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Introduction: Schizophrenia is a severe mental disorder affecting approximately

1% of the general population, diagnosed primarily using clinical criteria. Due to

the lack of objective diagnostic methods and reliable biomarkers, accurate

diagnosis and effective treatment remain challenging. Peripheral blood

biomarkers have recently attracted attention, and machine learning methods

offer promising analytical capabilities to enhance diagnostic accuracy.

Methods: This retrospective, case-control study included 203 schizophrenia

patients treated over a five-year period at a tertiary hospital and 192 age- and

sex-matched healthy controls. Demographic data and routine hematological

and biochemical parameters were extracted from medical records. Variables

missing more than 85% of data were excluded; remaining missing values were

imputed after train-test splitting to avoid data leakage. Optimal biomarker

subsets were selected using Grey Wolf Optimization (GWO). Random Forest

(RF), XGBoost, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and

Logistic Regression (LR) models were trained and evaluated via stratified 10-fold

cross-validation.

Results: Groups were homogeneous in terms of age and sex. Before GWO

optimization, XGBoost (95.55%) and Random Forest (94.63%) yielded the highest

accuracies. Following optimization, Random Forest accuracy improved (94.95%)

with a recall of 96.25%, while XGBoost reached the highest accuracy (95.90%)

and strong specificity (95.54%). Post-optimization, Area Under the Curve (AUC)

values were highest for XGBoost (0.96) and Random Forest (0.95), indicating

strong diagnostic performance. Total protein, glucose, iron, creatine kinase, total

bilirubin, uric acid, calcium, and sodium were key biomarkers distinguishing

schizophrenia. Interestingly, glucose levels were significantly lower in

schizophrenia patients compared to controls, contrary to typical findings.

Differences in triglycerides, liver enzymes, sodium, and potassium lacked clear

clinical significance.

Discussion: The machine learning models developed provided diagnostic

accuracy comparable to studies utilizing more expensive biomarkers,
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highlighting potential clinical and economic advantages. External validation is

recommended to further confirm the generalizability and clinical utility of

these findings.
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1 Introduction

Schizophrenia is a severe and complex mental disorder

characterized by a high prevalence (approximately 1% lifetime

prevalence) and significant functional impairment, imposing a

substantial burden on both individuals and society (1).

Currently, there are no definitive biomarkers, neuroimaging

findings, or laboratory tests that can objectively confirm the

diagnosis of psychiatric disorders such as schizophrenia.

Diagnosis relies entirely on clinical assessment based on

standardized criteria systems like DSM-5 or ICD-10 (2–4). This

diagnostic approach presents significant challenges due to

the substantial symptom overlap between schizophrenia and

other psychiatric disorders (5, 6). Indeed, the etiopathogenesis of

schizophrenia remains incompletely understood, and consequently

no effective, specific, and objective biomarker has yet been

identified. This critical gap represents a global scientific challenge

that significantly hinders the development of precise diagnostic

tools and targeted therapies (1, 7).

Biomarker-based approaches have become a major research

focus in recent years to objectify schizophrenia diagnosis and

reduce reliance on clinicians’ subjective assessments. Various

biomarker candidates have been investigated, including genetic

susceptibility markers, metabolic and endocrine indicators,

neuroimaging findings, and electrophysiological characteristics

(1). Particularly in the domain of peripheral blood biomarkers,

novel findings are shedding light on the biological underpinnings of

schizophrenia. While the disorder was historically attributed to

dysregulation of dopaminergic, glutamatergic, or serotonergic

neurotransmission, emerging evidence from the past decade

strongly implicates immune system abnormali t ies in

schizophrenia pathogenesis (5, 8, 9).. In this context, potential

blood-based biomarkers that may reflect disease pathogenesis are

being intensively investigated. For instance, multiple studies have

measured inflammatory mediators such as cytokines and

chemokines in schizophrenia patients (10, 11). Additionally,

simple inflammatory indices derived from complete blood count

data - including the neutrophil-to-lymphocyte ratio (NLR) - have

been evaluated as potential biomarkers (5, 12).

Several routine biochemical parameters - including serum iron,

hemoglobin, sodium, calcium, glucose, ALT, GGT, and cholesterol

levels are currently being investigated as potential biomarkers in
02
schizophrenia patients (13–18). Iron serves as an essential cofactor

in the brain’s dopaminergic system, and iron deficiency has been

reported to correlate with the severity of negative symptoms in

schizophrenia (14). Moreover, anemia is frequently observed in

chronic schizophrenia patients, with a more pronounced prevalence

among female patients (15). Regarding electrolyte and mineral

balance, emerging evidence suggests that disturbances in calcium

metabolism may contribute to schizophrenia pathophysiology, with

studies consistently reporting lower serum calcium levels in patients

(13). Furthermore, alterations in serum sodium levels have also

been documented in these patients (16). From a metabolic

perspective, schizophrenia patients frequently exhibit elevated

glucose levels (17) and demonstrate long-term increases in

cholesterol levels attributable to antipsychotic treatment (18).

Liver function markers (ALT and GGT levels) frequently show

asymptomatic elevations in association with antipsychotic use (19).

Collectively, these readily available biochemical parameters show

significant potential as adjunctive diagnostic tools in

schizophrenia assessment.

Considering the diagnostic challenges and biological

heterogeneity of schizophrenia, multimodal approaches

combining multiple biomarkers representing distinct pathological

mechanisms are believed to provide more reliable results than

single-marker strategies. Current evidence suggests that

biomarker panels reflecting various pathophysiological processes

(e .g . , neuroinflammation, metabolic dysfunction, and

neurotransmitter abnormalities) could significantly improve

clinical practice by enhancing diagnostic accuracy, predicting

treatment response, and monitoring disease progression. This

integrated multi-biomarker approach is expected to overcome the

limitations of current diagnostic methods while providing a more

comprehensive biological understanding of the disorder (20, 21).

On the other hand, the simultaneous evaluation of multiple

biomarkers increases data dimensionality and complexity,

pushing the limits of conventional statistical analyses. Identifying

hidden patterns in high-dimensional biological data and

constructing diagnostic models from them may require

substantial computational power. This is precisely where machine

learning (ML) techniques become invaluable.

Machine learning offers a more objective and data-driven

approach to decision-making by analyzing statistical relationships

and patterns within high-dimensional, heterogeneous datasets—
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capabilities that surpass human intuition. Indeed, machine learning

algorithms have been applied in various forms to aid in the

diagnosis and prognosis of schizophrenia and related psychiatric

disorders (22). A recent comprehensive review further emphasized

the effectiveness of AI-based schizophrenia detection methods

across multiple modalities including EEG, structural MRI (sMRI),

and functional MRI (fMRI). This review highlighted that machine

learning approaches such as SVM, Random Forest, and deep

learning models (CNN, GAN, CapsNet) have consistently

achieved high accuracy (up to 99.5%), underscoring their strong

potential for clinical implementation. Nevertheless, the study

identified limitations such as the minimal localization of brain

regions associated with schizophrenia and recommended future

research efforts towards multimodal (EEG and MRI combined)

approaches to further enhance diagnostic accuracy (23). Ke et al.

developed an integrated machine learning framework combining

multi-omics data (gut microbiota, blood biomarkers, and EEG

signals) to distinguish schizophrenia patients from healthy

controls, achieving 91.7% accuracy and 96.5% AUC using a

support vector machine (SVM) algorithm (24). Kozyrev et al.

demonstrated that deep neural networks (DNNs) outperformed

other machine learning algorithms in terms of both sensitivity and

specificity when analyzing peripheral blood biomarkers (including

cytokines, chemokines, and growth factors). Their findings further

revealed that the combined use of multiple biomarkers significantly

enhanced diagnostic efficacy compared to single-marker

approaches (5). Fernandes et al. developed a multimodal data

integration model incorporating immune, inflammatory, and

cognitive biomarkers to differentiate between bipolar disorder and

schizophrenia, demonstrating superior performance compared to

single-domain approaches (25). In a separate study, Yee et al.

successfully developed machine learning models using peripheral

inflammatory biomarkers to differentiate between three distinct

patient groups: those responding to conventional antipsychotics,

those responding specifically to clozapine, and treatment-resistant

cases. Their findings demonstrated that SVM algorithms
Frontiers in Psychiatry 03
outperformed traditional statistical tests in capturing complex

data patterns, while artificial intelligence-based explainability

techniques (particularly SHAP analysis) significantly improved

model interpretability - a crucial advancement for clinical

applications of such predictive models in psychiatric practice (26).

Finally, Khoodoruth and colleagues achieved 88.41% accuracy in

distinguishing treatment-resistant and non-resistant schizophrenia

patients from healthy controls using a random forest algorithm

based on routine laboratory inflammatory markers. This study

highlights the utility of peripheral biomarkers for early diagnosis

and personalized treatment strategies in schizophrenia (27). Similar

studies conducted on this topic are summarized in Table 1.

The performance of machine learning models largely depends

on proper feature selection and effective optimization of model

parameters. In this context, nature-inspired optimization

algorithms provide efficient and flexible solutions for

preprocessing stages such as feature selection, dimensionality

reduction, and hyperparameter tuning (28). Developed by

Mirjalili et al. in 2014, the Grey Wolf Optimizer (GWO) is a

swarm intelligence-based metaheuristic optimization technique.

GWO has demonstrated effectiveness in feature selection across

diverse data types, including structured clinical data, medical

images, and biological signals associated with various diseases

(e.g., cardiovascular disorders, diabetes, and cancer) (29–31). This

study presents a novel approach to schizophrenia classification by

exclusively using routine peripheral blood biomarkers (biochemical

and hematological parameters) through an integrated machine

learning framework combining GWO with multiple classifiers

(Random Forest, SVM, Logistic Regression, and KNN). Unlike

previous studies that often rely on specialized, costly, or multi-

modal biomarker data, this study uniquely leverages routine clinical

blood tests optimized through GWO integrated with various

classifiers. The primary aim of this research is to address the

critical need for objective, practical, and cost-effective

schizophrenia diagnostic tools. By employing GWO for optimal

feature selection, we aim to significantly enhance diagnostic
TABLE 1 Comparative summary of machine learning studies on schizophrenia diagnosis.

Study Dataset (Sample Size) Biomarkers/
Features

Methods/
Algorithms

Performance
Metrics

Biomarker Type

Ke et al.
(2021) (24)

SZ: 49, Controls: 50 Microbiota, blood
biomarkers, EEG

SVM Accuracy: 91.7%,
AUC: 0.965

Complex, expensive,
multi-domain

Kozyrev et al.
(2023) (5)

SZ: 217, Controls: 90 Cytokines, chemokines,
growth factors

Deep Neural
Networks (DNN)

Sensitivity: ~87%,
Specificity: ~52%

Complex, laboratory-
based immunological

Fernandes et al.
(2020) (25)

SZ: 58, BD: 98, Controls: 123 Immune, inflammatory,
cognitive tests

Logistic
regression, SVM

Sensitivity: 84%,
Specificity: 81%

Complex, cognitive
& immunological

Yee et al.
(2025) (26)

SZ: 146 (with response subtypes),
Controls: 49

Peripheral
inflammatory proteomics

SVM with
SHAP analysis

AUC: 0.74–0.88 Advanced, expensive
proteomic panel

Khoodoruth et al.
(2024) (27)

SZ (treatment-resistant vs. non-
resistant) & Controls

Routine inflammatory
laboratory markers

Random Forest Accuracy: 88.41% Routine laboratory-
based inflammatory
SZ, Schizophrenia; BD, Bipolar Disorder; RF, Random Forest; SVM, Support Vector Machine; KNN, K-Nearest Neighbor; LR, Logistic Regression; DNN, Deep Neural Networks; EEG,
Electroencephalography; CBC, Complete Blood Count; SHAP, SHapley Additive exPlanations; GWO, Grey Wolf Optimization; AUC, Area Under the Curve.
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performance and clinical interpretability using commonly

accessible laboratory parameters. Consequently, our methodology

bridges the gap between computational complexity and clinical

applicability, providing immediate translational potential and

facilitating broader integration into routine psychiatric practice.

2 Materials and methods

The overall framework of the proposed methodology, including

data preprocessing, feature selection using GWO, model training,

cross-validation, and performance evaluation, is summarized in

Figure 1. This visual representation aims to enhance the clarity and

readability of the methodological workflow.
Frontiers in Psychiatry 04
2.1 Study design and participants

This retrospective case-control study investigated the potential

of routine blood parameters to differentiate schizophrenia patients

from healthy individuals using archived laboratory and clinical data

from the last five years of 203 schizophrenia inpatients at Hitit

University Training and Research Hospital and 192 age-matched

controls without psychiatric diagnoses selected from hospital

records during the same period, forming a total cohort of 395

participants. The study received ethical approval from Hitit

University’s Institutional Review Board (Decision No: 2025-54)

and was granted exemption from informed consent requirements

as it utilized anonymized retrospective data, with all procedures
FIGURE 1

Methodological workflow of the study.
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conducted in accordance with ethical guidelines and the

Helsinki Declaration.
2.2 Laboratory parameters

This study collected comprehensive demographic information

(age in years and sex [male/female]) and routine hematological/

biochemical parameters from peripheral blood samples for all

participants, including complete blood count parameters (white

blood cells [WBC], red blood cells [RBC], hemoglobin [HGB],

hematocrit [HCT], mean corpuscular volume [MCV], mean

corpuscular hemoglobin [MCH], mean corpuscular hemoglobin

concentration [MCHC], platelet count [PLT], mean platelet volume

[MPV], plateletcrit [PCT], platelet distribution width [PDW], and

red cell distribution width [coefficient of variation (RDW-CV) and

standard deviation (RDW-SD)]), leukocyte subpopulations and

derived ratios (absolute counts [#] and percentages [%] of

lymphocytes [LY], neutrophils [NE], monocytes [MO],

eosinophils [EO], and basophils [BA], along with immature

granulocyte count and percentage [IG# and IG%], nucleated red

blood cell count and percentage [NRBC# and NRBC%], and

neutrophil-to-lymphocyte ratio [NLR]), and biochemical

parameters (fasting glucose, urea, blood urea nitrogen [BUN],

creatinine, estimated glomerular filtration rate [eGFR], calcium,

sodium, potassium, iron, aspartate aminotransferase [AST], alanine

aminotransferase [ALT], gamma-glutamyl transferase [GGT],

alkaline phosphatase [ALP], total cholesterol, low-density

lipoprotein [LDL] cholesterol, high-density lipoprotein [HDL]

cholesterol, and triglycerides), with all laboratory measurements

performed on peripheral blood samples collected during hospital

admission for schizophrenia patients and during routine health

check-ups for controls, analyzed using standard automated

laboratory equipment and methods, and extracted from the

hospital information system.
2.3 Data preprocessing

Before proceeding to the analysis phase, a comprehensive data

cleaning and preprocessing process was carried out to make the raw

data suitable for modeling. This step plays a critical role in

eliminating noise, missing values, and inconsistencies, which

directly affect the model’s performance. The process was

conducted as follows:

Feature elimination: As part of the preprocessing, missing data

were first analyzed; laboratory parameters with more than 50%

missing values in the dataset obtained from 395 participants were

excluded from the study. This threshold was applied to eliminate

variables with low measurement frequency, which could weaken

statistical significance and negatively impact the model’s

generalization capability.

Handling missing data: Missing values in the remaining

parameters were imputed to prevent sample loss. For numerical

variables, missing values were filled using the median of the
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available observations for each variable, as the median is robust to

outliers and provides a more stable measure in the case of skewed

distributions. For the only categorical variable, gender, any missing

values were filled using the most frequent category (mode). As a

result, complete data were ensured for all 395 records.

Encoding categorical variables: The gender variable (female/

male) was converted into a binary numerical format using the

LabelEncoder class to make it suitable for machine learning models.

This structured and systematic preprocessing pipeline cleaned

the dataset of inconsistencies and transformed it into a well-

organized, standardized format. Consequently, complete data

were ensured across all 395 entries, and the model’s predictive

power and stability were significantly enhanced.
2.4 Feature selection with grey wolf
optimization

To reduce data dimensionality and select the most

discriminative biomarkers for schizophrenia classification, we

employed the GWO algorithm as a wrapper-based feature

selection method (32). GWO is a nature-inspired optimization

technique that simulates the social hierarchy and cooperative

hunting behavior of grey wolves. The algorithm iteratively adjusts

candidate solutions (wolves) in the feature space based on guidance

from alpha, beta, and delta wolves, corresponding to the top three

candidate solutions at each iteration.

While some ensemble-based classifiers, such as Random Forest

and XGBoost, inherently perform internal feature selection, we

utilized GWO as an external feature selection step prior to model

training. This approach aimed to identify a compact, optimal

feature subset applicable across various classifiers, including those

without robust built-in feature selection capabilities (e.g., Logistic

Regression, KNN, and SVM). Thus, external feature selection

ensured consistent, interpretable, and comparable feature usage,

reduced model complexity, and enhanced clinical applicability.

In this implementation, each wolf represented a candidate

subset of features, encoded as a binary vector, where “1” indicated

selection, and “0” indicated exclusion of the feature. The quality of

each subset (wolf) was evaluated through a fitness function defined

as the classification accuracy of a Random Forest classifier,

calculated using cross-validation on the training data. The fitness

function was formulated as:

Fitness (Accuracy) =
(TP   +  TN)  

(TP   +  TN   +   FP   +   FN)

where:

TP: True Positives

TN: True Negatives

FP: False Positives

FN: False Negatives

The GWO algorithm aimed to maximize this accuracy metric

while minimizing feature count, thus balancing classification

performance and generalizability.
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The GWO algorithm was implemented from scratch in Python,

ensuring full methodological transparency. Based on preliminary

testing for computational efficiency and optimal convergence, we

utilized a population size of 10 wolves and executed the algorithm

for 20 iterations. During each iteration, wolves updated their feature

selections guided by the positions of the alpha, beta, and delta

wolves. After completing the iterations, an optimal subset

containing 20 features was selected from an initial set of 48

features. This optimal subset, characterized by maximum

discriminative power, was subsequently used in model training

and evaluation.

A clear, detailed flowchart explaining the working of the GWO

algorithm and feature selection steps was created and included in

the manuscript (Figure 2), highlighting each step from initialization

to final feature subset selection:

For comparative analysis, we evaluated classification

performance both with the original full feature set and the GWO-

selected feature subset. The overall workflow of GWO-based feature

selection is presented in Figure 3.
2.5 Classification algorithms

Five different classification algorithms were evaluated: RF, LR,

SVM, KNN, and XGBoost. These algorithms were chosen based on

their common use, robustness, and established performance in

prior schizophrenia biomarker studies. All models were

implemented in Python using scikit-learn (version 1.6.1) for RF,

LR, SVM, and KNN, and the xgboost library for the XGBoost

model. The classifiers used were as follows:

Random Forest (RF): It is an ensemble learning method

composed of multiple decision trees. Each tree is trained using

randomly selected samples from the training data, and at each split,

it works with a randomly selected subset of features. This ensures

independence among the trees and improves generalization

performance. Random Forests (RF) are advantageous due to their

ability to work well with high-dimensional data and their inherent

capability to determine feature importance (33).

Logistic Regression (LR): This is a generalized linear model

used for binary classification. The probability of belonging to the

positive class is modeled using a linear combination of the input

features. The model is trained via maximum likelihood estimation

of the logistic function. To prevent overfitting, L2 regularization

(ridge penalty) is applied by default. The regularization parameter is

left at its default value, C = 1.0 (34).

Support Vector Machines (SVM): This is a kernel-based

classifier that identifies the optimal separating hyperplane in the

given feature space to maximize the margin between two classes. In

this study, the Radial Basis Function (RBF) kernel was preferred due

to its ability to capture nonlinear relationships. The regularization

parameter and kernel parameters for SVM were kept at their default

values from the scikit-learn library (C = 1.0, gamma = ‘scale’) (35).

K-Nearest Neighbors (KNN): A non-parametric, instance-

based learning method where a sample is classified based on the

majority class of its *k* nearest neighbors in the feature space. In
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this study, *k* was set to 5 (a common default value), and the

Euclidean distance metric was used to determine neighbor

proximity. Prior to applying KNN, feature scaling (as detailed in

Section 2.3) is particularly crucial, as it ensures all features

contribute equally to distance calculations (36).

Extreme Gradient Boosting (XGBoost): An advanced tree-

based ensemble algorithm that builds a collection of decision trees

in a sequential process, where each new tree is trained to correct the

errors of the previous ones. It employs a regularized objective

function (L1/L2 penalties) to prevent overfitting, enhancing

generalization performance. Renowned for its computational

efficiency and high classification accuracy, XGBoost was

implemented using Python’s xgboost library with default

hyperparameters (e.g., learning rate, tree depth, number of

trees) (37).

All models were implemented in Python using relevant

machine learning libraries: scikit-learn was used for RF, LR, SVM,

and KNN, while the XGBoost model was implemented using the

xgboost library. Each model was first trained with all features, then

retrained using the feature subset selected by the GWO algorithm,

thereby evaluating the impact of feature selection on

classification performance.
2.6 Model training and evaluation

The labeled dataset was evaluated using stratified 10-fold cross-

validation with 5 repetitions to reliably estimate model performance

and preserve class distribution (51% schizophrenia, 49% control).

Each classifier was trained on 9 folds and tested on the remaining

fold iteratively, with the entire 10-fold process repeated five times to

ensure stable and unbiased metrics. Performance metrics reported

are the averages of these repetitions. Accuracy is calculated using

the following formula:

Accuracy = (TP  +  TN)=(TP  +  TN   +  FP  +  FN)

In addition to accuracy, other widely-used performance metrics

derived from the confusion matrix were analyzed to gain deeper

insights into classifier behavior, including:

Sensitivity (Recall): The rate of correctly identifying real

schizophrenia patients. The formula:

Sensitivity (Recall) = TP=(TP  +  FN)

Specificity: It is the rate of correctly identifying real control

individuals. The formula:

Specificity = TN=(TN   +  FP)

Precision: The proportion of true positive predictions among all

positive predictions. The formula:

Precision = TP=(TP  +  FP)

F1-score: It is the harmonic mean of precision and recall,

balancing both false positives and false negatives. The formula:

F1 Score = 2� (Precision �  Recall)=(Precision  +  Recall)
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In the above formulas, TP, TN, FP, and FN are as previously

defined in Section 2.4.

Performance metrics including sensitivity, specificity, and accuracy

were evaluated to ensure a balanced clinical relevance. Models were

compared before and after feature selection using GWO to demonstrate

the impact of feature selection on classification accuracy. The analysis
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was conducted in Python using Pandas for data processing, scikit-learn

(version 1.6.1) for model implementation, and the XGBoost Python

API. The GWO algorithm was custom-coded, with reproducibility

ensured through fixed random seeds. Results were visualized using

Matplotlib (version 3.10.1), facilitating rigorous evaluation of routine

blood parameters for schizophrenia classification.
FIGURE 2

Feature selection process with grey wolf optimization (GWO).
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3 Results

No significant differences were observed between the

schizophrenia and control groups in terms of age and sex

distribution in the study group (Table 2). While the mean age of

203 patients in the schizophrenia group was 28.7 ± 3.9 years, the

mean age of 192 participants in the control group was 28.3 ± 10.7

years; this difference in age distributions is not statistically

significant (p = 0.6468). While 75.9% of participants in the

schizophrenia group were male (154/203), 67.7% were male in the

control group (130/192); the difference between these rates was not

found to be statistically significant (p = 0.0726). The similarity of

the groups in terms of age and gender is a positive result for the

homogeneity of the dataset and shows that demographic factors do

not create an effect in the comparison of models (Table 3).

Laboratory data with the highest significance between control

and schizophrenia groups were compared. Mean values and

standard deviations are presented, and significant differences

between groups are indicated with p-values. Values with p<0.05

were considered statistically significant.

The performance evaluation of machine learning-based models

was conducted using 10-fold cross-validation, assessing accuracy,

recall (sensitivity), specificity, and F1-score metrics. The application

of the GWO algorithm led to minimal changes in the models’

diagnostic performance. Specifically, the Random Forest and
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XGBoost models maintained consistently high and balanced

performance following the implementation of GWO.

Prior to GWO, model accuracy ranged between approximately

65-96%, with XGBoost (95.55%) and Random Forest (94.63%)

achieving the highest accuracy values. Before optimization, the

XGBoost model demonstrated excellent performance across all

metrics: accuracy (95.55%), recall (96.29%), specificity (94.83%),

and F1-score (95.72%). Similarly, the Random Forest model showed

high accuracy (94.63%), recall (95.00%), specificity (94.29%), and

F1-score (94.75%). Logistic Regression (85.44% accuracy) displayed

moderate performance, whereas KNN (76.97% accuracy) and

particularly SVM (65.52% accuracy) exhibited lower performance.

After feature selection with the GWO algorithm, minor

variations in model performance were observed (the updated

post-GWO ROC curves are shown in Figure 4). The Random

Forest model slightly improved its accuracy (from 94.63% to

94.95%) and recall (from 95.00% to 96.25%), but specificity

decreased slightly (from 94.29% to 93.62%). Similarly, the

XGBoost model maintained very high performance, slightly

improving accuracy (from 95.55% to 95.90%) and specificity

(from 94.83% to 95.54%), while recall remained high (from

96.29% to 96.25%) (Table 4).

The KNN model showed a minor decline, with accuracy

decreasing from 76.97% to 76.25% after GWO. Logistic

Regression also experienced a decrease in accuracy (from 85.44%

to 82.26%). The SVM model’s performance remained low and

practically unchanged, with accuracy stable at around 65.5%

(from 65.52% to 65.54%) and recall slightly increasing (from

35.88% to 37.72%). Consequently, the Random Forest and

XGBoost models consistently demonstrated superior performance

both before and after GWO optimization, significantly

outperforming the other evaluated models.

The performance of machine learning-based models in

classifying schizophrenia patients was evaluated using ROC
FIGURE 3

Convergence graph of the GWO algorithm over iterations.
TABLE 2 Demographic characteristics of schizophrenia and
control groups.

Characteristic HCs (n=192) SZs (n=203) p value

Age, mean (SD) (years) 28.3 (10.7) 28.7 (3.9) 0.6468

Sex, Male (%) 130 (67.7%) 154 (75.9%) 0.0726

Sex, Female (%) 62 (32.3%) 49 (24.1%)
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TABLE 3 Comparison of laboratory characteristics of schizophrenia and control groups.

Control mean Control Std Schizoprenia mean Schizoprenia Std p

MO# 0.53 0.185 0.619 0.237 0.0001

HCT 44.356 4.207 42.358 4.24 0.0001

HGB 15.256 1.76 14.371 1.726 0.0001

RBC 5.112 0.498 4.91 0.471 0.0001

Iron 53.547 32.252 73.258 40.752 0.0001

Calcium 9.744 0.182 9.576 0.371 0.0001

Glucose 93.312 26.932 83.039 10.139 0.0001

Potassium 4.408 0.171 4.303 0.305 0.0002

MO% 7.451 1.876 8.153 2.024 0.0004

MCHC 34.106 1.369 33.602 1.461 0.0005

BA# 0.016 0.018 0.021 0.017 0.0009

BA% 0.21 0.225 0.279 0.222 0.0024

GGT 22.385 6.636 30.212 37.351 0.0037

Triglyceride 109.932 33.427 142.409 153.837 0.0037

RDW-SD 40.514 2.654 41.342 2.977 0.0037

IG% 0.316 0.218 0.389 0.284 0.0043

IG# 0.025 0.021 0.031 0.024 0.0048

Sodium 139.807 1.048 140.241 1.969 0.0062

MCH 29.76 2.202 29.152 2.199 0.0064

RDW-CV 12.94 1.15 13.215 1.16 0.0185

NRBC# 0.0 0.001 0.0 0.002 0.0352

NE% 58.646 8.187 56.64 10.77 0.0375

PLT 252.594 54.953 241.248 57.168 0.0453

Creatinine 0.802 0.144 0.83 0.152 0.0855

NRBC% 0.001 0.014 0.004 0.022 0.1181

AST 22.859 10.654 24.931 15.562 0.1218

PCT 0.262 0.049 0.254 0.056 0.1309

WBC 7.351 2.72 7.7 2.204 0.1635

MPV 10.315 0.805 10.425 0.931 0.2091

MCV 86.831 4.376 86.275 4.605 0.2199

LY% 31.073 7.887 32.135 9.922 0.239

ALP 76.422 20.669 79.271 29.164 0.2614

EO# 0.149 0.13 0.163 0.144 0.2863

NE# 4.449 1.554 4.601 1.888 0.3807

LDL Cholesterole 90.688 12.292 89.084 24.059 0.4011

LY# 2.323 1.592 2.428 0.782 0.4117

tGFH 118.88 12.021 119.621 9.876 0.5053

PDW 12.056 1.668 12.159 2.042 0.5832

(Continued)
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curves and Area Under the Curve (AUC) values, as shown in

Figure 5. The models were trained using 10-fold cross-validation

with features selected after GWO. Among all models, the highest

AUC values were achieved by XGBoost (AUC = 0.9866) and

Random Forest (AUC = 0.9777), demonstrating excellent

diagnostic performance and a very high success rate in

distinguishing schizophrenia patients from control individuals.
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Logistic Regression (AUC = 0.9150) and KNN (AUC = 0.8404)

exhibited moderate to high performance, whereas the SVM model

(AUC = 0.7756) showed the lowest performance. Examination of

the ROC curves indicated that the curves for XGBoost and Random

Forest were clearly positioned near the upper-left corner, signifying

highly reliable detection of patients with excellent sensitivity and

specificity. In conclusion, the exceptionally high AUC values
TABLE 3 Continued

Control mean Control Std Schizoprenia mean Schizoprenia Std p

EO% 2.058 1.744 2.144 1.924 0.641

HDL Cholesterole 43.37 4.677 43.665 8.12 0.6561

ALT 24.953 19.345 25.778 18.138 0.6625

Üre 24.536 6.078 24.281 6.683 0.6908

Total Cholesterole 159.719 16.99 160.616 34.498 0.7412

BUN 11.401 2.867 11.31 3.154 0.7649

NLR 2.082 0.923 2.096 1.351 0.9164
MO#, Monocyte count; HCT, Hematocrit; HGB, Hemoglobin; RBC, Red blood cell; Iron, Serum iron level; Calcium, Serum calcium level; Glucose, Blood glucose level; Potassium, Serum
potassium level; MO%, Monocyte percentage; MCHC, Mean corpuscular hemoglobin concentration; BA#, Basophil count; BA%, Basophil percentage; GGT, Gamma-glutamyl transferase;
Triglyceride, Serum triglyceride level; RDW-SD, Red cell distribution width-standard deviation; IG%, Immature granulocyte percentage; IG#, Immature granulocyte count; Sodium, Serum
sodium level; MCH, Mean corpuscular hemoglobin; RDW-CV, Red cell distribution width-coefficient of variation; NRBC#, Nucleated red blood cell count; NE%, Neutrophil percentage; PLT,
Platelet count; Creatinine, Serum creatinine level; NRBC%, Nucleated red blood cell percentage; AST, Aspartate aminotransferase; PCT, Plateletcrit; WBC, White blood cell; MPV, Mean platelet
volume; MCV, Mean corpuscular volume; LY%, Lymphocyte percentage; ALP, Alkaline phosphatase; EO#, Eosinophil count; NE#, Neutrophil count; LDL Cholesterol, Low-density lipoprotein
cholesterol; LY#, Lymphocyte count; tGFH, Estimated glomerular filtration rate (eGFR); PDW, Platelet distribution width; EO%, Eosinophil percentage; HDL Cholesterol, High-density
lipoprotein cholesterol; ALT, Alanine aminotransferase; Üre, Urea; Total Cholesterol, Total serum cholesterol; BUN, Blood urea nitrogen; NLR, Neutrophil-to-lymphocyte ratio.
FIGURE 4

Comparative performances of the machine learning models used before and after GWO optimization in terms of Accuracy, Recall, Specificity and F1 score.
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obtained after GWO optimization for the XGBoost and Random

Forest models further reinforce their potential as effective and

robust diagnostic tools for schizophrenia.

In the Random Forest and XGBoost models, the features

contributing the most to the diagnosis of schizophrenia and their

importance levels are provided. In the Random Forest model, the

most important features were total protein, fasting glucose (FBG),

iron, amylase, and creatine kinase (CK), whereas in the XGBoost

model, total protein, total bilirubin, creatine kinase (CK), uric acid,

and tGFH levels stood out as most significant. This difference

indicates that the models capture relationships in the data

through different pathways or emphasize different biochemical

parameters (Table 5).
4 Discussion

This study was conducted to distinguish schizophrenia patients

from healthy individuals with high accuracy using low-cost, routine
Frontiers in Psychiatry 11
biochemical and hematological blood parameters suitable for

clinical use. Blood parameters of schizophrenia patients and the

control group were statistically compared, and then the most

discriminative features were selected using the GWO algorithm to

enhance classification power. The classification performances of RF,

SVM, LR, KNN, and XGBoost models trained with these selected

feature sets were evaluated comparatively using the 10-fold cross-

validation method.

The analysis revealed that the Random Forest algorithm, trained

with GWO-selected features, achieved excellent performance with

94.95% accuracy, 96.25% sensitivity, 93.62% specificity, and a notably

high AUC of 0.9777. Similarly, the XGBoost algorithm attained even

higher performance, achieving 95.90% accuracy, 96.25% sensitivity,

95.54% specificity, and an exceptional AUC of 0.9866. The high

sensitivity, specificity, and outstanding AUC scores of both models

clearly indicate their potential as highly robust and reliable clinical

tools for schizophrenia diagnosis.

On the other hand, Logistic Regression (82.26% accuracy,

0.9150 AUC), KNN (76.25% accuracy, 0.8404 AUC), and
TABLE 4 Comparative performance results of machine learning models before and after GWO.

Model Accuracy
(Before
GWO)

Recall
(Before
GWO)

Specificity
(Before
GWO)

F1 Score
(Before
GWO)

Accuracy
(After
GWO)

Recall
(After
GWO)

Specificity
(After
GWO)

F1 Score
(After
GWO)

Random
Forest

0.9463 0.9500 0.9429 0.9475 0.9495 0.9625 0.9362 0.9514

Logistic
Regression

0.8544 0.8265 0.8833 0.8492 0.8226 0.7949 0.8517 0.8197

SVM 0.6552 0.3588 0.9679 0.5051 0.6554 0.3772 0.9492 0.5207

KNN 0.7697 0.7676 0.7746 0.7740 0.7625 0.7787 0.7467 0.7701

XGBoost 0.9555 0.9629 0.9483 0.9572 0.9590 0.9625 0.9554 0.9598
FIGURE 5

The ROC curves and AUC (Area Under the Curve) values of machine learning models used after Gray Wolf Optimization (GWO).
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especially SVM (65.54% accuracy, 0.7756 AUC) demonstrated

lower and more limited performance even after GWO

optimization. In conclusion, the results strongly demonstrate that

the Random Forest and XGBoost models, enhanced by GWO

feature selection, can be effectively and reliably used for

schizophrenia diagnosis based solely on routine biochemical and

hematological parameters.

In our study, the mean fasting glucose level of the schizophrenia

group was unexpectedly found to be lower than that of the control

group (≈82 mg/dL vs. 93 mg/dL, p<0.001). However, the literature

generally reports that fasting glucose levels may be elevated in

schizophrenia patients, particularly in association with

antipsychotic treatment (38). In fact, even in first-episode drug-

naïve patients, findings of insulin resistance and prediabetes have

been reported. Second-generation antipsychotics (particularly

clozapine and olanzapine) are well-known to induce

hyperglycemia due to their strong appetite-stimulating and

weight-gain effects (39). The literature reports that while the

prevalence of metabolic syndrome in antipsychotic-naïve

schizophrenia patients ranges from 3% to 26%, it rises to

significantly higher rates of 32% to 68% in treated patients (39).

Therefore, our finding is not entirely consistent with the literature;

the lower glucose levels in the schizophrenia group could be

attributed to impaired glucose tolerance or stress hyperglycemia

in some control subjects, or possibly due to sample limitations.
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In the schizophrenia group, the mean triglyceride level was

slightly higher compared to the control group, though it was

borderline statistically significant (≈154 vs. 124 mg/dL, p≈0.068).

No significant differences were observed between groups in terms of

total cholesterol, LDL, and HDL levels (p>0.1). The literature

indicates that dyslipidemia is a common issue in schizophrenia

patients receiving antipsychotic treatment (39).

Second-generation antipsychotics in particular may elevate

triglyceride and cholesterol levels. The similarity in lipid

parameters between our patient group and controls may be

attributed to the younger age of patients and potential differences

in treatment duration or medication types, which were not

accounted for in this study.

Schizophrenia patients showed slightly higher levels of AST

(aspartate aminotransferase) (~25 U/L vs 23 U/L, p≈0.12) and ALT

(alanine aminotransferase) (~26 U/L vs 25 U/L, p≈0.66) compared

to controls. Although the statistical increase in AST was minor, it

might indicate subtle differences in liver or muscle cell function.

The literature notes that both typical and atypical antipsychotics

can cause mild elevations in liver enzymes (19).

Sodium levels were found to be statistically slightly higher in the

schizophrenia group (~140.2 mmol/L vs. 139.8 mmol/L, p<0.005).

Potassium levels, however, were slightly lower in the schizophrenia

group (~4.3 vs. 4.4 mmol/L, p<0.05). Although the between-group

differences were statistically significant for both electrolytes, the

absolute differences were quite small and do not suggest a clinically

meaningful change (values remained within normal reference

ranges for both groups).

The higher sodium level was likely an incidental finding,

possibly due to hydration status or laboratory measurement

variations. The marginally lower potassium in the schizophrenia

group might be associated with factors such as dietary habits,

potassium intake, or the use of diuretics in some patients.

The results obtained in this study demonstrate performance

levels that are comparable to or higher than similar studies utilizing

expensive or multiple biological markers. For example, in the study

conducted by Ke et al., which evaluated multiple biological markers

including microbiota, blood parameters, and EEG data collectively,

the best performance was achieved by the SVM algorithm with

91.7% accuracy and a 0.965 AUC value (24). In our study, the

XGBoost model trained solely on low-cost routine clinical blood

parameters achieved 95.90% accuracy and a 0.9866 AUC value,

clearly surpassing the results reported by Ke et al. Similarly, in the

multi-domain study by Fernandes et al., which combined blood and

cognitive biomarkers, they reported 84% sensitivity and 81%

specificity values (25). In our current study, using only simple

blood parameters, the Random Forest model achieved 96.25%

sensitivity and 93.62% specificity, indicating notably superior

performance compared to the results reported by Fernandes et al.

Furthermore, the area under the ROC curve (AUC) values in our

study were calculated as 0.9866 for XGBoost and 0.9777 for

Random Forest, demonstrating comparable or better performance

than studies employing significantly more costly and complex
TABLE 5 Most Important Features in Random Forest and
XGBoost Models.

Feature Importance
(Random Forest)

Importance
(XGBoost)

T. Protein 0.099114 0.284505

Glukoz (AKŞ) 0.096448 0.043234

Demir 0.059816 0.006948

Amilaz 0.054571 0.041404

Kreatin
kinaz (CK)

0.051248 0.113914

tGFH 0.050872 0.058490

ALT 0.050541 0.011205

TDBK 0.036266 0.017997

Total Bilirubin 0.034319 0.128578

RBC 0.033316 0.006103

Sodyum 0.031635 0.045824

Total
Kolesterol

0.031537 nan

Kalsiyum 0.029864 0.047750

ALP 0.028073 0.022094

MCH 0.027540 0.009742
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biomarkers. This outcome substantially enhances the clinical

applicability and practicality of our proposed approach, while

offering notable economic advantages.

While our findings support the general consensus in the

literature that combining multiple biological data sources

enhances diagnostic accuracy, they are particularly significant in

demonstrating that remarkably high performance can be achieved

using routine clinical blood tests alone (24, 25). This study revealed

that tree-based models, particularly Random Forest and XGBoost,

achieved high diagnostic performance using an optimal feature

subset determined by GWO (AUC = 0.9777 for Random Forest;

AUC = 0.9866 for XGBoost), highlighting the direct positive impact

of feature selection strategy on model performance. The GWO

algorithm effectively scanned the data space to select the most

discriminative blood parameters for schizophrenia diagnosis,

enabling optimal classification performance even with routine

tests. However, small declines were observed in some

performance metrics of linear models like Logistic Regression and

SVM after GWO application, suggesting that the selected feature

subset may not be equally effective for all models. Indeed, while

linear models typically benefit from broader feature sets, tree-based

models can achieve higher performance with limited but

discriminative optimal feature subsets. Consequently, tailoring

feature selection methods to the classifier algorithm’s structure is

crucial for enhancing diagnostic performance. These findings

support that optimization-based methods for selecting biological

biomarkers represent a clinically viable and effective approach.

When compared with other studies in the literature, our study

offers another significant advantage in terms of clinical applicability

and cost-effectiveness. For instance, in the study conducted by Ke

et al., specialized and costly tests such as fecal microbiota analysis and

EEGwere required to achieve high performance (24). Similarly, in the

study conducted by Fernandes et al., cognitive tests and blood

immunological markers were evaluated together; however, while

cognitive tests require expert assessment, specialized laboratory

analyses are also needed for immunological markers (25). In the

study conducted by Yee et al., SVMmodels were developed using the

Olink® proteome panel to predict antipsychotic treatment response,

with reported ROC values ranging between 0.74–0.88 (26). The Olink

panel represents an advanced technology capable of measuring

hundreds of inflammatory proteins, yet it remains a costly method

not routinely available in most clinical centers. In contrast, our study

achieved comparable or superior performance using standard

complete blood count and biochemical parameters routinely

measured in clinical practice. This practical advantage offers

significant potential for developing a low-cost, widely applicable

artificial intelligence tool to support schizophrenia diagnosis.

Since our approach requires no additional sample collection

(e.g., stool or brain imaging) and utilizes existing test results, our

model could be far more easily integrated into clinical workflows

compared to alternative approaches. The methodology’s reliance on

routinely available data significantly enhances its real-world

applicability while maintaining diagnostic accuracy.
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Our study results demonstrate the feasibility of objective

biomarker-based approaches for schizophrenia diagnosis. This

addresses a well-documented gap in psychiatric practice, where

the lack of reliable biological indicators for mental disorders has

been consistently emphasized in the literature. Previous efforts have

focused on integrating multiple biological data types to develop

more reliable diagnostic models (25). Our findings indicate that

achieving this objective may be possible without relying on complex

and costly multi-modal data. However, certain limitations of our

study must be considered. Firstly, due to the retrospective design of

our research, certain critical clinical details (detailed medication

information (e.g., type, dose, and duration of antipsychotic

medication), substance use histories, comorbid medical

conditions, and clearly defined inclusion and exclusion criteria)

were not consistently available within the archived medical records.

The absence of these details could potentially confound biomarker

levels and affect the accuracy, reliability, and clinical interpretability

of the developed machine learning models. Secondly, our study was

limited by the sample size and specific demographic characteristics

of the dataset, including a borderline imbalance in sex distribution

(p = 0.072), which might influence biomarker levels and model

performance. Thirdly, given that disease stages, various

antipsychotic treatments, and metabolic conditions may

significantly impact routine blood parameters, the robustness of

our diagnostic models across these variables remains uncertain.

Finally, as our models were validated internally through cross-

validation without evaluation on an independent external dataset,

concerns related to generalizability and robustness remain.

Therefore, external validation with larger, independent, and

prospectively designed cohorts incorporating comprehensive

clinical and sociodemographic information (including educational

background, socioeconomic status, lifestyle factors, and detailed

treatment history) is essential to confirm the generalizability and

reliability of our findings.

Our study achieved diagnostic accuracy measures comparable

to the highest values reported in the literature for schizophrenia

diagnosis using a machine learning approach based solely on

routine blood tests enhanced by GWO, representing a significant

contribution. This methodology demonstrates particular promise

for clinical implementation due to its ability to achieve similar

performance with substantially simpler data inputs, offering

potential to introduce objectivity into diagnostic processes.

Specifically, in clinical practice, routine blood test results could be

instantly processed through our trained model to provide

psychiatrists with supplementary diagnostic support - potentially

improving diagnostic accuracy while reducing time-to-diagnosis

and enabling earlier intervention. Unlike more complex approaches

in the literature, our method’s low cost and high accessibility

significantly enhance its potential for widespread healthcare

adoption. While the results should be interpreted cautiously given

the study’s limitations and generalized prudently, the overall

findings strongly suggest that intelligent analysis of routine

biochemical and hematological parameters can yield clinically
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meaningful biomarker panels for schizophrenia, providing a

valuable tool suitable for integration into clinical decision-

support systems.
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