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Multi-omics investigation of
metabolic dysregulation in
depression: integrating
metabolomics, weighted gene
co-expression network analysis,
and mendelian randomization
Wu Qianhao1,2†, Zhang Jinwen1,2†, Miao Jingjie1,2†, Chen Xiaoyu2,
Zhao Yangfei2, Yao Wenxiu2, Jiang Xu2, Wang Xiaojun3,
Han Peipei2* and Guo Qi1,2*

1Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2College of
Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,
3Science and Education Department, Shanghai Health Rehabilitation Hospital, Shanghai, China
Background: The etiology of depressive disorder, the leading cause of global

mental disability, is characterized by systemic metabolic dysregulation. However,

the causal metabolites and their mechanistic networks remain elusive.

Methods: We combined untargeted LC/GC-MS metabolomics (N=98 Chinese

elderly), weighted gene co-expression network analysis (WGCNA), and two-

sample Mendelian randomization (MR) using GWAS data (59,333 depression

cases with 434,831 controls) to identify depression-associated metabolites

and pathways.

Results: LC/GC-MS analysis identified 1,458 metabolites, with 84 differentially

expressed in depression (VIP>1.5, p<0.05). WGCNA revealed a turquoise module

enriched in amino acid metabolism (MM>0.7, p<0.05), while MR analysis

confirmed 35 causal metabolites, including cysteine-alanine ratio (b=0.18,
p=0.003) and serine levels (b=−0.24, p=0.001). Multi-omics integration

highlighted glycine/serine/threonine metabolism (Impact = 0.35) and one-

carbon folate cycle as core dysregulated pathways. Alterations were

characterized by serine deficiency and phosphoserine accumulation,

potentially reflecting disturbances in DNA methylation processes. Furthermore,

elevated cysteine levels indicated a compensatory response to oxidative stress,

and disruptions in purine metabolism pointed to mitochondrial dysfunction,

particularly impaired mitochondrial ATP synthesis.
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Conclusion: This study establishes a hierarchical metabolic framework for

depression, prioritizing single-carbon metabolism and oxidative stress as

central therapeutic targets. The findings emphasize methylation dysregulation

and mitochondrial dysfunction in elderly depression, offering novel biomarkers

for precision intervention.
KEYWORDS

depression, metabolic diseases, untargeted metabolomics, Mendelian randomization,
community-dwelling elderly
1 Introduction

Depressive Disorder (DD) is a debilitating mental disorder with

a global prevalence of over 350 million cases (1), exhibiting a

lifetime prevalence ranging from 7.5 to 20.6%, with a notable

vulnerability among community-dwelling older adults (2, 3). This

disorder poses a significant global health challenge. A multitude of

factors have been identified as contributing to the onset and

progression of depression, with inflammatory responses,

dysregulation of the hypothalamic-pituitary-adrenal axis,

imbalances in the sympathetic and parasympathetic nervous

systems, and platelet-activated endothelial dysfunction being of

particular note among the biological mechanisms. Depression is

therefore considered to be a systemic disorder, with potential

biomarkers of depression being identified in many different

biological systems (4–6). Despite the proposal of several

hypotheses to explain the pathogenesis of depression, the

underlying molecular mechanisms remain unclear. A more

profound comprehension of the molecular underpinnings of

depression is imperative for the prevention or reduction of the

global burden of this significant public health problem.

Metabolites are the products of upstream gene and protein

regulatory networks and are involved in a wide range of

physiological and pathological conditions (7). Off-target

metabolomics, with its ability to cover a wide range of

metabolites, has the potential to reveal previously unrecognized

pathomechanisms and is a powerful tool for the discovery of small

molecule metabolic markers in systems biology, as well as becoming

an ideal tool for the discovery of DD biomarkers (8). To date,

hundreds of metabolomics studies have been conducted to

investigate metabolite alterations in animal models of depression,

thereby expanding the understanding of the physiopathology of
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depression (9, 10). However, different expression trends were

observed in the High-fat (HF) diet model metabolites: this may

be related to the presence of species differences resulting in different

rates of some metabolic pathways and metabolism. The paucity of

population-based clinical studies significantly contributes to the

observed variability.

Metabolomics is an effective method of revealing disease-

associated metabolite changes. However, it is not easy to

comprehensively resolve the complex network relationships

among metabolites and the underlying biological mechanisms. It

is particularly limited in exploring the causal effects of metabolites

on disease (11). It is important to understand whether different

metabolites act as risk or protective factors for DD, since this has

implications for predicting disease and aiding diagnosis through

specific targeting approaches. Mendelian randomization (MR)

analysis employs single nucleotide polymorphisms (SNPs), which

occur randomly in human genes, as instrumental variables (12).

This approach is analogous to the design of a randomized

controlled trial in that it enhances the randomization of sample

selection. By establishing a link between the exposure factor and the

outcome variable through the instrumental variable, the method

provides a more reliable proof of causality between them (13).

Conversely, weighted correlation network analysis (WGCNA) is a

systems biology approach that uncovers intermolecular synergistic

relationships, enabling the effective identification of important

metabolite modules and aiding in the discovery of potential

metabolites that have yet to be explored in metabolomics (14).

In this study, a comprehensive integration of non-targeted

metabolomics, WGCNA, and MR approaches was performed to

explore the mechanisms of metabolic dysregulation in depression

and construct a framework for classifying metabolic pathways based

on multi-omics data in depression. The study identified 1,458

metabolites in the blood of depressed (N = 98) and healthy

Chinese populations and identified synergistic modules between

metabolites. The study then screened for differential metabolite

modules and potential key metabolites that were significantly

associated with depression. Furthermore, the associations of 1400

blood metabolites and metabolite ratios between the depressed

population (N = 59,333) cases and the healthy population (N =
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434,831) were verified by MR analysis. Integration of metabolic

pathway analysis was achieved by integrating highly associated

metabolites identified by metabolomics, WGCNA, and MR

methods. The objective of this study is to thoroughly examine the

potential biological mechanisms of blood metabolites in depressed

patients and non-depressed populations, to provide a new scientific

basis for unraveling the metabolic mechanisms of depression, and

to provide a theoretical basis for the discovery of metabolic

pathways and the development of intervention targets.
2 Materials and methods

An overview of the study design and methodology is presented

in Supplementary Figure S1.
2.1 Description of the sample

The present study employed a cross-sectional design,

encompassing a population of community-dwelling older adults

aged ≥65 years in Shanghai (n = 379). Informed consent was

obtained from all participants who underwent a comprehensive

geriatric assessment at a local community hospital, completed a

standardized face-to-face interview, and provided a morning fasting

venous blood sample. The Shanghai Medical College of Health

Sciences Ethics Committee approved the study protocol. It was

conducted strictly with the ethical guidelines of the Declaration of

Helsinki. Informed consent was obtained from all subjects before

they participated in the study (15, 16).

The questionnaire collection contained sociodemographic

variables, including age and gender, and lifestyle factors such as

smoking, alcohol consumption and daily activity level, the latter of

which was assessed through the short form of the International

Physical Activity Questionnaire (IPAQ). Health information

covered body mass index (BMI), chronic diseases (e.g., diabetes,

hypertension, hyperlipidemia, stroke and heart disease), substance

use and cognitive function, the latter of which was assessed by the

Brief Mental State Examination (MMSE). Further details about the

questionnaire can be found in our previous study (17).

Participants were excluded if they (1) did not complete the

questionnaire (n = 8), (2) were taking antidepressant medication (n

= 2), or (3) lacked a blood sample (n = 1), resulting in a final sample

size of 368 cases. A power analysis was conducted using GPower

3.1.9.7 software (https://www.psychologie.hhu.de/) to determine

the appropriate sample size for this study. With an assumed effect

size of 0.5 (medium effect), a significance level of 0.05, and a target

statistical power of 0.80, the analysis indicated that a sample size of

49 participants per group was required, yielding a total sample of 98

participants (49 in the depressed group (DD group) and 49 in the

non-depressed group (ND group)). This sample size was deemed

adequate to ensure sufficient statistical power for detecting

significant differences in metabolite levels between the two

groups, thereby supporting the investigation of metabolic

variations between depressed and non-depressed individuals.
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Forty-nine patients with confirmed depression and 49 non-

depressed controls were selected from the remaining sample using

a 1:1 frequency matching method, with matching variables

including age (± 3 years) and gender.
2.2 Measurements of depression

The severity of depression was evaluated using the 30-item

Geriatric Depression Scale (GDS) (18). On this scale, a score of 1

was allocated for a positive response to questions 2-4, 6, 8, 10-14,

16-18, 20, 22-26, and 28, and a score of 1 for a ‘no’ answer to

questions 1, 5, 7, 9, 15, 19, 21, 27, 29, and 30. A mark was awarded

for a ‘no’ answer to the aforementioned questions. According to the

international consensus, a total score of >10 was defined as clinically

significant depression (19).
2.3 Metabolomics analysis methods

Plasma samples were collected from the subjects in the morning

fasting state using EDTA anticoagulation tubes. The plasma was

separated by centrifugation at 1500×g for 15 min at 4°C and then

immediately frozen in an ultra-low temperature refrigerator at -80°

C. 150 mL of plasma was added to a pre-cooled methanol/

acetonitrile mixture (2:1, v/v, containing 2-chlorophenylalanine

internal standard, 0.3 mg/mL), vortexed. The mixture was then

vortexed for one minute, followed by sonication for 10 minutes.

Thereafter, the mixture was left to stand for 30 minutes before

undergoing centrifugation at a speed of 13,000 rpm at a temperature

of 4°C for 10 minutes. This process was intended to remove any

precipitated proteins. The resultant upper layer was then subjected

to freeze-drying under vacuum, which was re-dissolved in a

methanol/water mixture (in a volume ratio 1:4). Thereafter, the

solution was filtered through a 0.22 mm organic filter membrane.

Liquid chromatography-mass spectrometry (LC-MS) analysis was

performed on a Waters UPLC I-Class system coupled with a VION

IMS QTOF high-resolution mass spectrometer (Waters Corp.,

Milford, USA), and the chromatographic separation was achieved

using a BEH C18 column (2.1 × 100 mm, 1.7 mm) with mobile

phases of 0.1% formic acid aqueous solution (phase A) and

acetonitrile (phase B). The gradient elution procedure

transitioned from 5% to 95% B over 0–12 min.

Gas chromatography-mass spectrometry (GC-MS) analysis was

performed on an Agilent 7890B gas chromatograph coupled with a

5977A mass spectrometry detector (Agilent Technologies, Inc., CA,

USA). The column used was a DB-5MS capillary column (30

m×0.25 mm ×0.25 mm). A total of 150 ml of plasma was added to

an Eppendorf tube with 20 ml of 2-chlorophenylalanine (0.3 mg/ml)

dissolved in methanol as an internal standard and vortexed for 10 s.

Then, 450 ml of an ice-cold mixture of methanol/acetonitrile (2/1, v/

v) to remove the protein was added to the tube and vortexed for 30

s. The mixture was extracted by ultrasonication in an ice water bath

for 10 min, stored for 30 min (−20°C), and centrifuged at 4°C for

10 min (13,000 rpm). Two hundred milliliters of supernatant was
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placed into a new glass bottle, dried in a freeze concentration

centrifuge and added to 80 mL of 15 mg/mL methoxylamine

hydrochloride in pyridine. The resultant mixture was vortexed for

2 min and incubated at 37°C for 90 min. Then, 50 mL of BSTFA

(with 1% TMCS) and 20 mL of n-hexane were added into the bottle,

and the bottle was vortexed violently for 2 min and derivatized at

70°C for 60 min. The samples were placed at room temperature for

30 min before GC–MS. The internal standard peaks’ relative

standard deviation (RSD) was controlled within 15%, consistent

with our previous study procedure (15).

The LC–MS data were analyzed using Proggenesis Qi software

version 2.3 (Nonlinear Dynamics, Newcastle, UK). Initially, the

software was used to perform data mining, advanced alignment,

peak picking, normalization, and retention time (RT) correction. The

resulting characteristic matrix includes information on the mass-to-

charge ratio (m/z), RT, and peak intensities. In the chromatographic

column, ion peaks are separated, and the resulting RT serves as a

reference parameter for the preliminary identification of metabolites.

First-level mass spectrometry (MS1) provides the accurate m/z of

metabolites, which can be used to infer their molecular formula, with

isotope distribution aiding in the inference. Second-level mass

spectrometry (MS/MS) analyzes the fragmentation of the parent ion

(the molecular ion) to generate fragment ions, and the analysis of the

fragmentation pattern helps infer structural features. Subsequently, the

identification of metabolites was based on precise m/z, secondary

fragments, and isotope distribution, using the Human Metabolome

Database (HMDB) (http://www.hmdb.ca/), LipidMaps (version 2.3)

(http://www.lipidmaps.org/), METLIN (http://metlin.scripps.edu/),

and self-built databases (EMDB) for qualitative analysis. Main

parameters of 5 ppm precursor tolerance, 10 ppm product

tolerance, and 5% product ion threshold were applied.

Compounds with resulting scores below 36 (out of 60) points

were also deemed to be inaccurate and removed.

The GC–MS data used the software MS-DIAL (version 2.74) for

peak detection, peak identification, characterization, peak

alignment, wave filtering, etc. The ionization method used in GC-

MS was electron impact ionization (EI), which generates highly

consistent fragment ions. MS1 provides abundant structural

information, which can be matched with the LUG database

(Untargeted database of GC–MS rom Lumingbio). Compounds

with resulting scores below 50 (out of 100) points were also deemed

to be inaccurate and removed. The raw data matrix was obtained

from the raw data with a three-dimensional dataset, including

sample information, the name of the peak of each substance,

retention time, retention index, mass-to-charge ratio, and signal

intensity, after alignment with the Statistical Compare component.

The internal standards with RSD>0.3 were used to segment and

normalize all peak signal intensities in each sample, and the

segmented and normalized results were removed redundancy and

merged peak to obtain the data matrix.

Between-group differences were assessed using the OPLS-DA

model in combination with the permutation test (200 times), with

the following screening criteria: VIP>1.0 and p<0.05 (two-sided t-
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test). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (http://www.kegg.jp/kegg/pathway.html) was used for

KEGG pathway enrichment analysis (Fisher’s exact test, FDR

correction) to reveal significant metabolic pathways. Finally, the

differential metabolites obtained from the LC-MS and GC-MS

analyses were taken and pooled into a pool of highly related

metabolites, and pathway enrichment analysis was performed

with pathway analysis.
2.4 Weighted gene co-expression network
analysis

In this study, metabolomics data were systematically integrated

by WGCNA to identify metabolite modules significantly associated

with depression and to explore key metabolites further. The analysis

utilized data derived from a differential metabolite matrix obtained

using LC/GC-MS. The analysis process comprised four principal

steps: network construction, module identification, association

analysis of modules with phenotypic features, and network

visualization (20). The WGCNA analysis was implemented in the

R software environment using the WGCNA package (version 1.73)

for processing metabolomics datasets. To reduce the potential

heterogeneity in the results of LC and GC analyses, WGCNA

analysis was performed in this study on the results of the two

analytical methods separately. The construction of co-expression

networks was achieved by selecting metabolite data from the

metabolomics dataset corresponding to the top 50% of

variation (14).

The dynamic shear tree method was employed during the

module merging process, with a threshold set at 0.25. The

network was subjected to soft-threshold screening to ensure it

met the scale-free topological properties (scale-free fit index R² ≥

0.60). The final soft thresholds for LC-MS and GC-MS data were

determined to be b = 5 (R² = 0.7) and b = 3 (R² = 0.6), respectively.

Other network construction criteria included the minimum number

of metabolites per module, which was set at 10. The WGCNA

analysis defined the co-expression relationship of metabolites

within a module by calculating Module Membership (MM) and

Gene Significance (GS). The higher the MM value, the stronger the

co-expression correlation of the metabolite within the module,

while a higher GS value indicates that the metabolite is more

biologically significant in the cluster module. Subsequent

screening of key metabolites was then conducted based on the

significant correlation between the module as a whole and the

phenotype (MM correlation p-value < 0.05). The metabolites of

highly connected nodes within the modules were then identified

based on MM values, and these were thus identified as potential

latent key metabolites. The identification of significant potential key

metabolites was achieved by examining the corrected GS values and

their p-values for phenotypic correlation (MM > 0.7, GS > 0.2, p <

0.05). The potential key metabolites generated from both analyses

were pooled for pathway enrichment and analysis.
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2.5 Mendelian randomization of data
sources

The metabolite genome-wide association study (GWAS) data in

this study were obtained from the GWAS Catalog public database

(https://www.ebi.ac.uk/gwas/) (accession ID: GCST90201021-

GCST90204063), covering 1091 plasma metabolites and 309

metabolite ratios. Genetic instruments for metabolites were

derived from a large-scale GWAS conducted on 8,299 unrelated

European participants from the Canadian Longitudinal Study of

Aging (CLSA). Participants underwent genome-wide genotyping

using the Affymetrix Axiom platform, with imputation performed

through the Trans-Omics for Precision Medicine (TOPMed)

program. The sample overlap with the depression GWAS from

the FinnGen study version 12 was minimal, ensuring no significant

overlap between the target metabolites and depression-associated

SNPs. After rigorous quality control, single nucleotide

polymorphisms (SNPs) with a minor allele frequency (MAF)

greater than 0.1%, an imputation quality score above 0.3, and a

missing rate below 0.1% were retained, resulting in approximately

15.4 million SNPs. Plasma metabolite levels were quantified using

the Metabolon HD4 UPLC-MS/MS platform, with 1,091

metabolites retained after excluding those with more than 50%

missing data. Of these, 850 metabolites were classified into eight

metabolic super-pathways: lipids, amino acids, xenobiotics,

nucleotides, cofactors and vitamins, carbohydrates, peptides, and

energy, while 241 were categorized as “unknown” or “partially

characterized.” The data underwent log transformation,

standardization, and removal of outliers beyond three standard

deviations. Metabolite ratios were constructed from 309 pairs of

metabolites sharing enzymes or transport proteins, as identified in

the Human Metabolome Database (HMDB). The depression

GWAS data were obtained from the FinnGen study version 12

(finngen_R12_F5_DEPRESSIO) in Finland, containing genotype

data from 59,333 depressed patients and 434,831 healthy controls

(total number of SNPs = 20,112,636). The raw VCF files were then

filtered by PLINK v1.9 for quality control (MAF > 0.01, HWE p > 1

× 10^-6, deletion rate 0.05). SNPs significantly associated with the

target metabolites were finally extracted for subsequent analyses.
2.6 Choice of instrumental variables and
chain imbalance adjustment

In the MR analysis, the selection of instrumental variables was

based on the following three core assumptions: (1) Strong

correlation of instrumental variables: for each metabolite, a

genome-wide significance threshold (p < 1 × 10^–5) was set to

select SNPs that were strongly correlated with the metabolite. This

ensured that the relationship of the selected SNPs with the target

metabolite was statistically significant. The F-statistics for the

selected SNPs were calculated and confirmed to be above the

threshold of 10, indicating strong instrument relevance. (2)

Linkage disequilibrium (LD): Following the extraction of

significant SNPs, an LD analysis was performed to assess the
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correlation between SNPs. The existence of interlocking

disequilibrium between the pair of SNPs was considered to have

occurred if the coefficient of linkage disequilibrium (r²) was less

than 0.001 and the distance between the SNPs was less than 10,000

bases (kb). The analysis of linkage disequilibrium ensured that each

instrumental variable independently affected a specific metabolite

and reduced potential pleiotropy. (3) Independence of instrumental

variables: To avoid interdependence between instrumental

variables, SNPs associated with depression were excluded from

the analyses, thus reducing the possible direct relationship

between instrumental variables and outcomes (21). Furthermore,

Steiger filtering was performed to ensure the correct direction of

causality between SNPs and metabolites, confirming that the

instruments were appropriately aligned with the exposure and not

the outcome. Although all instrumental variables met the above

assumptions, non-associated SNPs may still influence the

occurrence of depression. Therefore, linkage disequilibrium score

(LDSC) regression analyses were performed to calculate multiple

validity and correct for potential bias (12).
2.7 Mendelian randomization analysis

In this study, the causal relationship between metabolites and

depression was assessed using the standard inverse variance

weighting (IVW) method. This is a commonly used and robust

technique for estimating causal effects, which accurately estimates

the causal effect of exposure (metabolites) on the outcome

(depression) when the instrumental variables satisfy all the core

assumptions (22). To further validate the robustness of the results,

the MR-Egger and weighted median (WM) methods were used as

secondary assessment tools. These methods can provide

complementary results to the IVW methods and help identify

possible biases. Mendelian randomization analyses were

conducted in the R environment using the TwoSampleMR

package (version 0.6.16) and the Mendelian Randomization

package (version 0.10.0), ensuring consistent and reproducible

implementation of the analytical pipeline. After KEGG database

matching, all metabolites with possible causality were included in

the high-association metabolite pool.
2.8 Highly associated metabolite pool
building

This study constructed a high-confidence metabolite pool by

integrating significant metabolites from multiple methods. The

metabolites in question were those with VIP > 1.0 and p < 0.05,

as determined by the LC/GC-MS platform. The identification of

pivotal metabolites was achieved throughWGCNA, which sets MM

greater than 0.7 and GS greater than 0.2 with a P-value less than

0.05 as the screening criteria. Furthermore, causal metabolites with

a P-value less than 0.05 were identified as associative metabolites

using the IVW method in MR analysis. Metabolites identified by all

methods were assigned no weights and were directly merged
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according to the metabolites identified by each method. This was

done to ensure that the metabolite pool contained support from

multidimensional evidence (23).
2.9 Pathway enrichment analysis and
pathway analysis methods

Metabolite pathway enrichment and pathway analysis were

performed using the MetaboAnalyst 5.0 platform (https://

www.metaboanalyst.ca). All metabolites were matched by KEGG

ID and subjected to pathway enrichment and pathway analysis

based on the metabolic pathways included in the KEGG database.

The selection of metabolic pathways as significantly enriched

pathways for pathway enrichment analysis was made based on p-

values less than 0.05. The same p-value threshold was applied to

select significant pathways for pathway analysis. The pathway

enrichment results were visualized using the Graph and ggplot2

R packages.
2.10 Criteria for the classification of
pathways

LC/GC-MS analyzed the differential metabolites, WGCNA

analyzed the key metabolites, the metabolites included in positive

results by MR analysis, and the pools of highly correlated

metabolites were subjected to pathway enrichment analysis and

pathway analysis, respectively. These were then labeled as Class I, II,

and III pathways based on the following Classification criteria,

which were derived from the comprehensive analysis using

MetaboAnalyst. The custom Class I/II/III system, particularly the

impact threshold, was informed by MetaboAnalyst’s analysis

methodology. The following Classification criteria identified the

closely related metabolic pathways (9, 10).

Class I pathway: Impact ≥ 0.25; significantly enriched and

expressed by at least two methods in LC/GC-MS, WGCNA, and

MR analyses (P < 0.05), and significantly enriched in metabolite

pooling analyses with consistent directionality;

Class II pathway: 0.1 ≤ Impact ≤ 0.25; significant (P < 0.05) by

LC/GC-MS or MR; partially consistent metabolite trends;

Class III pathway: Impact ≤0.1, significant (p < 0.05), or

contradictory metabolite trends that suggest an association. In

this instance, further validation is required.
2.11 Statistical analysis methods

The initial investigation into the baseline sociodemographic and

health-related characteristics was conducted utilizing SPSS version 25.0

(SPSS Incorporated, Chicago, IL, USA), with a statistical significance

threshold of p< 0.05. A subsequent comparison was made between DD

and ND, employing independent t-tests for numerical variables and

chi-square tests for categorical variables. Data that conformed to a

normal distribution was expressed as the mean ± standard deviation
Frontiers in Psychiatry 06
(SD), while categorical variables were presented as proportions. All

analyses were conducted in the R v4.3.1 environment, andMR analyses

were performed using dedicated packages such as TwoSampleMR and

Mendelian Randomization.
3 Result

3.1 Characteristics of the study population

According to the exclusion criteria, 11 subjects were eliminated

from the study, and the remaining 368 subjects were included in the

experiment. Of the 368 subjects included in the experiment, 49 were

diagnosed with DD according to the diagnostic criteria.319 patients

without depression were selected, and 49 were matched by age and

gender with the DD group as ND. As demonstrated in Table 1, there

was no significant difference between DD and ND regarding socio-

demographics, lifestyle and health status (p < 0.05). A statistically

significant difference was observed in GDS scores between the two

groups (p < 0.001).
3.2 Non-targeted LC/GC-MS results

1,012 compounds were identified in plasma by LC-MS and 446

compounds by GC-MS (Supplementary Tables S1, S2). The

differences in plasma metabolites between the two groups of

samples were assessed using the OPLS-DA model, which

demonstrated separation and minimal overlap between the two

groups (Figures 1A, B). The model’s reliability was confirmed by

200 response permutation tests (Figures 1C, D). The first principal

component of the OPLS-DA model was used to identify differential

metabolites. The screening criteria were a VIP value >1.5 and a t-

test p-value <0.05. This identified 65 metabolites by LC-MS and 19

by GC-MS. The 30 metabolites with the highest VIP values are

shown in Supplementary Table S2. The volcano plot (Figures 1E, F)

demonstrates the validity of the differential metabolites by

displaying the p-values and fold change values.

Hierarchical clustering is employed to demonstrate the levels of

these metabolites, with colors indicating higher (red) or lower (blue)

levels and intensities reflecting the corresponding concentrations

(Figure 2). KEGG enrichment analyses were performed for LC-MS,

GC-MS, and LC/GC-MS corresponding to the differential

metabolites, respectively (Figure 3). The results showed that

amino acid, lipid, purine, and carbohydrate metabolism were the

main enriched pathways for metabolic abnormalities in depressed

patients. Among them, Glycine, Serine and Threonine Metabolism

were significantly enriched in the LC-MS platform (P < 0.05), and

Sphingolipid Metabolism was also enriched (P < 0.05). In addition,

Purine Metabolism showed significant enrichment (P < 0.05), and

GC-MS analysis showed that Caffeine Metabolism, Steroid

Biosynthesis and Pentose and Glucuronate Interconversions were

also significantly enriched (P < 0.05) (Figure 3B). After the

combination of the LC-MS and GC-MS results, the enriched

pathways were expanded to encompass One Carbon Pool by
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Folate, Starch and Sucrose Metabolism and Glycerophospholipid

Metabolism in addition to an amino acid, lipid and nucleotide

metabolism (P < 0.05) (Figure 3C).

The Pathway Impact Analysis further assessed the impact of

different metabolic pathways on the overall metabolic network

(Figure 3D). The results showed that neurotransmitter, purine,

glutathione, and ceramide metabolism had a high degree of

pathway impact (impact > 0.2). Of these, glycine, serine and

threonine metabolism demonstrated the most significant impact

(impact > 0.3), while purine metabolism and the pentose phosphate

pathway exhibited impacts exceeding 0.2. Within the domain of

lipid metabolism, ceramide metabolism and glycerophospholipid

metabolism showed impacts that surpassed 0.25. The collective

analysis of the metabolic pathway enriched results indicated that

metabolic abnormalities in patients with depression were associated

with various factors, including neurotransmitter synthesis, energy

supply, membrane lipid metabolism and oxidative stress.
3.3 Key metabolic modules associated with
WGCNA

This study constructed metabolic co-expression networks using

WGCNA based on metabolite data from LC-MS and GC-MS

platforms to identify key metabolic modules associated with

depression and further resolve their functional characteristics.

The scale-free property of the co-expression network was ensured

by setting the optimal soft threshold at 5 (R² = 0.7, A) for LC-MS

data and 3 (R² = 0.6, Supplementary Figure S2A) for GC-MS data.

The application of cluster analysis to the LC-MS data resulted in the

identification of multiple co-expression modules, with turquoise,

blue, red, and yellow modules containing a higher number of

metabolites (Supplementary Figure S2C). A similar observation

was made in the GC-MS data, where the metabolite co-expression

network also identified multiple modules, with turquoise and red

modules being particularly enriched in metabolites. (Supplementary

Figure S3B) Further analysis revealed that between ND and DD, the

turquoise modules of the LC-MS data (P = 0.002) and the turquoise

module of the GC-MS data (P = 0.04) were significantly correlated

with the depression phenotype. (Supplementary Figure S2D,

Supplementary Figure S3D) Module Membership was further

analyzed in this study to determine the functional importance of

key metabolic modules. (Supplementary Figure S2B) At the same

time, a similar trend was observed in the cyan module of the GC-

MS data (Supplementary Figure S3C). The results suggest that the

turquoise module may contain important metabolites that regulate

the development of depression and the metabolites contained in the

turquoise module were screened with potential key metabolite

criteria (MM > 0.7, GS > 0.2, p < 0.05) before further analysis

and inclusion into the metabolite pool. The specific metabolites

included are shown in Supplementary Table S3.

KEGG enrichment analysis for pathway enrichment and

pathway analysis demonstrated that multiple core metabolic

pathways were significantly enriched (P < 0.05), including Purine
TABLE 1 Baseline sociodemographic variables of the included
population (N=98).

Characteristic DD (n=49) ND (n=49)
p

Value

Age (years) 72.10 ± 5.12 73.47 ± 4.49 0.163

Sex (%) 0.671

Male 36.7 32.7

Female 63.3 67.3

Smoking (%) 0.727

No 91.8 89.8

Yes 8.2 10.2

Drinking (%) 0.133

No 85.7 73.5

Yes 14.3 26.5

BMI (kg/m²) 23.64 ± 3.59 24.27 ± 3.89 0.412

IPAQ (Met-min/wk)
5977.30
± 5977.31

6385.78
± 5391.08

0.712

Total cholesterol
(mmol/L)

5.23 ± 0.94 5.29 ± 1.06 0.748

Triglycerides (mmol/L) 1.32 ± 0.70 1.27 ± 0.72 0.732

HDL (mmol/L) 1.41 ± 0.77 1.51 ± 0.39 0.129

LDL (mmol/L) 3.38 ± 0.78 3.39 ± 0.99 0.919

Number of diseases

Diabetes (%) 0.316

No 75.5 83.7

Yes 24.5 16.3

Hypertension (%) 0.667

No 30.6 34.7

Yes 69.4 65.3

Hyperlipidemia (%) 0.505

No 87.8 91.8

Yes 12.2 8.2

Stroke 0.277

No 63.3 73.5

Yes 36.7 26.5

Heart disease (%) 0.671

No 63.3 73.5

Yes 36.7 26.5

MMSE 24.69 ± 4.67 23.94 ± 4.80 0.432

GDS score 14.71 ± 3.57 4.90 ± 2.37 <0.001
*DD, depression; ND, non-depression; BMI, body mass index; IPAQ, international physical
activity questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MMSE,
Mini-mental State Examination; GDS, score Geriatric Depression Scale score.
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Metabolism, Glycine, Serine and Threonine Metabolism, and

Butanoate Metabolism. Furthermore, a higher impact was

observed for Purine Metabolism in the Pathway Impact Analyses,

suggesting a central role for this pathway in depression-related

metabolic abnormalities (Figures 4A, B).
3.4 MR analysis results

This study lists the names of 1,400 related blood metabolites

and their respective ratios. (Supplementary Table S4) The details of
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all the included instrumental variables can be found in

Supplementary Table S5. The IVW-based MR analysis identified

35 metabolites that were significantly associated with depression (p

< 0.05). (Supplementary Tables S6, S7) Of these, 14 metabolites

were positively associated with the risk of depression, while 21

metabolites were negatively associated with the risk (Figure 5). The

confidence intervals for these causal estimates ranged from 95%CI.

Sensitivity analyses demonstrated that the MR-Egger regression

intercept test did not identify substantial pleiotropy, and the

Weighted Median and Simple Mode results were broadly

consistent with the IVW direction, thereby confirming the
FIGURE 1

Multivariate statistical analysis and differential metabolite profiling of serum metabolites based on LC/GC-MS analysis for the DD and ND groups.(A) OPLS-DA
score plots based on LC-MS analysis show the separated DD and ND groups. (B) OPLS-DA score plots based on GC-MS analysis showing group separation.
(C) Statistical validation of the LC-MS-based OPLS-DA model showing R² (0.362) and Q² (0.314). (D) Statistical validation of the GC-MS-based OPLS-DA
model showing R² (0.662) and Q² (0.532). (E) LC-MS-based volcano plot showing differential metabolites between DD and ND groups. Blue dots represent
metabolites with decreased levels, red dots represent metabolites with increased levels, and grey dots represent metabolites with no significant change. The
area size of the dots reflects the VIP value. (F) The GC-MS-based volcano plot shows similar differential metabolites with color coding as described above.
The two coordinate points on the plots (A–D) are relatively distant, indicating a significant difference between the two samples and vice versa. Elliptical
regions represent 95% confidence intervals.
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robustness of the causal relationships. The positively correlated

metabolites were primarily associated with amino acids and their

metabolites (e.g., the cysteine to alanine ratio, the glutamate to

kynurenine ratio), lipid metabolism (e.g., the sphinganine levels, the

leucine to N-palmitoyl-sphingosine ratio), and the antioxidant

defense system (e.g., the 2-O-ethyl ascorbic acid levels). These are

associated with the pathway. Conversely, negatively correlated

metabolites are implicated in energy metabolism and

mitochondrial function (Adenosine 3)’,5’-cyclic monophosphate

(cAMP) to taurocholate ratio, Cholate to cAMP ratio, Pyruvate to

N-acetylneuraminate ratio), amino acid metabolism and its toxic

effects (Dodecanedioate levels, Serine levels, 3-methoxytyrosine

levels), lipid metabolism and neuroinflammation (Retinol

(vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio,

Phenylacetylcarnitine levels) and other related pathways. MR-Egger
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and MR-PRESSO tests (Supplementary Table S8) showed that there

is no horizontal pleiotropy (P>0.05). Furthermore, no obvious

heterogeneity was found according to results from Cochrane’s Q

test (Supplementary Table S9) (P>0.05). The scatter plots for the

causal relationship between metabolites and DD were presented in

Supplementary Table S10. The results from the leave-one-out

analysis showed that no individual SNP had a disproportionate

effect on the causal estimates. (Supplementary Tables S11, S12,

Supplementary Figure S4).

The results of the MR pathway enrichment indicated that the

metabolism of glutathione (p < 0.001), glycine, serine and threonine

(p < 0.001) and glyoxylate and dicarboxylate (p < 0.001) were all

significantly enriched.) were significantly enriched in causally

linked metabolites (Figures 4C, D) and had a high impact. This

finding suggests that these metabolic pathways play a central role in
FIGURE 2

(A) LC-MS-based hierarchical clustering heatmap showing metabolite expression patterns for DD and ND groups. The color scale from blue to red
represents increasing metabolite expression. (B) GC-MS-based hierarchical clustering heatmap showing similar clustering patterns as in (A), with a
color scale indicating expression levels from low (blue) to high (red).
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the metabolic regulation of depression and may contribute to the

development of depression through multiple mechanisms affecting

the redox state, energy metabolism and neurotransmitter synthesis

in the nervous system. Furthermore, pathways such as Arginine and

proline metabolism, Alanine, aspartate and glutamate metabolism

also demonstrated significant enrichment, thereby further

substantiating the pivotal role of amino acid metabolism in the

mechanism of depression.
3.5 Metabolic pathway integration analysis

After excluding metabolites that could not be matched with the

KEGG database, A pool of depression-related high-confidence

metabolites (n=106) was constructed by integrating LC/GC-MS
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differential metabolites (n=59), WGCNA hub metabolites (n=20)

and MR causal metabolites (n=27). (Supplementary Table S12) The

results showed that several metabolic pathways were significantly

enriched, among which amino acid metabolism, lipid metabolism,

nucleotide metabolism and energy metabolism-related pathways were

dominant. KEGG enrichment analysis revealed Glycine, Serine and

Threonine Metabolism(Pathway-p<0.001;Enrichment-p<0.001),

Cysteine and methionine metabolism(Pathway-p<0.001;

Enrichment-p<0.001), Alanine, aspartate and glutamate metabolism

(Pathway-p<0.001;Enrichment-p<0.001), Purine Metabolism

(Pathway-p<0.001;Enrichment-p<0.001)and Glycerophospholipid

Metabolism(Pathway-p<0.001)are the core dysregulation pathway

(Figure 4E). As demonstrated by pathway impact analysis, all of the

aforementioned pathways (Impact > 0.2) occupy a pivotal position in

the metabolic network (Figure 4F). Collectively, these pathways
FIGURE 3

Metabolic pathway enrichment analysis of differentially expressed metabolites from LC-MS and GC-MS data.(A) Pathway enrichment analysis of
metabolites from LC-MS data. Each bubble represents a distinct metabolic pathway, with the size of the bubble indicating the number of differential
metabolites within that pathway. The color intensity of the bubble reflects the statistical significance (p-value) of the pathway, with red indicating
higher significance. (B) Pathway enrichment analysis of metabolites from GC-MS data, showing similar representations of pathway significance and
metabolite count. (C) Pathway enrichment analysis of combined LC-MS and GC-MS data, with bubble size corresponding to the number of
differential metabolites and color indicating the pathway’s significance. (D) Pathway impact analysis for combined LC-MS and GC-MS data. Each
point represents a metabolic pathway, with the X-axis indicating the pathway’s impact and the Y-axis indicating its statistical significance (p-value).
More prominent points represent pathways with a higher contribution to the metabolic network, while smaller p-values indicate more statistically
significant pathways.
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constitute a multidimensional metabolic disorder framework for

depression by mediating ATP biosynthesis, regulating redox

homeostasis, and influencing membrane lipid dynamics.
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This study identified 19 significantly associated metabolic

pathways, and 12 pathways were classified into three levels after

screening according to the pathway classification criteria (Table 2).
FIGURE 4

Pathway enrichment and pathway impact analysis. (A) Pathway enrichment analysis of WGCNA results from combined LC/GC-MS data. (B) Pathway impact
analysis of WGCNA results from combined LC/GC-MS data. (C) Pathway enrichment analysis of positive metabolites from MR analysis. (D) Pathway impact
analysis of positive metabolites from MR analysis. (E) Pathway enrichment analysis of metabolites from LC/GC-MS, WGCNA metabolites, and MR-positive
metabolites. (F) Pathway impact analysis of metabolites from LC/GC-MS, WGCNA metabolites, and MR-positive metabolites.
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Among the Class I pathways, Glycine, Serine and Threonine

Metabolism and Cysteine and Methionine Metabolism showed the

most significant regulatory features (Impact ≥ 0.25). Among them,

Glycine, Serine and Threonine Metabolism were significantly
Frontiers in Psychiatry 12
analyzed in LC/GC-MS, WGCNA, MR and highly correlated

pathway pools, and interestingly, its metabolites showed a

bidirectional change: a decrease in the protective metabolites

Serine and Choline were suggestive of an impaired single-carbon
FIGURE 5

Risk forest plot of the results of MR Analysis. (A) GCST90200450: Caproate (6:0) levels; GCST90200786: Cysteine to alanine ratio; GCST90200107:
Gamma-glutamyl-alpha-lysine levels; GCST90200208: Glucuronide of piperine metabolite C17H21NO3 (4) levels; GCST90200178: Glucuronide of
C10H18O2 (7) levels; GCST90200812: Glutamate to kynurenine ratio; GCST90200965: Glutamate to 5-oxoproline ratio; (B) GCST90200972:
Leucine to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio; GCST90200808: Spermidine to choline ratio; GCST90200374: Sphinganine levels;
GCST90200206: Sulfate of piperine metabolite C18H21NO3 (1) levels; GCST90199908: 2-o-methylascorbic acid levels; GCST90199716: 10-
undecenoate (11:1n1) levels; GCST90200660: X-25957 levels; (C) GCST90200727: Adenosine 3’,5’-cyclic monophosphate (cAMP) to taurocholate
ratio; GCST90200830: Cholate to adenosine 3’,5’-cyclic monophosphate (cAMP) ratio; GCST90199697: Dodecanedioate levels; GCST90200185:
Gamma-glutamylcitrulline levels; GCST90199970: Octadecenedioylcarnitine (C18:1-DC) levels; GCST90199993: Phenylacetylcarnitine levels;
GCST90200838: Phosphate to glutamate ratio; (D) GCST90200779: Pyruvate to N-acetylneuraminate ratio; GCST90200907: Retinol (Vitamin A) to
linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio; GCST90200415: Serine levels; GCST90199821: 1-linoleoyl-GPI (18:2) levels; GCST90200087:2-
methylserine levels; GCST90199693: 3-hydroxydecanoate levels; GCST90200328: 3-methoxytyrosine levels; (E) GCST90200220: 4-allylcatechol
sulfate levels; GCST90200466: X-11632 levels; GCST90200527: X-13866 levels; GCST90200572: X-19299 levels; GCST90200563: X-21355 levels;
GCST90200583: X-21807 levels; GCST90200664: X-25810 levels.
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TABLE 2 Classification table of metabolic pathways.

Level
Super
class

Pathway
Hit Metabolite

Count

Pathway
analysis
p-value

Enrichment
analysis
p-value

Impact
KEGG
ID

LC/GC-
MS

Results

MR
Results

I
Amino
Acid

Metabolism

Glycine, serine and
threonine
metabolism

8 <0.01 <0.01 0.29

C00065,
C00114,
C02291,
C01005,
C00258,
C00097,
C03508,
C00022

↑ ↓

I
Amino
Acid

Metabolism

Cysteine and
methionine
metabolism

5 <0.01 <0.01 0.30

C02291,
C00065,
C00097,
C01005,
C00022

↑ ↓

II
Amino
Acid

Metabolism

Alanine, aspartate
and

glutamate
metabolism

4 <0.01 <0.01 0.20

C00041,
C00025,
C00022,
C00042

↓ ↓

II
Lipid

Metabolism
Glycerophospholipid

metabolism
4 0.01 0.14 0.22

C00157,
C04230,
C00114,
C00093

↓ ↓

II
Nucleotide
Metabolism

Purine metabolism 4 0.01 <0.01 0.21

C00385,
C00020,
C00130,
C00387

↑ /

III
Amino
Acid

Metabolism

Glutathione
metabolism

4 <0.01 <0.01 0.04

C00097,
C00025
C01879
C00315

↑ ↑

III
Vitamin and
Cofactor

Metabolism

One carbon pool
by folate

4 <0.01 0.15 0.06

C00114,
C00065,
C02291,
C00097

↑ ↓

III
Carbohydrate
Metabolism

Butanoate
metabolism

2 0.05 0.04 0
C00025,
C00042

↓ ↑

III
Lipid

Metabolism
Sphingolipid
metabolism

4 <0.01 <0.01 0.06

C06124,
C00319,
C00065,
C12144

↓ /

III
Amino
Acid

Metabolism

Arginine and
proline metabolism

3 <0.01 <0.01 0.07
C00315,
C00025,
C00022

/ ↑

III*
Lipid

Metabolism
alpha-Linolenic
acid metabolism

2 0.01 0.03 0.33
C00157,
C06427

/ /

III*
Carbohydrate
Metabolism

Glyoxylate and
dicarboxylate
metabolism

4 <0.01 <0.01 0.09

C02557,
C00065,
C00025,
C00258,
C00022

↑ /
F
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*Pathways were Classified into I,II,III categories strictly according to the Classification criteria in the study. III* represents the paradoxical phenomenon of the expression of metabolites contained
in this pathway, that is, the rise and fall simultaneously. KEGG IDs were obtained from the KEGG database.
The LC/GC-MS Results ↑ indicated that the expression of metabolites was increased ↓ and decreased expression of metabolites. In MR Results, ↑ it represents a positive correlation with
metabolites, and vice versa ↓ represents a negative correlation;/represents no relevant trend was found.
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cycle, whereas an elevation in the risky metabolite L- Cysteine was

elevated suggesting a compensatory imbalance of oxidative stress.

Cysteine and Methionine Metabolism further validated the

potential association between the accumulation of Phosphoserine

levels and disturbed DNA methylation.

Among the Class II pathways, Alanine, Aspartate and

Glutamate Metabolism and Glycerophospholipid Metabolism had

Impact values of 0.197 and 0.218, respectively, and the MR analyses

showed that their metabolites were significantly associated with

depression risk. It is worth noting that Purine Metabolism, although

with an Impact value of 0.208, was temporarily Classified as Class II

due to the lack of clear causal direction in the MR results, and its

accumulation of AMP and Xanthine suggested that there might be a

problem with mitochondrial energy.

Among the Class III pathways, Glutathione metabolism, One

carbon pool by folate and Butanoate Metabolism had Impact values

below 0.1, but the metabolite trends were not contradictory. The rest

of the pathways all had ambivalence in metabolite trends. Among

them, alpha-linolenic Acid Metabolism was Classified as an

ambivalent pathway due to Impact=0.333 but contradictory

metabolite trends (decrease in alpha-linolenic acid and increase in

Phosphatidylcholine), which may be related to the complex

regulation of lipid dynamic balance in depression. Moreover,

Glyoxylate and dicarboxylate metabolism with metabolites with

elevated risk (Methylmalonyl-CoA, Glutamic acid) and reduced

risk (Serine, Pyruvic acid) were Classified as contradictory pathways.

Further pathway impact analysis indicated that the Class I and

II pathways form a functional interplay network through glycine,

purine, and sphingolipid metabolism (Figure 4F). These three

processes jointly regulate the three core biological processes of the

methylation cycle, membrane lipid homeostasis and energy

metabolism. This pathway hierarchical framework provides a

theoretical basis for metabolic typing and targeted intervention

in depression.
4 Discussion

Several studies have reported the presence of metabolic pathway

disorders in patients with DD in comparison to the healthy

population. In this study, we identified key metabolic disruptions

in elderly patients with depression by integrating non-targeted

metabolomics, WGCNA modular analysis, and MR methods.

Utilizing the enrichment and influence of metabolic pathways

and the consistency of multi-omics, a three-tiered framework of

metabolic regulation in depression (Class I-III pathways) was

constructed, providing a novel perspective on the mechanism of

the core metabolic pathways and potential intervention targets.

Among the pathways identified, significant alterations were

observed in amino acid and lipid metabolism, with particular

emphasis on disruptions related to glycine-serine-threonine

metabolism and cysteine-methionine metabolism. These pathways

may reflect the disturbance of one-carbon metabolism and the

oxidative stress response, though further validation is needed to

confirm their direct impact. Interestingly, phosphoserine
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accumulation was noted, which may relate to alterations in DNA

methylation processes, highlighting a possible role of epigenetic

regulation in depression.

In contrast to earlier studies, which have largely focused on the

tryptophan/kynurenine axis, the present study reveals specific

alterations in serine metabolic pathways, such as phosphorylation

modifications, in elderly depressed individuals. This discrepancy

may reflect the distinct metabolic characteristics of this population.

Moreover, the elevated levels of L-cysteine observed suggest a

compensatory response in glutathione synthesis, indicating that

redox imbalances may play a significant role in geriatric depression.
4.1 Cross-omics driven hierarchical core
metabolic

The Class I pathways screened in this study (Glycine, serine and

threonine metabolism; Cysteine and methionine metabolism)

exhibited the highest pathway impact (Impact ≥ 0.25) in

metabolic disorders of depression. This is consistent with

previous findings (24). Serum choline levels in the Glycine-serine-

threonine metabolic axis are associated with an increased risk of

depression and positively correlate with depressive-like behaviors in

animal models (25). However, Serine was significantly reduced in

the present study along with Choline, and such a phenomenon may

be related to impaired single-carbon cycling (26).

At the same time, LCysteine was abnormally elevated, possibly

related to an imbalance in oxidative stress compensation (27). This

pattern of cysteine accumulation may suggest a disrupted redox

balance, which is commonly observed in depression. In the

Cysteine-methionine metabolic pathway, L Cystathionine

homeostasis is associated with the vitamin B6-dependent

transsulfuration pathway, which is one of the significant pathways

of homocysteine metabolism (28). Stagnation in this pathway could

contribute to neurotoxic effects associated with homocysteine

accumulation, although further research is required to confirm

these potential relationships (29). Although the two pathways

present partial contradictions in metabolite trends, they

collectively point to methyl donor depletion and redox imbalance

triggered by mitochondrial dysfunction (30). This suggests that

targeting the single-carbon cycle may be a key entry point for

intervening in metabolic disorders in depression.
4.2 Dynamically reconstituted metabolic
sub-networks with functional
complementarity

Class II pathways (Alanine-aspartate-glutamate metabolism;

Glycerophospholipid metabolism; Purine metabolism), although

slightly lower in impact (0.1 ≤ Impact < 0.25), yet their

alterations suggest a complex regulatory network involving

neurotransmitter imbalances in depression. Specifically, increased

glutamic acid levels may disrupt central nervous system function,

potentially through impaired blood-brain barrier integrity or
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NMDA receptor activation, which in turn could trigger

mitochondrial dysfunction. Additionally, glutamate-induced

neuroinflammation has been suggested as a contributing factor to

depression, highlighting the potential role of neuroinflammatory

pathways in the disorder’s pathophysiology (31). This is consistent

with imaging findings of hyperglutaminergic signaling in the

prefrontal cortex in depression (32). In the glycerophospholipid

metabolism pathway, supplementation with phosphatidylcholine in

animal models has been shown to ameliorate depression-like

behaviors, such as reduced resting time in the forced swim test,

improved spatial cognition, and enhanced hippocampal

neurogenesis (33). Accumulation of AMP/Xanthine in Purine

metabolism suggests reduced mitochondrial ATP synthesis, (34) a

phenomenon that may be mechanistically related to the reduction

of mitochondrial DNA copy number in peripheral blood in

depressed patients, suggesting a possible dysfunction in

mitochondrial energy production. However, there is some

heterogeneity in the mentioned pathways in terms of the

directionality of metabolite changes, in that a decrease in energy

metabolism-related metabolites coexists with abnormal fluctuations

in neurotransmitter precursors, which may be related to the sample

of the DD population included in the present study (GDS=14.71 ±

3.57 for mild depression). This heterogeneity may be related to a

dysregulation of mitochondrial-endoplasmic reticulum coupling,

disrupting synaptic plasticity and inflammatory homeostasis (35). It

may also be because different subtypes or stages of depression have

specific metabolic profiles (36).
4.3 Contradictory regulation of
heterogeneous metabolic nodes: a multi-
omics paradox

Class III pathways (Glutathione metabolism, One carbon pool

by folate) were statistically significant. Although the influence of the

pathways was weaker, the observed changes in these pathways

suggest possible involvement in oxidative stress regulation in

depression. Inverse changes in glutathione metabolism of L-

cysteine and Pyroglutamic acid may reflect compensatory

activation of the g-glutamyl cycle in response to chronic oxidative

stress, with elevated L-cysteine supporting glutathione synthesis

and decreased Pyroglutamic acid indicating reduced glutathione

degradation in response to oxidative damage, which may be a

possible. These findings may point to potential self-regulatory

mechanisms in individuals with mild depression (37).

In the paradoxical pathway, a-linolenic acid metabolism shows

paradoxical changes in phosphatidylcholine and a-linolenic acid,

which may be related to the compartmentalized regulation of w-3
fatty acid metabolism (38). In the presence of an w-3 deficiency in

the CNS due to a limitation of the blood-brain barrier, peripheral

adipose tissue lipolysis is triggered by vagally mediated hepatic-

brain axis signaling, (39) leading to a decrease in plasma. This leads

to a compensatory increase in plasma-free a-linolenic acid. This

compensatory mechanism temporarily alleviates w-3 deficiency in

the brain. However, it does not reverse the impaired phospholipid
Frontiers in Psychiatry 15
remodeling of neuronal membranes, which ultimately leads to an

increase in the synthesis of proinflammatory prostaglandins (e.g.,

PGE2) (40).These paradoxical phenomena, which may stem from

heterogeneity in metabolic regulation or a lagged plasma response

to changes in central metabolism, must be further validated with

multi-omics techniques and large population samples.
4.4 Integrated model of the
multidimensional metabolic regulatory
interface

The systematic regulatory network of peripheral metabolic

disorders in elderly patients with depression has been

systematically revealed through the inferential integration and

analysis of the above results. These results suggest a dynamic,

interactive process in which oxidative stress and methylation

imbalances may act as central drivers of depression. Specifically,

abnormal glutathione metabolism and impaired single-carbon

cycling may reduce the capacity for reactive oxygen species (ROS)

scavenging and inhibit DNA methyltransferase activity,

contributing to a state of genome-wide hypomethylation Single-

carbon metabolism, particularly its role in methylation processes,

could be central to understanding these disruptions (41, 42).

Additionally, elevated levels of cysteine and changes in

phosphatidylcholine metabolism were observed, which may reflect

attempts by the body to compensate for oxidative stress. These

findings suggest that lipid metabolism and redox balance are

important contributors to the metabolic dysfunction observed in

depression, warranting further research into how lipid metabolism

may influence neuroinflammation and synaptic plasticity in this

context (43). The study also uncovered disruptions in purine

metabolism, particularly the accumulation of AMP and xanthine,

pointing to potential disturbances in mitochondrial ATP synthesis.

These findings support the role of mitochondrial dysfunction in

depression but suggest that further investigation is needed to

explore the relationship between mitochondrial energy

production and ATP synthesis in the depressive state (44).

In summary, this study highlights the significant role of single-

carbon metabolism and oxidative stress in the metabolic

dysfunction associated with depression. Future research should

focus on understanding how these disruptions contribute to the

underlying pathophysiology of depression and explore potential

therapeutic targets aimed at restoring single-carbon metabolism,

mitochondrial function, and lipid homeostasis to mitigate

depressive symptoms (45, 46).
4.5 Innovation and limitations

In this study, we propose a novel approach to address the

limitations of conventional single-omics studies by integrating

WGCNA modular analysis, MR causal inference, and cross-

platform metabolite validation. This approach enables the

revelation of the core regulatory status of multiple metabolic
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pathways in geriatric depression, with a focus on single-carbon

cycle metabolism and methylation imbalance. Constructing a three-

level analysis framework comprising “metabolomics - network

module - causal inference” enabled the combined analysis of

metabolites. The identification of key metabolites associated with

nanocarbon cycle metabolism and methylation imbalance has

enabled a comprehensive exploration of the multidimensional

metabolic dysregulation phenomenon in depression. Furthermore,

a substantial sample size from a Chinese community-based elderly

population addresses a significant gap in studying metabolic

markers and pathways in DD within Asian populations.

However, further exploration is necessary to address the

following limitations: plasma metabolites are challenging to fully

reflect the dynamic changes in vivo, and they may be inadequate

for detecting depression-related metabolites. Additionally,

although the WGCNA method is suitable for metabolite

clustering detection, the number of significant metabolites

detected by WGCNA in this study is relatively small, which

suggests that the results may have certain limitations. It is

important to note that the Classification system presented here

serves only as a summary of the analytical standards for the results

of this study and should not be directly applied as a tiered

Classification system. Doing so could potentially overestimate its

biological interpretation. Furthermore, the thresholds used in the

Classification system may not fully capture the complexity of

metabolic pathways. Given the intricate and multi-dimensional

nature of the GC-MS data, overfitting remains a concern. The

complexity of the underlying biological mechanisms, particularly

the body’s regulatory responses to depression, might result in

the model focusing on noise or irrelevant patterns, rather

than generalizable relationships. Despite these efforts, we

acknowledge that further studies with larger, more diverse

cohorts, as well as more refined methodological approaches, are

needed to fully validate these findings.
5 Conclusion

In this study, we integrated untargeted metabolomics, WGCNA

and MR methods to systematically reveal the hierarchical

disordered characteristics of plasma metabolic networks in elderly

patients with depression. We constructed the first metabolic

pathway Classification framework based on multi-omics data. We

identified 1,458 plasma metabolites by LC/GC-MS platform,

screened 20 pivotal metabolites by combining with WGCNA, and

confirmed 29 metabolites were causally associated with depression

by MR analysis.

The study found significant alterations in glycine-serine-

threonine metabolism and cysteine-methionine metabolism,

which are linked to oxidative stress and single-carbon

metabolism. Elevated cysteine levels suggest a compensatory

response to oxidative stress, while disruptions in purine

metabolism point to possible mitochondrial dysfunction, a key

factor in energy production. Notably, our results indicate that

single-carbon metabolism, particularly its role in DNA
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methylation, may play a central role in depression. Serine

deficiency and phosphoserine accumulation could contribute to

genome-wide hypomethylation, providing new insights into the

potential epigenetic mechanisms involved in depression.

These findings emphasize the importance of oxidative stress

and metabolic dysfunction in depression. Future research should

explore the therapeutic potential of targeting single-carbon

metabolism, mitochondrial function, and lipid imbalances as

strategies for treating depression, particularly in older adults.

Meanwhile, these results provide new possible directions for

metabolic typing and intervention in depression and suggest that

future studies should focus on the validation of different

populations, the dynamic changes of metabolic markers, and the

integration of multi-omics data to promote the development of

precision medicine.
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42. Emekdar G, Tas ̧ H, Şehitoğlu H. Investigation of the relationship between
inflammation and oxidative stress markers and treatment response in first-attack major
depression patients: A follow-up study. Turk Psikiyatri Derg. (2023) 34:89–99.
doi: 10.5080/u26698

43. Stephenson RA, Johnson KR, Cheng L, Yang LG, Root JT, Gopalakrishnan J,
et al. Triglyceride metabolism controls inflammation and APOE4 -associated disease
states in microglia. bioRxiv. (2024). 44(7):115961. doi: 10.1101/2024.04.11.589145

44. Zeng X, Liu D, Wu W, Huo X. PM(2.5) exposure inducing ATP alteration links
with NLRP3 inflammasome activation. Environ Sci pollut Res Int. (2022) 29:24445–56.
doi: 10.1007/s11356-021-16405-w

45. Hagenberg J, Brückl TM, Erhart M, Kopf-Beck J, Ködel M, Rehawi G, et al.
Dissecting depression symptoms: Multi-omics clustering uncovers immune-related
subgroups and cell-type specific dysregulation. Brain Behav Immun. (2025) 123:353–
69. doi: 10.1016/j.bbi.2024.09.013

46. Van Straten A, Seekles W, Van 'T Veer-Tazelaar NJ, Beekman AT, Cuijpers P.
Stepped care for depression in primary care: what should be offered and how? Med J
Aust. (2010) 192:S36–9. doi: 10.5694/j.1326-5377.2010.tb03691.x
frontiersin.org

https://doi.org/10.1016/j.ajhg.2024.07.007
https://doi.org/10.1186/s12884-024-06628-3
https://doi.org/10.1016/j.jad.2024.01.053
https://doi.org/10.1371/journal.pone.0270593
https://doi.org/10.3390/metabo14080405
https://doi.org/10.1016/j.heliyon.2024.e36980
https://doi.org/10.1007/s10103-019-02851-z
https://doi.org/10.1016/j.biochi.2015.12.020
https://doi.org/10.2147/NDT.S333753
https://doi.org/10.2174/1570159X16666180302120322
https://doi.org/10.2174/1570159X16666180302120322
https://doi.org/10.1038/s41598-019-49781-y
https://doi.org/10.1134/S0006297923030045
https://doi.org/10.1134/S0006297923030045
https://doi.org/10.3390/livers4010006
https://doi.org/10.4196/kjpp.2013.17.4.253
https://doi.org/10.1038/s41583-021-00535-8
https://doi.org/10.1038/s41583-021-00535-8
https://doi.org/10.1038/s41398-025-03286-7
https://doi.org/10.1038/s41398-025-03286-7
https://doi.org/10.1038/s41598-017-10391-1
https://doi.org/10.1038/s41598-017-10391-1
https://doi.org/10.2174/1570159X15666170912113852
https://doi.org/10.3389/fneur.2022.1015175
https://doi.org/10.1111/j.1476-5381.2011.01358.x
https://doi.org/10.1371/journal.pone.0138904
https://doi.org/10.1371/journal.pone.0138904
https://doi.org/10.5080/u26698
https://doi.org/10.1101/2024.04.11.589145
https://doi.org/10.1007/s11356-021-16405-w
https://doi.org/10.1016/j.bbi.2024.09.013
https://doi.org/10.5694/j.1326-5377.2010.tb03691.x
https://doi.org/10.3389/fpsyt.2025.1627020
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Multi-omics investigation of metabolic dysregulation in depression: integrating metabolomics, weighted gene co-expression network analysis, and mendelian randomization
	1 Introduction
	2 Materials and methods
	2.1 Description of the sample
	2.2 Measurements of depression
	2.3 Metabolomics analysis methods
	2.4 Weighted gene co-expression network analysis
	2.5 Mendelian randomization of data sources
	2.6 Choice of instrumental variables and chain imbalance adjustment
	2.7 Mendelian randomization analysis
	2.8 Highly associated metabolite pool building
	2.9 Pathway enrichment analysis and pathway analysis methods
	2.10 Criteria for the classification of pathways
	2.11 Statistical analysis methods

	3 Result
	3.1 Characteristics of the study population
	3.2 Non-targeted LC/GC-MS results
	3.3 Key metabolic modules associated with WGCNA
	3.4 MR analysis results
	3.5 Metabolic pathway integration analysis

	4 Discussion
	4.1 Cross-omics driven hierarchical core metabolic
	4.2 Dynamically reconstituted metabolic sub-networks with functional complementarity
	4.3 Contradictory regulation of heterogeneous metabolic nodes: a multi-omics paradox
	4.4 Integrated model of the multidimensional metabolic regulatory interface
	4.5 Innovation and limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


