology, Data curation, Conceptualization, Writing –

original draft, Software, Formal Analysis. JS: Software, Data
Frontiers in Psychiatry 09
curation, Investigation, Writing – original draft, Formal Analysis,

Methodology. QT: Methodology, Writing – review & editing,

Investigation, Formal Analysis. JD: Writing – review & editing,

Investigation, Data curation. WW: Data curation, Writing – review

& editing, Investigation. SH: Software, Writing – review & editing,

Validation, Methodology. YW: Methodology, Software, Writing –

review & editing, Formal Analysis. JC: Supervision, Resources,

Conceptualization, Writing – review & editing, Funding

acquisition, Project administration. YZ: Supervision, Funding

acquisition, Conceptualization, Validation, Resources, Project

administration, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. Funding for Scientific

Research and Innovation Team of The First Affiliated Hospital

of Zhengzhou Univers i ty (YZ Grant/Award Number

QNCXTD2023007); National Natural Science Foundation of

China (JC Grant/Award Numbers 81871327, 81601467; YZ

Grant/Award Number 82471962).
Acknowledgments

The authors thank all participants of this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1622162
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2025.1622162
References
1. Zhang M, Gao X, Yang Z, Niu X, Wang W, Han S, et al. Integrative brain
structural and molecular analyses of interaction between tobacco use disorder and
overweight among male adults. J Neurosci Res. (2023) 101:232–44. doi: 10.1002/
jnr.25141

2. Corley J, Cox SR, Harris SE, Hernandez MV, Maniega SM, Bastin ME, et al.
Epigenetic signatures of smoking associate with cognitive function, brain structure, and
mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl
Psychiatry. (2019) 9:248. doi: 10.1038/s41398-019-0576-5

3. Qian W, Huang P, Shen Z, Wang C, Yang Y, Zhang M. Brain gray matter volume
and functional connectivity are associated with smoking cessation outcomes. Front
Hum Neurosci. (2019) 13:361. doi: 10.3389/fnhum.2019.00361

4. Zilverstand A, Huang A, Alia-Klein N, Goldstein R. Neuroimaging impaired
response inhibition and salience attribution in human drug addiction: A systematic
review. Neuron. (2018) 98:886–903. doi: 10.1016/j.neuron.2018.03.048

5. Miranda LF, James RP, Brett F, Jill RT. Translational research in nicotine
addiction. Cold Spring Harb Perspect Med. (2020) 11(6):a039776. doi: 10.1101/
cshperspect.a039776

6. Tang J, Liao Y, Deng Q, Liu T, Chen X, Wang X, et al. Altered spontaneous
activity in young chronic cigarette smokers revealed by regional homogeneity. Behav
Brain functions: BBF. (2012) 8:44. doi: 10.1186/1744-9081-8-44

7. Luo Q, Pan B, Gu H, Simmonite M, Francis S, Liddle P, et al. Effective connectivity
of the right anterior insula in schizophrenia: The salience network and task-negative to
task-positive transition. NeuroImage Clin. (2020) 28:102377. doi: 10.1016/
j.nicl.2020.102377

8. Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, et al.
Aberrant dependence of default mode/central executive network interactions on
anterior insular salience network activity in schizophrenia. Schizophr Bull. (2014)
40:428–37. doi: 10.1093/schbul/sbt037

9. Lefebvre S, Demeulemeester M, Leroy A, Delmaire C, Lopes R, Pins D, et al.
Network dynamics during the different stages of hallucinations in schizophrenia. Hum
Brain Mapp. (2016) 37:2571–86. doi: 10.1002/hbm.23197

10. Menon V. Large-scale brain networks and psychopathology: a unifying triple
network model. Trends Cognit Sci. (2011) 15:483–506. doi: 10.1016/j.tics.2011.08.003

11. Goldberg E, Tulviste J. Large-scale distributed networks and cerebral
hemispheres. Cortex; J devoted to study nervous system Behav. (2022) 152:53–8.
doi: 10.1016/j.cortex.2022.03.010

12. Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction.
Neuroimage. (2019) 200:313–31. doi: 10.1016/j.neuroimage.2019.06.036

13. Lavagnino L, Mwangi B, Bauer IE, Cao B, Selvaraj S, Prossin A, et al. Reduced
inhibitory control mediates the relationship between cortical thickness in the right
superior frontal gyrus and body mass index. Neuropsychopharmacology. (2016)
41:2275–82. doi: 10.1038/npp.2016.26

14. John J, Wang L, Moffitt A, Singh H, Gado M, Csernansky J. Inter-rater reliability
of manual segmentation of the superior, inferior and middle frontal gyri. Psychiatry
Res. (2006) 148:151–63. doi: 10.1016/j.pscychresns.2006.05.006

15. Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation
likelihood estimation meta-analysis for central processing of autonomic function. J
Neurosci. (2013) 33:10503–11. doi: 10.1523/JNEUROSCI.1103-13.2013

16. Ma L, Hettema JM, Cousijn J, Bjork JM, Steinberg JL, Keyser-Marcus L, et al.
Resting-state directional connectivity and anxiety and depression symptoms in adult
cannabis users. Biol Psychiatry Cognit Neurosci Neuroimaging. (2021) 6:545–55.
doi: 10.1016/j.bpsc.2020.09.015

17. Tang R, Razi A, Friston KJ, Tang YY. Mapping smoking addiction using effective
connectivity analysis. Front Hum Neurosci. (2016) 10:195. doi: 10.3389/
fnhum.2016.00195

18. Xi YB, Guo F, Liu WM, Fu YF, Li JM, Wang HN, et al. Triple network
hypothesis-related disrupted connections in schizophrenia: A spectral dynamic
causal modeling analysis with functional magnetic resonance imaging. Schizophr Res.
(2021) 233:89–96. doi: 10.1016/j.schres.2021.06.024
19. Ding X, Lee S. Changes of functional and effective connectivity in smoking

replenishment on deprived heavy smokers: a resting-state FMRI study. PloS One.
(2013) 8:e59331. doi: 10.1371/journal.pone.0059331

20. Shen Z, Huang P, Wang C, Qian W, Yang Y, Zhang M. Cerebellar gray matter
reductions associate with decreased functional connectivity in nicotine-dependent
individuals. Nicotine tobacco research: Off J Soc Res Nicotine Tobacco. (2018) 20:440–
7. doi: 10.1093/ntr/ntx168

21. Zelle S, Gates K, Fiez J, Sayette M, Wilson S. The first day is always the hardest:
Functional connectivity during cue exposure and the ability to resist smoking in the
initial hours of a quit attempt. NeuroImage. (2017) 151:24–32. doi: 10.1016/
j.neuroimage.2016.03.015

22. Friston K. Functional and effective connectivity: a review. Brain connectivity.
(2011) 1:13–36. doi: 10.1089/brain.2011.0008

23. Friston KJ, Kahan J, Biswal B, Razi A. A DCM for resting state fMRI.
Neuroimage. (2014) 94:396–407. doi: 10.1016/j.neuroimage.2013.12.009
Frontiers in Psychiatry 10
24. Razi A, Kahan J, Rees G, Friston K. Construct validation of a DCM for resting
state fMRI. NeuroImage. (2015) 106:1–14. doi: 10.1016/j.neuroimage.2014.11.027

25. Friston K, Harrison L, PennyW. Dynamic causal modelling.NeuroImage. (2003)
19:1273–302. doi: 10.1016/s1053-8119(03)00202-7

26. Jeffrey ME, Francesco V, Jason DR, Jennifer AM, Cho YL, Yong C, et al. Neural
substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage.
(2011) 60(1):252–62. doi: 10.1016/j.neuroimage.2011.12.024

27. Wen M, Yang Z, Wei Y, Huang H, Zheng R, Wang W, et al. More than just
statics: Temporal dynamic changes of intrinsic brain activity in cigarette smoking.
Addict Biol. (2021) 26:e13050. doi: 10.1111/adb.13050

28. Wu G, Yang S, Zhu L, Lin F. Altered spontaneous brain activity in heavy smokers
revealed by regional homogeneity. Psychopharmacol (Berl). (2015) 232:2481–9.
doi: 10.1007/s00213-015-3881-6

29. Radzius A, Gallo JJ, Epstein DH, Gorelick DA, Cadet JL, Uhl GE, et al. A factor
analysis of the Fagerstrom Test for Nicotine Dependence (FTND). Nicotine Tob Res.
(2003) 5:255–40. doi: 10.1080/1462220031000073289

30. Jiang H, Li S, Yang J. Work stress and depressive symptoms in fishermen with a
smoking habit: A mediator role of nicotine dependence and possible moderator role of
expressive suppression and cognitive reappraisal. Front Psychol. (2018) 9:386.
doi: 10.3389/fpsyg.2018.00386

31. Fridgeirsson EA, Figee M, Luigjes J, van den Munckhof P, Schuurman PR, van
Wingen G, et al. Deep brain stimulation modulates directional limbic connectivity in
obsessive-compulsive disorder. Brain. (2020) 143:1603–12. doi: 10.1093/brain/awaa100

32. Zhang M, Gao X, Yang Z, Han S, Zhou B, Niu X, et al. Abnormal resting-state
effective connectivity in reward network among long-term male smokers. Addict Biol.
(2022) 27:e13221. doi: 10.1111/adb.13221

33. Liao W, Fan Y, Yang S, Li J, Duan X, Cui Q, et al. Preservation effect: cigarette
smoking acts on the dynamic of influences among unifying neuropsychiatric triple
networks in schizophrenia. Schizophr Bull. (2019) 45:1242–50. doi: 10.1093/schbul/
sby184

34. Zeidman P, Jafarian A, Corbin N, Seghier M, Razi A, Price C, et al. A guide to
group effective connectivity analysis, part 1: First level analysis with DCM for fMRI.
NeuroImage. (2019) 200:174–90. doi: 10.1016/j.neuroimage.2019.06.031

35. Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, et al.
Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage.
(2016) 128:413–31. doi: 10.1016/j.neuroimage.2015.11.015

36. Zhou Y, Zeidman P, Wu S, Razi A, Chen C, Yang L, et al. Altered intrinsic and
extrinsic connectivity in schizophrenia. NeuroImage Clin. (2018) 17:704–16.
doi: 10.1016/j.nicl.2017.12.006

37. Friston K, Penny W. Post hoc Bayesian model selection. Neuroimage. (2011)
56:2089–99. doi: 10.1016/j.neuroimage.2011.03.062

38. Friston KJ, Penny W. Posterior probability maps and SPMs. NeuroImage. (2003)
19:1240–9. doi: 10.1016/s1053-8119(03)00144-7

39. Zeidman P, Jafarian A, Seghier M, Litvak V, Cagnan H, Price C, et al. A guide to
group effective connectivity analysis, part 2: Second level analysis with PEB.
NeuroImage. (2019) 200:12–25. doi: 10.1016/j.neuroimage.2019.06.032

40. Weng J, Huang S, Lee M, HoM. Association between functional brain alterations
and neuropsychological scales in male chronic smokers using resting-state fMRI.
Psychopharmacology. (2021) 238:1387–99. doi: 10.1007/s00213-021-05819-6

41. Bastos A, Usrey W, Adams R, Mangun G, Fries P, Friston K. Canonical
microcircuits for predictive coding. Neuron. (2012) 76:695–711. doi: 10.1016/
j.neuron.2012.10.038

42. Stoeckel L, Chai X, Zhang J, Whitfield-Gabrieli S, Evins A. Lower gray matter
density and functional connectivity in the anterior insula in smokers compared with
never smokers. Addict Biol. (2016) 21:972–81. doi: 10.1111/adb.12262

43. Menon V, Uddin L. Saliency, switching, attention and control: a network model
of insula function. Brain structure Funct. (2010) 214:655–67. doi: 10.1007/s00429-010-
0262-0

44. Sridharan D, Levitin D, Menon V. A critical role for the right fronto-insular
cortex in switching between central-executive and default-mode networks. Proc Natl
Acad Sci United States America. (2008) 105:12569–74. doi: 10.1073/pnas.0800005105

45. Li Y, Yuan K, Guan Y, Cheng J, Bi Y, Shi S, et al. The implication of salience
network abnormalities in young male adult smokers. Brain Imaging Behav. (2017)
11:943–53. doi: 10.1007/s11682-016-9568-8

46. Yip S, Lichenstein S, Garrison K, Averill C, Viswanath H, Salas R, et al. Effects of
smoking status and state on intrinsic connectivity. Biol Psychiatry Cogn Neurosci
Neuroimaging. (2022) 7:895–904. doi: 10.1016/j.bpsc.2021.02.004

47. Wang X, Xue T, Dong F, Li Y, Xie D, Liu C, et al. The changes of brain functional
networks in young adult smokers based on independent component analysis. Brain
Imaging Behav. (2021) 15:788–97. doi: 10.1007/s11682-020-00289-4

48. Sutherland M, McHugh M, Pariyadath V, Stein E. Resting state functional
connectivity in addiction: Lessons learned and a road ahead. NeuroImage. (2012)
62:2281–95. doi: 10.1016/j.neuroimage.2012.01.117
frontiersin.org

https://doi.org/10.1002/jnr.25141
https://doi.org/10.1002/jnr.25141
https://doi.org/10.1038/s41398-019-0576-5
https://doi.org/10.3389/fnhum.2019.00361
https://doi.org/10.1016/j.neuron.2018.03.048
https://doi.org/10.1101/cshperspect.a039776
https://doi.org/10.1101/cshperspect.a039776
https://doi.org/10.1186/1744-9081-8-44
https://doi.org/10.1016/j.nicl.2020.102377
https://doi.org/10.1016/j.nicl.2020.102377
https://doi.org/10.1093/schbul/sbt037
https://doi.org/10.1002/hbm.23197
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.cortex.2022.03.010
https://doi.org/10.1016/j.neuroimage.2019.06.036
https://doi.org/10.1038/npp.2016.26
https://doi.org/10.1016/j.pscychresns.2006.05.006
https://doi.org/10.1523/JNEUROSCI.1103-13.2013
https://doi.org/10.1016/j.bpsc.2020.09.015
https://doi.org/10.3389/fnhum.2016.00195
https://doi.org/10.3389/fnhum.2016.00195
https://doi.org/10.1016/j.schres.2021.06.024
https://doi.org/10.1371/journal.pone.0059331
https://doi.org/10.1093/ntr/ntx168
https://doi.org/10.1016/j.neuroimage.2016.03.015
https://doi.org/10.1016/j.neuroimage.2016.03.015
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/j.neuroimage.2014.11.027
https://doi.org/10.1016/s1053-8119(03)00202-7
https://doi.org/10.1016/j.neuroimage.2011.12.024
https://doi.org/10.1111/adb.13050
https://doi.org/10.1007/s00213-015-3881-6
https://doi.org/10.1080/1462220031000073289
https://doi.org/10.3389/fpsyg.2018.00386
https://doi.org/10.1093/brain/awaa100
https://doi.org/10.1111/adb.13221
https://doi.org/10.1093/schbul/sby184
https://doi.org/10.1093/schbul/sby184
https://doi.org/10.1016/j.neuroimage.2019.06.031
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.nicl.2017.12.006
https://doi.org/10.1016/j.neuroimage.2011.03.062
https://doi.org/10.1016/s1053-8119(03)00144-7
https://doi.org/10.1016/j.neuroimage.2019.06.032
https://doi.org/10.1007/s00213-021-05819-6
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1111/adb.12262
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.1007/s11682-016-9568-8
https://doi.org/10.1016/j.bpsc.2021.02.004
https://doi.org/10.1007/s11682-020-00289-4
https://doi.org/10.1016/j.neuroimage.2012.01.117
https://doi.org/10.3389/fpsyt.2025.1622162
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2025.1622162
49. Lerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein E. Large-scale brain
network coupling predicts acute nicotine abstinence effects on craving and cognitive
function. JAMA Psychiatry. (2014) 71:523–30. doi: 10.1001/jamapsychiatry.2013.4091

50. Wanger T, de Moura F, Ashare R, Loughead J, Lukas S, Lerman C, et al. Brain
and cortisol responses to smoking cues are linked in tobacco-smoking individuals.
Addict Biol. (2023) 28:e13338. doi: 10.1111/adb.13338
51. Fedota J, Stein E. Resting-state functional connectivity and nicotine addiction:

prospects for biomarker development. Ann New York Acad Sci. (2015) 1349:64–82.
doi: 10.1111/nyas.12882
52. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell.

(2015) 162:712–25. doi: 10.1016/j.cell.2015.07.046

53. Comings D, Blum K. Reward deficiency syndrome: genetic aspects of behavioral
disorders. Prog Brain Res. (2000) 126:325–41. doi: 10.1016/s0079-6123(00)26022-6

54. Garcia-Rivas V, Deroche-Gamonet V. Not all smokers appear to seek nicotine
for the same reasons: implications for preclinical research in nicotine dependence.
Addict Biol. (2019) 24:317–34. doi: 10.1111/adb.12607

55. Shiffman S. SM P (1991) Individual differences in smoking: gender and nicotine
addiction. Nicotine Tob Res. (1999) 1 Suppl:S153–66. doi: 10.1080/14622299050011991

56. Philpot SJ, Ryan SA, Torre LE, Wilcox HM, Jalleh G, Jamrozik K. Effect of
smoke-free policies on the behaviour of social smokers. Tobacco Control. (1999) 8:278–
81. doi: 10.1136/tc.8.3.278
Frontiers in Psychiatry 11
57. McClure S, Bickel W. A dual-systems perspective on addiction: contributions
from neuroimaging and cognitive training. Ann New York Acad Sci. (2014) 1327:62–78.
doi: 10.1111/nyas.12561

58. Goldstein R, Volkow N. Dysfunction of the prefrontal cortex in addiction:
neuroimaging findings and clinical implications. Nat Rev Neurosci. (2011) 12:652–69.
doi: 10.1038/nrn3119

59. Harmelech T, Hanlon C, Tendler A. Transcranial magnetic stimulation as a tool
to promote smoking cessation and decrease drug and alcohol use. Brain Sci. (2023) 13
(7):1072. doi: 10.3390/brainsci13071072

60. Megan M M-SM, Davy CV, Christopher CC, Xun Z, Sherry AM, Kelly PC, et al.
Network analysis of intrinsic functional brain connectivity in male and female adult
smokers: A preliminary study.Nicotine Tob Res. (2017) 20(7):810–8. doi: 10.1093/ntr/ntx206

61. Adeel R, Mohamed LS, Yuan Z, Peter M, Peter Z, Hae-Jeong P, et al. Large-scale
DCMs for resting-state fMRI. Netw Neurosci. (2018) 1(3):222–41. doi: 10.1162/
NETN_a_00015

62. Stephan KE, PennyWD,Moran RJ, den Ouden HE, Daunizeau J, Friston KJ. Ten
simple rules for dynamic causal modeling. Neuroimage. (2009) 49(4):3099–109.
doi: 10.1016/j.neuroimage.2009.11.015.
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