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Médicale (INSERM), France

*CORRESPONDENCE

Samuel J. R. A. Chawner

chawnersj@cardiff.ac.uk

RECEIVED 12 May 2025

ACCEPTED 02 October 2025
PUBLISHED 20 October 2025

CITATION

Chawner SJRA (2025) Eating behaviour and
eating disorders in individuals with rare
neurodevelopmental variants: current
knowledge and future research directions.
Front. Psychiatry 16:1627378.
doi: 10.3389/fpsyt.2025.1627378

COPYRIGHT

© 2025 Chawner. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Perspective

PUBLISHED 20 October 2025

DOI 10.3389/fpsyt.2025.1627378
Eating behaviour and eating
disorders in individuals with rare
neurodevelopmental variants:
current knowledge and future
research directions
Samuel J. R. A. Chawner*

Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
Rare neurodevelopmental copy number variants (ND-CNVs) have been

implicated in a range of psychiatric and neurodevelopmental conditions.

Despite their known association with a range of behavioural outcomes, the

role of ND-CNVs in eating disorders and related traits remains underexplored.

This perspective synthesises current knowledge on the association between ND-

CNVs, eating disorders and eating behaviour, highlighting the potential for

research into ND-CNVs to provide insights into the genetic architecture of

eating disorders. Initial CNV genome-wide association studies have been

conducted for anorexia nervosa, and there is now a need to investigate the

roles of ND-CNVs in larger samples and across a range of eating disorders.

Population cohort studies, and genetic-first designs whereby individuals with a

clinical genetic diagnosis undergo deep phenotyping, provide strong evidence

for the impact of ND-CNVs on body mass index (BMI), with some ND-CNVs

associated with increased BMI, and others decreased BMI relative to the

population. Although there have been detailed characterisations of eating

behaviour phenotypes in Prader-Willi Syndrome and 16p11.2 Deletion and

Duplication Syndromes, overall population and genetic-first studies of the

impact of ND-CNVs on eating behaviour and eating disorder risk have been

limited. Key research gaps to overcome include the lack of relevant eating

disorder phenotype data in large-scale cohorts, limited research into the

mechanistic pathways between genotype and phenotypic outcome, and the

need for research to include diverse populations. Cross-disciplinary

collaboration will be essential to advance the field to enable the development

of effective interventions and genetic counselling for eating behaviour and

eating disorders.
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1 Introduction

A number of rare genomic conditions, including recurrent

pathogenic copy number variants [CNVs, deletions and

duplications >1000 base pairs (1)], have been identified to confer

risk for neurodevelopmental and psychiatric conditions (ND-

CNVs) including intellectual disability (ID), attention deficit

hyperactivity disorder (ADHD), autism and schizophrenia (2–6)

(see Table 1). CNVs are increasingly being detected in clinical

settings through the use of technologies including chromosomal

microarray allowing identification of sub-microscopic CNVs

[resolution of ~50–100 kilobase pairs (7)] which would have been

undetected under methods such as karyotyping (8–10).

Furthermore, the introduction of exome and whole genome

sequencing in clinical genetic testing has significantly increased

diagnostic yield (11) and improved resolution to that of a single

base pair, allowing for the diagnosis of pathogenic sequence

variations within a single gene, including intragenic CNVs, single-

exon changes and point mutations (8, 12, 13). The most frequently

studied CNVs are recurrent CNVs which are predominantly

mediated by non-allelic homologous recombination, which occurs

between highly homologous low copy repeats, resulting in

segmental deletions or duplications (3, 14–16). Non-recurrent

variants typically occur at low frequencies, posing challenges for

research focussing on the effects of specific variants (17).

Consequently, the majority of CNVs examined in research, and

those discussed in this perspective, are recurrent CNVs. In contrast,

non-recurrent CNVs arise at variable genomic loci with

heterogeneous breakpoints. Recurrent CNVs, by comparison, tend

to recur at specific genomic regions across individuals, leading to

higher population frequencies. For example, analysis of 12,252

parent-offspring trios from the Norwegian Mother, Father, and

Child Cohort Study (MoBa) estimated the prevalence of 26

recurrent CNVs in live-born children at 0.48%, with individual

variants ranging from 0.008% to 0.05% (18).

Although individually rare, collectively, neurodevelopmental

variants have been implicated in ~15-40% of patients with

neurodevelopmental conditions (5, 8), and in 5% of individuals

with schizophrenia (19), rising to 8% for child-onset schizophrenia

(20). Although these rare variants are strongly associated with

psychiatric conditions, they have incomplete penetrance and

exhibit a high degree of pleiotropy, conferring risk for a broad

range of psychiatric symptomatology, cognitive deficits, and

medical/physical comorbidities across the lifespan (14, 21–25).

The study of ND-CNVs has provided valuable insights into the

aetiology of psychiatric conditions and highlighted the overlap

between neurodevelopmental conditions and schizophrenia. The

identification of ND-CNVs has paved the way for genetic-first

studies, where children with risk variants are prospectively

assessed throughout development (26, 27). Additionally, genetic-

first animal and cellular models offer insights into the mechanisms

by which genomic risk for psychiatric outcomes manifests at

cellular and neurobiological levels (28, 29). However, there has

been a relative lack of research into the impact of rare ND-CNVs on
Frontiers in Psychiatry 02
eating disorders and related traits, limiting our understanding of the

genetic architecture and biological mechanisms underpinning

these conditions.

It is important that the lack of research into the role of ND-

CNVs in eating disorders and eating behaviour is addressed. In this

perspective the term eating disorders is used this refers to those

defined within the DSM-5 criteria including anorexia nervosa (AN),

bulimia nervosa (BN), binge-eating disorder (BED), avoidant

restrictive food intake disorder (ARFID), and pica (30). Across

medicine, the study of rare variants has provided transformative

insights into the biological mechanisms underlying health

conditions. Within the psychiatry field, schizophrenia risk CNV

regions have been found to be enriched within genes involved in

inhibitory GABAergic (gamma-aminobutyric acid-ergic) and

excitatory glutamatergic systems providing causal insights into

schizophrenia pathogenesis (31). Furthermore, the identification

of obesity-risk rare variants, including mutations in the leptin

receptor gene (LEPR) (32) as well as POMC (33) and MC4R (34)

genes, has highlighted that the leptin–melanocortin pathway is a

key appetitive control circuit (35). It is not known the extent that

rare genetic variation in genes influencing appetitive control

contribute to eating disorders. Though it should be noted that

eating disorders and Body Mass Index (BMI) overlap in common

genetic risk, BMI polygenic risk score positively correlates with BN

and BED, whereas for AN the direction of association was reversed

(36). It is not known the extent that loci of rare variants identified

for obesity also contribute to eating disorders.

Further evidence supporting the importance of research into the

role of ND-CNVs in eating disorders and behaviours comes from

the studies highlighting the significant genetic basis of these traits.

Twin studies have highlighted that eating disorders have a

significant genetic component, including 0.79 heritability for

ARFID, 0.48-0.74 for AN, 0.55-0.62 for BN, and 0.39-0.45 for

BED (37, 38). Furthermore high heritability has been found for

eating disorder related traits including food fussiness 0.74-0.79 (39–

41), appetitive traits 0.53-0.84 (42), and 0.61-0.80 for BMI (43). The

significant genetic basis of eating disorders and related traits

warrants future research identifying the specific risk genetic

variants underlying heritability. Identification of rare genetic

variants for eating disorders would also be a first step for

elucidating the genomic relationships between eating disorders

and other psychiatric conditions. For example, evidence that

s ch i zophren i a r i sk CNVs are a l so a s soc i a t ed wi th

neurodevelopmental conditions has highlighted the shared

aetiology of these conditions supporting a neurodevelopmental

hypothesis of schizophrenia aetiology (2, 44, 45). There is

growing awareness of the clinical overlap between eating

disorders and autism (46–48), and initial studies indicate shared

common genetic risk factors between neurodevelopmental

conditions and eating disorders including AN (49) and ARFID

(50), but there is a lack of research into the contribution of rare

variants to the shared aetiology of eating disorders and

neurodevelopmental conditions. Together these different lines of

evidence indicate that ND-CNVs are likely candidates as risk factors
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for eating disorders, and the next section outlines what is currently

known about the association of ND-CNVs with eating disorders

and eating behaviour.
2 Current knowledge of the
association between ND-CNVs, eating
disorders and related traits

2.1 Genome-wide association studies

Genome-wide copy number variation association studies

(CNV-GWAS) of eating disorders have provided mixed findings.

An early study reported one out of 109 individuals with AN carried

an atypical 136 kb duplication that encompassed the SPN and

QPRT genes (51). An early case-control study implicated the 13q12

region in AN (1033 AN cases), but there was not an

overrepresentation of large rare CNVs in individuals with AN

compared to controls (52). A larger study of 1,983 females with

AN from the Genetic Consortium for AN (GCAN), found

previously established ND-CNVs were present in AN cases (53),

and one case had a 13q12 deletion replicating the previous study.
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The largest and most recent case-control CNV-GWAS of AN, with

a sample size of 7414 AN cases and 5044 controls, found 21

nominally associated CNV regions that contribute to AN risk but

none of the well-established syndromic ND-CNVs had a significant

association with AN status (54). However CNVs in individuals with

AN were found to be enriched in genes involved in synaptic

function, metabolic and mitochondrial factors, and lipid

characteristics, consistent with the metabo-psychiatric

conceptualisation of the disorder (54, 55). There was also no

evidence in this study of a global enrichment of rare CNVs in

AN, and the contribution of ND-CNVs was limited in comparison

to conditions such as schizophrenia (54). This could perhaps

indicate the magnitude of contribution of rare variants to AN is

lower than conditions such as schizophrenia, and therefore larger

sample sizes may be needed for rare variant discovery for AN

compared to schizophrenia. Though these findings should not

necessarily be generalised to all eating disorders, as there has been

a lack of CNV studies for other eating disorders including ARFID

and pica, which have been under researched for genetic aetiology.

Indeed for ARFID, it has been hypothesised that ND-CNVs may

play a role due to the condition’s overlap with neurodevelopmental

c ond i t i on s ( 50 , 56 ) , s im i l a r l y p i c a ove r l ap s w i t h
TABLE 1 Frequent CNVs associated with risk for Neurodevelopmental disorders (NDDs).

Locus Rearrangements Syndrome
Position of critical

region Hg19
Key genes

1q21.1 proximal del and dup
Thrombocytopenia-Absent
Radius syndrome (del)

chr1:145,394,955-145,807,817 RBM8A, PDZK1P1, GPR89C

1q21.1 distal del and dup chr1:146,527,987-147,394,444
HYDIN2, PRKAB2, CHD1L,
BCL9, GJA5, GJA8, GPR89B

2p16.3 del chr2:50145643-51259674 NRXN1

3q29 del chr3:195,720,167-197,354,826 DLG1

7q11.23 del and dup
Williams-Beuren Syndrome
(WBS) (del)

chr7:72,744,915-74,142,892
CLDN3, CLDN4, GTF2, ELN,
LIMK1, KCTD7, CLIP2,
STX1A,

9q34 del Kleefstra Syndrome (del) chr9:140,513,444-140,730,578 EHMT1

15q11.2 BP1-BP2; del and dup chr15:22,805,313-23,094,530 CYFIP1

15q11-q13 BP3-BP5; del and dup
Prader-Willi Syndrome (del) &
Angelman Syndrome (dup)

chr15:29,161,368-32462776
UBE3A, ATP10A, GABARB3,
GABARA5, GABARG3

15q13.3 del and dup chr15:32,017,070-32,453,068 CHRNA7

16p13.11 del and dup chr16:15,511,655-16,293,689 NDE1, MYH11

16p11.2 proximal del and dup chr16:29,650,840-30,200,773
KCTD13, ALDOA, CORO1A,
MAPK3, TAOK2

16p11.2 distal del and dup chr16:28,823,196-29,046,783 TUFM

17q12 del and dup
Renal cysts and diabetes
syndrome (RCAD) (del)

chr17:34,815,904-36,217,432 NF1

22q11.2 del and dup

DiGeorge Syndrome,
Velocardiofacial Syndrome and
22q11.2 Deletion Syndrome
(del)

chr22:19,037,332-21,466,726 TBX1, COMT, PI4KA,SEPT6

22q13 del and dup
Phelan-McDermid Syndrome
(PMDS) (del)

chr22:51113070-51171640 SHANK3
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neurodevelopmental conditions (57, 58) and therefore ND-CNVs

may also contribute to the aetiology of pica. Although the AN CNV-

GWAS studies described represent the largest to date, sample size

lags behind that for other psychiatric conditions (schizophrenia n =

76,755, major depressive disorder n = 688,808) reducing power for

gene discovery, particularly for identification of risk rare variants

which requires large sample sizes simply to observe a variant with

low population frequency (59). The potential for gene discovery for

a given diagnosis is also influenced by the extent of genetic

contribution to its aetiology. Therefore, for conditions like

ARFID, which exhibit high heritability, there is substantial

promise for identifying novel genetic risk factors (37). In contrast

to the eating disorder field, there have considerable advances in the

understanding of the genetic architecture of obesity, including

CNVs (including 1p31.1 deletion, 16p12.3 deletion and 16p11.2

deletion) (35, 60), made possible due to the widespread inclusion of

BMI phenotypes in large cohorts.
2.2 Population cohorts

Large-scale population cohorts have provided clear evidence of

the role of ND-CNVs in extreme BMI outcomes, including both

overweight and underweight outcomes, but there has been a lack of

studies that have examined eating disorders and related eating

behaviour traits. The impact of ND-CNVs on BMI has been

demonstrated in the UK Biobank (61) cohort of 396,725 adults

aged 40–69 recruited from the UK population, which found 13 ND-

CNVs to be associated with increased BMI compared to adults

without a ND-CNV, and 3 ND-CNVs were associated with

decreased BMI. A meta-analysis of 191,161 adults from 26

cohorts revealed associations at 1q21.1, 7q11.23, 16p11.2,

18q21.32 22q11.21, with either BMI, weight, and/or waist–hip

ratio (62). The impact of ND-CNVs on BMI leads to wide-

ranging effects, including diabetes, and hypertension (63). In a

case-only study the 16p11.2 deletion has a prevalence of 0.5%

within a cohort of adult patients who underwent bariatric surgery

(64). The lack of research into the impact of ND-CNVs on eating

disorder risk in population cohorts is partly due to a lack of

phenotype data in such cohorts, but one approach to overcoming

this is to derive phenotypic proxies by developing algorithms that

combine information frommedical registry diagnoses and/or eating

disorder-related questionnaire items (37, 65).
2.3 Clinical studies of ND-CNV carriers
identified via clinical settings

Genetic-first studies, whereby individuals with ND-CNVs

diagnosed within medical genetic clinics have undergone deep

phenotyping protocols, have revealed variants associated with

obesity including 16p11.2 Deletion and 22q11.2 Deletion (60, 66).

16p11.2 Duplication has been associated with failure to thrive in

childhood and being clinically underweight in adulthood (51); and a

high prevalence of nutritional problems and failure to thrive has
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been reported for 22q11.2 Duplication Syndrome (67). Genetic-first

studies of psychiatric risk CNVs have examined a range of domains

across childhood development (6, 24), but the majority have not

included eating disorders and eating behaviour traits in their deep

phenotyping protocols.

The ND-CNVs conditions which have been well-characterised

for eating behaviour include Prader-Willi Syndrome (PWS,

15q11.2-q13 deletion) and reciprocal 16p11.2 Deletion and

Duplications. Prader-Willi Syndrome (PWS) is a complex

neurodevelopmental genetic condition resulting from absence of

expression of imprinted genes in the paternally derived region of the

chromosome 15q11.2-q13.1 (68). One of the hallmark features of

PWS is hyperphagia, an intense and insatiable hunger that leads to

chronic overeating and severe obesity (69). Individuals with PWS

experience a persistent sensation of hunger and an extreme drive to

consume food, often accompanied by food-related behavioural

problems such as food-seeking and hoarding (70). Managing

hyperphagia in PWS is challenging, strategies include strict

supervision of food intake, creating a food-secure environment

where access to food is controlled, and behavioural and

pharmacological interventions to address food-related behaviours

(69). In the last couple of decades, the introduction of microarray

testing in clinical settings has led to the identification of 16p11.2

Deletion and 16p11.2 Duplication variants. The 16p11.2 locus is of

great interest as reciprocal genetic changes lead to a “mirror”

phenotype (51) whereby carriers of the 16p11.2 deletion display a

penetrant form of obesity (OR = 43) (60) and are known to exhibit

hyperphagia (71) and emotional over-eating (72), whereas

duplication carriers are at increased risk of being chronically

underweight and have been reported to show restrictive eating

behaviour and heightened responsiveness to satiety (51, 72). This

mirror phenotype highlights the importance of gene expression at

16p11.2 on Body Mass Index (BMI) and eating behaviour, and

potentially on eating disorder outcomes. The association of 16p11.2

with BMI, is a robust and replicable finding supported by genome

wide association studies of BMI, and large population cohort and

clinical studies (51, 60–62, 72). Studies of eating behaviour in

16p11.2 Deletion and Duplication indicates eating behaviour

changes in terms of satiety responsiveness, food responsiveness,

and emotional overeating (72), and cross-sectional evidence

indicates that behavioural changes occur before later extreme

BMI outcomes (72). Individuals with 16p11.2 deletion are more

likely to engage in eating in the absence of hunger (EAH), where

they consume food in response to external cues or boredom rather

than physiological hunger (71). This disinhibited eating behaviour

contributes to the development of obesity in individuals with

16p11.2 deletion. It has been investigated whether the EAH in

individuals with 16p11.2 Deletion represents binge-eating, but an

initial findings reported no loss of control eating in childhood

indicating this eating behaviour does not meet BED criteria (71).

However, these findings warrant replication and investigation

across a range of ages.

It is important to recognise that the relatively detailed

characterisation of eating behaviour in PWS and 16p11.2 variants,

does not mean that other ND-CNVs do not necessarily impact
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eating behaviour. Rather the focus of the literature on these

conditions is likely to represent historical reasons, PWS was first

characterised in 1956 (73), and the 16p11.2 locus has received great

attention following seminal work published in Nature describing

the mirror effect reciprocal variants have on BMI (51). Indeed,

studies of ND-CNVs in UK Biobank highlight that a range of other

variants lead to a range of extreme BMI outcomes (61), and

therefore may lead to similar eating behaviour outcomes.
3 Current research gaps

3.1 Phenotype bias

The majority of research of the role of ND-CNVs in eating

disorders and related traits has predominantly centred on BMI and

hyperphagia, with a relative paucity of studies on eating disorder

and broader restrictive eating and avoidant eating behaviour

phenotypes. Notably, there has only been a large-scale CNV-

GWAS study for AN (54), and a lack of studies for other eating

disorders including BN, BED, ARFID and pica (56). This bias stems

from a general lack of research into eating disorders, driven by

disparities in funding compared to other psychiatric conditions (74,

75). Within eating disorder research, initial work has primarily

focussed on AN, with considerably less known about other eating

disorders. The collection of large patient cohorts with eating

disorders lags behind that for other psychiatric conditions.

However, there are now concerted efforts to accelerate research

on ARFID, BN and BED (76, 77). Historically, population cohorts

have lacked detailed phenotype data, but the retrospective

derivation of variables using algorithm approaches combining

medical records and questionnaire data and the addition of

relevant measures in cohorts will expand research possibilities.

Leveraging existing population cohort and consortium

infrastructures to enrich for eating behaviour and eating disorder

measures will be crucial. Large-scale consortia approaches have

been beneficial for the study of schizophrenia development in

22q11.2 Deletion Syndrome (78), and demonstrate what may be

possible for studies of individuals at high genomic risk for

eating disorders.
3.2 Lack of mechanistic insights – deep
phenotyping

Another significant gap is the need for more research into the

precise biological mechanisms by which ND-CNVs influence eating

behaviours. While some initial associations between specific ND-

CNVs and eating behaviours have been identified (72), the

underlying pathways remain poorly understood. Research should

focus on elucidating the molecular and cellular mechanisms

involved, such as how ND-CNVs affect neural circuits regulating

hunger and satiety, or how they influence metabolic pathways.

Identification of variants allows for post-GWAS bioinformatic

approaches and genetic-first studies of carriers, as well as rodent
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model studies. Deep phenotyping is crucial for understanding how

eating behaviours and eating disorder sequelae co-develop

prospectively across development. Initial rodent model work and

zebrafish studies have investigated the impact of homologs of the

16p11.2 region on growth phenotypes (79, 80). To develop a

comprehensive understanding of how ND-CNVs influence eating

behaviour and eating disorder phenotypes, it will be essential to

integrate genetic, neurobiological, and behavioural data to identify

potential biomarkers for early detection and intervention. Network

analysis and systems biology analytical approaches are needed to

integrate data from multiple biological levels (81).
3.3 Diverse populations

The majority of research investigating the impact of ND-CNVs

on eating disorder and eating behaviour traits have been conducted

in populations of European ancestry, creating concerns that

findings may not be applicable to a large fraction of the global

population. Research involving cohorts from a range of populations

is necessary to ensure that the associations identified are applicable

across different ancestral and genetic backgrounds (6). There is

clear evidence for common genetic risk factors that polygenic risk

scores (PRS) developed from multi-ancestry genome-wide

association studies improve predictive performance of PRS, and

diversifying genomic studies is important step to achieving

equitable PRS performance across ancestral populations (82). The

importance of cohort ancestry when characterising the medical

phenotypes of rare genetic variants is evident from recent work

where ND-CNV prevalence and clinical phenotype differed

between European-ancestry cohorts and a multi-ancestry cohort

(BioMe) (83). However the authors of this study note that cohort

differences at some CNV loci cannot be directly attributable to

ancestry divergence, and may be partly attributable to systematic

biases in CNV-calling algorithms (83), highlighting the need for

analytical pipelines developed and trained on genetic data from a

range of ancestries. The Psychiatric Genomics Consortium (PGC) is

actively expanding its work across multiple ancestral populations

(84) by leveraging diverse cohorts such as the new All of Us research

program biobank (85) and collaborating with international

psychiatric genetics initiatives such as the Ancestral Populations

Network (86). The NeuroDev study is an example of research that is

transforming insights into rare variants and neurodevelopmental

conditions in an African context (87, 88).The NeuroDev study is

conducting detailed phenotyping on cognition, behaviour, and

medical traits in an expected cohort of 5,600 Africans (1,800

children with neurodevelopmental conditions, 1,800 child

controls, and 1,900 parents) and is collecting blood samples for

exome sequencing and biobanking, with preliminary with the first

year of data analysed representing the first trio-based study of

neurodevelopmental conditions in Kenya and South Africa (87). In

terms of population cohorts, the Born in Bradford Age of Wonder

study has introduced eating disorder measures following

consultation with teenagers living in Bradford (89). Bradford has

a multi-ethnic population with the census data from 2021 showing
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that 61% of the population identified as White British, 32% as

Asian/Asian British, and 34% of Bradford residents live in areas that

rank in the most deprived decile of local areas in England (90). The

sociodemographic profile of the Born in Bradford study enables

investigation of the genetics of eating disorders within groups

previously underrepresented in research, and highlights the

benefits of enriching existing cohorts across populations for

eating disorder phenotype data.
3.4 Cross-disciplinary collaboration

Addressing the research gaps presented in this perspective will

require collaboration between geneticists, neuroscientists, and

clinicians, across research areas and clinical specialities. Studies of

common genetic risk factors of AN implicate genes involved in the

brain and also metabolic processes, highlighting the need for

interdisciplinary work to translate these genetic findings into

mechanistic and intervention research (55). Cross-disciplinary

collaboration can foster innovative systems biology approaches

and lead to more effective interventions. For example, initial brain

imaging studies of 16p11.2 Deletion and Duplication have identified

gene-dosage effects on white matter properties in cortico-

subcortical regions implicated in reward processing (91). Further

research is needed to understand how this relates to eating

behaviour outcomes. Involving patients, families, and advocacy

groups in research is crucial for ensuring that studies address the

real-world needs and concerns of those affected. Community

engagement can help researchers design studies that are relevant

and meaningful to participants, improving recruitment and

retention rates. Additionally, qualitative research can provide

valuable insights into the lived experiences of individuals with

rare variants. For example, a qualitative study into the experience

of carers of children with 16p11.2 Deletion and Duplication variants

issues surrounding metabolism and eating patterns represented one

of the top themes of parental concern (92).
4 Future perspectives

4.1 Early identification and intervention

Advances in understanding the contribution of rare variants to

eating disorders and eating behaviour has the potential to enable

new research designs for examining early intervention for

disordered eating. The identification of rare variants associated

with eating disorders would enable genetic-first studies that

prospectively examine the impact of genomic risk on early eating

behaviour trajectories leading to disorder eating. Drawing parallels

from the schizophrenia field, prospective developmental studies

have been conducted across childhood and adolescence in

individuals with 22q11.2 Deletion Syndrome (93–95), where 30-

40% of individuals are at risk of developing psychosis in adulthood

(96, 97). Longitudinal studies of individuals with 22q11.2 Deletion

Syndrome have identified a range of developmental precursors for
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psychotic phenomena, including anxiety, Verbal Intelligence

Quotient (VIQ) trajectory, ADHD symptoms, and executive

functioning ability (94, 98–100). Work from the International

Brain & Behaviour Consortium found that VIQ trajectories for

those who later develop psychosis diverged from age 11 (93). This

has led to a prospective neuroprotective clinical trial for psychosis

in 22q11.2 Deletion Syndrome (101). Studies of children at high

genomic risk would provide insights into early risk signs for eating

disorders, allowing healthcare providers to intervene sooner and

potentially mitigate the severity of eating disorders and their

associated health consequences (102).
4.2 Tailored treatment approaches

Understanding the genomic underpinnings of eating disorders

can enable genetic counselling approaches and the development of

more effective, individualised treatment plans. For example, there

are already clinics for ND-CNVs in Canada, such as the

Developmental Assessment of Genetically Susceptible Youth

(DAGSY) Clinic, a novel interdisciplinary ‘genetic-diagnosis-first’

clinic integrating psychiatric, psychological, and genetic expertise

(103). There is also the All Wales Psychiatric Genomics Service, a

collaborative effort between psychiatric and clinical genetics services

and the first of its kind in the UK, whereby adults with complex

psychiatric presentations can be referred for genetic testing and

genomic counselling (104). Several healthcare systems have

specialised clinics for specific CNVs, such as Prader-Willi

Syndrome (105) and 22q11.2 Deletion Syndrome (106), that

provide specialised care and have established syndrome registries

for understanding natural history.

It is not known whether traditional treatments for eating

disorders would be as effective for individuals with ND-CNVs

and may require modification for various reasons, including

developmental delay, sensory impairments, multimorbidity of

physical health problems, and sensitivity to adverse effects.

However, it is known that for other clinical features

neurodevelopmental CNV carriers experience, treatment

adaptations may be needed. For example, ND-CNV carriers who

experience cognitive and social difficulties may find it challenging to

access and benefit from therapies such as cognitive behavioural

therapy. Adaptations to therapies, such as shorter sessions, frequent

breaks, and repetition of content, should be considered (107). There

is also evidence that ND-CNV carriers with autism benefit less from

social skills training than autistic children but without a pathogenic

CNV (108). By tailoring treatment approaches to the specific needs

of children with ND-CNVs, healthcare providers can improve

outcomes and enhance the overall effectiveness of interventions.
5 Conclusion

The exploration of rare ND-CNVs offers a promising avenue for

understanding the genetic and biological underpinnings of eating

disorders and related traits. While significant progress has been
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made in identifying the role of CNVs in psychiatric and

neurodevelopmental conditions, their impact on eating

behaviours remains underexplored. This perspective highlights

the potential of ND-CNV research to provide transformative

insights into the genetic architecture of eating disorders, as has

been for other psychiatric and physical health conditions. The

identification of ND-CNVs associated with eating disorders has

the potential to facilitate early identification and intervention,

leading to improved outcomes for affected individuals. However,

current research is limited by lack of large-scale cohorts, phenotype

bias, a lack of mechanistic insights, and insufficient diversity in

study populations. Addressing these gaps requires cross-

disciplinary collaboration and the integration of genetic,

neurobiological, and behavioural data. By leveraging genetic-first

studies and tailored treatment approaches, researchers and

clinicians can enhance our understanding of the complex

interactions between genetics, neurodevelopment, and eating

behaviours. Ultimately, this knowledge will pave the way for more

effective interventions and improved quality of life for individuals

with ND-CNVs, contributing to personalised medicine approaches

for eating disorders and the management of challenging

eating behaviour.
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