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State-dependent changes in
peak alpha frequency during
visual engagement in children
with and without autism
spectrum disorder
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Masafumi Kameya1, Keigo Yuasa1, Mai Yasumoto2,
Yoko Osaka2, Yuko Yoshimura3, Yuka Shiota3, Sanae Tanaka3,
Chiaki Hasegawa3 and Mitsuru Kikuchi1

1Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa
University, Kanazawa, Japan, 2Department of Child and Adolescent Psychiatry, Graduate School of
Medical Science, Kanazawa University, Kanazawa, Japan, 3Research Center for Child Mental
Development, Kanazawa University, Kanazawa, Japan
Peak alpha frequency (PAF) is a neurophysiological marker of cortical maturation

and cognitive function. We aimed to examine PAF reactivity to a visually engaging

eyes-open (EO) condition, during which children watched a muted preferred

video, compared to a dark-room (DR) resting state without sound, in children

with ASD and their TD peers. We analyzed magnetoencephalography data from

68 cortical sources in children aged 5–10 (ASD: n=22; TD: n=29), calculating PAF

during a resting-state DR condition and an EO condition involving silent video

viewing. Linear mixed-effects models were used to assess the effects of

diagnosis, condition, and their interaction on PAF, controlling for age and sex.

The results indicated a significant interaction between diagnosis and condition in

the right temporal region, where TD children consistently showed a higher PAF in

the EO condition relative to the DR condition, whereas children with ASD did not.

Furthermore, in TD children, greater PAF reduction in the right temporal region

correlated with lower social responsiveness scores, suggesting a link between

PAF reactivity and social functioning. These findings suggest that atypical PAF

modulation in response to sensory input may reflect altered neural mechanisms

underlying social information processing in ASD. Understanding PAF reactivity

patterns can inform the development of ASD biomarkers.
KEYWORDS

autism spectrum disorder, peak alpha frequency, magnetoencephalography,
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental

condition characterized by social and communicative challenges,

as well as restricted, repetitive behaviors and highly focused

interests (1). Although these features commonly arise during early

childhood, they tend to persist throughout life. With the rise in ASD

rates and its substantial socioeconomic implications (2), timely and

accurate diagnosis has become increasingly critical. However,

identifying ASD can be complex owing to subtle behavioral cues,

limited clinical assessment time, and frequently co-occurring

conditions such as anxiety or hyperactivity. These complications

underscore the importance of examining biological and

physiological markers of ASD to improve diagnostic precision. In

recent years, neuroimaging has emerged as an essential tool for

advancing our understanding of the neural mechanisms underlying

ASD (3).

Neuroimaging methods have offered new insights into the

biological mechanisms of ASD, with electroencephalography

(EEG) and magnetoencephalography (MEG) being particularly

advantageous. By capturing the electrical and magnetic signals of

the brain without generating noise or radiation, EEG and MEG are

especially well-suited for pediatric populations. Alpha oscillations

(8–12 Hz)—the dominant resting-state rhythm—are of special

interest in ASD research. Alpha activity is most pronounced with

eyes closed and typically decreases in amplitude once the eyes are

open and visual input is introduced (4). Although alpha rhythms

have been implicated in social coordination (5, 6) and broader

information processing across thalamocortical and cortico-cortical

pathways (7–10), studies on alpha “power” in ASD have shown

inconsistent results, ranging from lower (11–13) or higher (14)

alpha power to no observable group differences (15, 16). These

discrepancies underscore the limitations of relying solely on alpha

power as a marker for atypical brain function in ASD.

Recent meta-analyses and systematic reviews have indicated the

critical influence of recording condition—namely, eyes-open (EO)

or eyes-closed (EC)—on resting-state EEG findings in ASD (17).

Alpha suppression—the characteristic reduction in alpha amplitude

upon eye opening—may be diminished in individuals with ASD,

resulting in relatively higher alpha power in the EO condition,

compared with typically developing (TD) participants, while

showing minimal group differences in the EC condition (18).

These observations underscore the need to distinguish between

these two states when probing for atypical brain oscillations.

Moreover, investigating peak alpha frequency (PAF), as opposed

to focusing exclusively on alpha power, may yield clearer insights

into the neurophysiological mechanisms underlying ASD,

especially when examining the transition from EC to EO.

PAF—the resting-state alpha oscillation at which power is

maximal—has garnered considerable attention for its clinical and

developmental significance. It correlates with various cognitive

abilities in TD individuals. For example, a higher PAF is

associated with more efficient cognitive functioning, including

better working memory, faster processing speed (19–21), and

higher intelligence quotient (IQ) scores (22). PAF also undergoes
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significant age-related changes, making it a valuable indicator of

brain maturation in TD populations (23, 24). Specifically, PAF

shifts from approximately 8 to 9 Hz in younger children (aged 5–7

years) to an ‘adult-like’ rhythm of 10–12 Hz by mid-adolescence

(25, 26). Consequently, PAF is a sensitive measure of alpha

oscillatory development (27) and, in some cases, considered more

informative than alpha power alone (28). Given the fundamental

role of alpha rhythms in numerous brain processes, investigating

PAF in neurodevelopmental disorders such as ASD remains both

relevant and promising.

Numerous EEG and MEG studies have been conducted to

explore differences in PAF between younger individuals with ASD

and their TD peers (14, 16, 29–39). Among studies focusing on

resting-state EC condition, findings suggest that children with ASD

without intellectual disability exhibit higher PAF around 7 years of

age (29), with this pattern persisting until about 10 years of age (32),

yet reversing at around 13–14 years of age (38). In contrast, an EO

EEG study involving visual stimulation revealed that TD children

around the age of 7 years had a higher PAF than those with ASD

(33). Methodological variability—including differences in imaging

modality (EEG (33, 38) vs. MEG (29, 32)), methods of PAF

calculation (visual inspection (29, 32) vs. automated approaches

(16, 33)), and participant characteristics—complicates direct

comparisons across these findings. Additionally, several studies

showed no significant differences in PAF between ASD and TD

groups in EC (14, 16, 35) or EO condition, whether with robust

visual stimulation (39) or minimal stimulation, such as a fixation

cross (37). These mixed results highlight the potential role of

recording conditions (EO vs. EC) in modulating observed

differences in PAF. However, no previous research has directly

compared the transition between EO and EC conditions within the

same sample of children, a gap that the current study aims to fill.

Several studies have consistently shown a positive association

between PAF and nonverbal IQ (NVIQ) across both ASD and TD

populations (29–34, 38), across EC (29, 30, 32, 38) and EO

conditions (with minimal or robust visual stimulation) (31, 33,

34). However, the relationship between PAF and autistic traits, such

as social difficulties, remains controversial. Chung et al. (39)

reported that a lower PAF at 12 months predicted more frequent

repetitive and restricted behaviors at 24 months in children with

ASD in EO condition involving robust visual stimulation. Similarly,

Kameya et al. (37) found that lower PAF was associated with more

pronounced autistic traits measured using the Social

Responsiveness Scale (SRS) (40) in TD children around 7 years of

age in EO condition involving minimal visual stimulation, although

this association was not significant within the ASD subgroup.

Conversely, several studies have shown no significant

associations: Edgar et al. (32) found no relationship between SRS-

measured autistic traits and PAF in children aged approximately 10

years in the EC condition, and Finn et al. (38) reported no

significant link among older children (approximately 13–14 years

old) in a similar condition. Additionally, Dickinson et al. (30)

observed no significant correlation between SRS-measured autistic

traits and PAF in adult populations in the EC condition.

Interestingly, in their non-ASD subgroup, higher autistic
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symptom severity (quantified by the Autism Diagnostic

Observation Schedule; ADOS) was negatively correlated with

PAF, a pattern not observed in the ASD group. These mixed and

sometimes contradictory findings highlight the complex

relationship between PAF and autistic traits. They also

underscore the importance of considering participant age, task

condition (EO versus EC), and measurement instrument when

examining how PAF might reflect or mediate core features of ASD.

While alpha activity is most prominent in posterior regions,

recent findings suggest that alpha oscillations in nonposterior areas

also carry meaningful developmental and cognitive information,

particularly in the context of neurodevelopmental disorders. For

example, Dickinson et al. (33) demonstrated that the relationship

between PAF and both age and non-verbal IQ differs across regions

and diagnostic groups: age was positively associated with frontal,

central, and occipital PAFs only in TD children, whereas non-verbal

IQ was associated with frontal and central but not occipital PAFs

only in children with ASD. In a longitudinal study, Dickinson et al.

(34) further showed that frontal and central PAFs at 24 months

predicted verbal developmental quotient at 36 months, whereas

occipital PAF did not. More recently, Kameya et al. (37) found that

right temporal PAF was associated with autistic traits only in TD

children and that age–PAF associations in the cingulate regions

differed between the TD group and the group with ASD.

Collectively, these findings underscore that alpha oscillations

outside classical posterior regions may reflect distinct

neurodevelopmental mechanisms, justifying a whole-brain

approach to PAF analysis.

Despite growing evidence that PAF may capture neural processes

relevant to ASD, no study has systematically examined how PAF

changes between resting-state and robust visual-input conditions

within a single pediatric cohort. Given that alpha oscillations are

particularly sensitive to visual stimulation and that atypical alpha

suppression occurs in ASD (17, 18), examining shifts in PAF between

these two states may yield new insights into the neurophysiological

underpinnings of ASD. We hypothesized that the degree of PAF

change from a dark-room (DR) resting condition without sound to

an EO condition involving silent video viewing would differ between

children with ASD and their TD peers. Moreover, because PAF has

been linked to both cognitive functioning and autistic traits in young

children (29, 33, 37), we further hypothesize that this change is

associated with social-communicative difficulties. In the present

study, we aimed to investigate (a) whether the change in PAF

between a resting-state DR condition and an EO condition with

robust visual stimulation (but no auditory input) differs between

children with ASD and their TD peers, and (b) whether this

difference correlates with SRS-measured autistic traits. Focusing on

this fundamental transition in brain reactivity, we aimed to deepen

our understanding of how visual input modulates alpha oscillations

in neurodevelopmental disorders.

While regional variation in PAF is well established, we did not

aim to analyze region-specific differences in this study. Our prior

work using a similar cohort and analytic pipeline (37) showed that

although PAFs varied across anatomical regions, the spatial

distribution of PAF was broadly comparable between children
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with ASD and their TD peers. Based on those findings, we aimed

to focus the current investigation on condition- and group-level

effects rather than regional differences.
2 Methods

2.1 Study design and participants

In this prospective observational study, we recruited children

aged 5–10 years with ASD, along with their TD peers, to obtain

MEG recordings. The ASD group comprised 23 children recruited

from Kanazawa University and its affiliated hospitals. ASD

diagnoses were made according to the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria (41)

and confirmed by experienced psychiatrists and psychologists using

the Diagnostic Interview for Social and Communication Disorders

(DISCO) (42) or the second edition of the ADOS (ADOS-2) (43,

44). The control group included 30 TD children with no reported

behavioral or language difficulties.

Children were excluded if they had blindness and/or deafness,

had other neuropsychiatric disorders, or were using medication.

Children with known intellectual disabilities were also excluded.

Family history of ASD was not screened for in the control group.

Written informed consent was obtained from the parents of each

participant before enrollment. The procedures were approved by

the Ethics Committee of Kanazawa University Hospital and were

conducted in accordance with the Declaration of Helsinki. This

research is part of the Bambi Plan at the Kanazawa University

Research Center for Child Mental Development (https://

kodomokokoro.w3.kanazawa-u.ac.jp/en/). Although some

participants were included from our previous research (37, 45),

there was no overlap in results, as the objectives of the previous

studies differ substantially from those of the present work.

From the initial sample, one boy with ASD and one TD girl

were excluded because they were unable to complete the MEG or

psychological assessments described below.
2.2 MEG recording

MEG data were recorded using a 151-channel Superconducting

Quantum Interference Device (SQUID) whole-head coaxial

gradiometer system (PQ 1151R; Yokogawa/KIT, Kanazawa,

Japan), housed in a magnetically shielded room (Daido Steel Co.,

Ltd., Nagoya, Japan). This system was custom-designed with a

child-sized MEG helmet to optimize sensor placement for smaller

head sizes (46), which helps to limit head movement. All MEG

signals were low-pass filtered at 500 Hz and sampled at 2,000 Hz.

Participants underwent MEG recordings under following two

conditions: a resting-state DR condition and an EO video-viewing

condition. In the DR condition, children lay supine in a darkened room

while focusing on a centrally presented fixation cross, approximating a

classical resting-state setup. In the EO condition, children remained in

the same supine position while watching a silent video of their choice
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projected onto a screen. A selection of popular children’s video

programs was made available, from which each participant selected a

preferred video before recording. Although this individualized selection

reduced standardization across participants, it was prioritized to

minimize anxiety, enhance comfort, and reduce head movement

during data acquisition.

To further encourage minimal head movements, a research staff

member remained in the MEG room with each child during data

collection. This strategy proved effective for most participants;

however, one TD girl was unable to complete the recording

owing to discomfort and difficulty staying still.

All MEG recordings were performed between 11:00 AM and

3:00 PM, and no child demonstrated overt signs of drowsiness based

on visual inspection of the waveforms. Although a longer recording

period is generally desirable in MEG studies, maintaining stillness

in children, especially those with ASD, posed significant challenges.

Given the challenge of keeping young children stationary, we set a

minimum recording duration of 50 s, consistent with our previous

studies (37, 45). Each condition (DR and EO) was recorded for 120 s

to ensure that sufficient artifact-free data could be retained after

removing segments affected by movement. This decision aligns with

prior research suggesting that even 38 s of artifact-free EEG data can

provide stable estimates of spontaneous measures, such as PAF (33,

47). As described in Sections 2.6 to 2.9, for each participant and

each condition, the continuous MEG recording was segmented into

5-s epochs with 80% overlap, and power spectral density (PSD) was

computed for each epoch. The PSDs were then averaged, and PAF

was determined from the resulting mean spectrum. This approach

reduces the influence of transient noise and enhances the robustness

of the PAF estimation.
2.3 Assessment of intelligence and severity
of autism symptoms

To evaluate intellectual functioning, we administered the

Kaufman Assessment Battery for Children (K-ABC) (48) or its

second edition (KABC-II) (49) to all participants, depending on

their availability at the time of assessment. The K-ABC features a

Mental Processing Scale (MPS) that measures problem-solving

abilities through simultaneous and sequential processing tasks.

The KABC-II features the Mental Processing Index (MPI), which

serves a similar purpose by assessing general mental processing.

Because our study focused on children with ASD without

intellectual disabilities, we set a minimum score requirement of

70 on these scales, consistent with standard criteria distinguishing

intellectual disability from average intellectual functioning (1). One

boy with ASD was excluded from subsequent analyses for scoring

below 70 in on the MPS (K-ABC).

Autistic traits were assessed using the SRS (40) or its second edition

(SRS-2) (50), both completed by a parent. These instruments provide a

continuous measure of social functioning, ranging from impaired to

above average, with higher scores indicating more pronounced autistic

traits. Because scores along a continuum can be obtained, these

measures can help identify and understand individuals with milder
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ASD, as well as those with non-ASD conditions who also show social

impairments (51).
2.4 Magnetic resonance imaging

Structural brain images were acquired using a 1.5 Tesla (T)

magnetic resonance imaging (MRI) scanner (SIGNA Explorer; GE

Healthcare, USA), with a T1-weighted gradient echo sequence

employing the Silenz pulse sequence. Silenz is designed to reduce

acoustic noise and shorten scan times (52, 53), making it particularly

suitable for pediatric populations. Imaging parameters included:

repetition time (TR) = 435.68 ms, echo time (TE) = 0.024 ms, flip

angle = 7°, field of view (FOV) = 220 mm, matrix size = 256 × 256

pixels, and slice thickness = 1.7 mm, resulting in 130 transaxial

images. Although the use of thicker slices and a lower matrix size

leads to a slightly reduced spatial resolution compared with standard

protocols, this setup offered adequate anatomical references while

minimizing scanning duration to enhance participant compliance.
2.5 Co-registration of MEG data and MRI
images

Co-registration of MEG data and MRI images was based on

specific marker locations. Four distinct markers were identified on

both MEG and MRI: the midline frontal point, vertex, and bilateral

mastoid processes. Magnetic field-generating coils served as the

markers for MEG, while lipid capsules acted as markers for MRI

owing to their distinct appearance as high-intensity regions.

Additionally, points on the mastoid processes, nasion, and skull

surface were visually identified on MRI images. Typically, 15–25

points were marked for each participant to ensure accurate

co-registration.
2.6 MEG data preprocessing

MEG data analyses were performed using Brainstorm (54), an

open-source software tool freely available under the GNU General

Public License. The preprocessing steps followed the guidelines of

the Organization for Human Brain Mapping (55) and were identical

to those used in our previous work (37, 45). First, the data were

downsampled to 500 Hz, and noisy sensors were identified and

excluded. Second, notch filters were applied at 60, 120, and 180 Hz

to remove the power-supply noise. A band-pass filter (0.5–200 Hz)

was then used to isolate the relevant frequency range. Third,

independent component analysis was performed to identify and

remove components related to blinks and cardiac artifacts. Fourth,

segments with apparent motion artifacts or radio frequency

interference were visually inspected and excluded by an author

(D.S.), who was blinded to participant identities. Finally, the

remaining data were segmented into continuous 5-second

intervals, with each participant required to have at least 10

segments (i.e., 50 seconds of total data) for further analysis.
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2.7 Atlas-guided source reconstruction and
segmenting

Signal source estimation was performed using the original anatomy

of each participant. An anatomically constrained MEG approach was

employed to estimate brain signal sources by placing anatomical

constraints on the estimated sources. Specifically, a head model was

computed using the overlapping spheres algorithm (56) with the

default source space, which is a lower-resolution cortical surface

representation comprising 15,000 vertices. We used weighted

minimum-norm estimation to determine source orientation

constraints (57). An identity matrix was used as the noise covariance

because no noise recordings were available. Signal sources were then

grouped into 68 regions based on the Desikan–Killiany atlas (58), using

principal component analysis.
2.8 Computing spectral power

Welch’s method was used to compute the spectral power of the

68 regions defined using the Desikan–Killiany brain atlas. The

continuous time series was segmented into 5-s epochs with 80%

overlap, and each segment was windowed using a Hamming

window. PSD was computed for each epoch and then averaged to

obtain a robust estimate of the power spectrum. The resulting

spectra had an approximate frequency resolution of 0.2 Hz.
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2.9 Measurement of peak alpha frequency

Figure 1A shows the power spectral density of a representative

temporal source. The PAF for each of the 68 signal sources was

calculated according to established protocols (33, 35), identical to

the method used in our previous study (37).

A key challenge in identifying alpha peaks in EEG/MEG power

spectra is the dominant 1/f trend (59), which can mask subtle

alpha-band activity. To address this, we applied a log-

transformation to both frequency and power in the 1–55 Hz

range (Figure 1B), rendering the 1/f component as a linear

function of log-frequency.

We then used robust linear regression (Huber’s method, M =

1.35) to predict the 1/f component of the log-transformed power

based on log-frequency, as robust methods are more resilient to

outliers than traditional least-squares methods (60, 61). The

predicted 1/f component (red line in Figure 1C) was subsequently

subtracted (Figure 1D). The residuals were exponentiated, and the

alpha band between 7 and 13 Hz was isolated (Figure 1E).

These alpha-band spectra were fitted to a Gaussian curve using the

least-squares method (62). The peak of the Gaussian curve was

designated as the PAF (Figure 1F). Any peak outside the predefined

7–13 Hz alpha band was deemed absent and excluded from further

analysis. This approach provides a clear PAF estimate, which is

particularly advantageous for participants with multiple or indistinct

alpha peaks.
FIGURE 1

Illustration of the procedure for estimating peak alpha frequency from a single signal source localized to the left caudal anterior cingulate cortex.
(A) Raw power spectral density in the 1–55 Hz range. The horizontal and vertical axes represent frequency and absolute power, respectively.
(B) Logarithmic transformation of frequency and power values (blue dotted line). (C) Robust linear regression (Huber’s method, M = 1.35) used to
model the 1/f component (red line) based on log-frequency. (D) Subtraction of the predicted 1/f component from the log-transformed data.
(E) Exponentiation of power and frequency, with the alpha band restricted to 7–13 Hz. (F) Gaussian function fitting (red curve) applied to the residual
in (E). The frequency at the peak (vertex) of this curve was defined as the peak alpha frequency.
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PAF was first computed for each of the 68 regions in the

Desikan–Killiany atlas. To improve stability, these 68 regions were

subsequently grouped into 10 broader macro-regions: cingulate,

frontal, occipital, parietal, and temporal regions in each hemisphere

(58) (Figure 2). Within each macro-region, PAF values were

averaged only across micro-regions that produced valid estimates

within the 7–13 Hz range. If no valid estimates were available in a

given macro-region, that macro-region was treated as missing. This

yielded up to 10 representative PAF measures per participant.

All figures were generated using the Matplotlib library (63)

in Python.

This figure depicts the major brain regions analyzed for peak

alpha frequency, based on the Desikan–Killiany atlas. Three-

dimensional brain models were generated using Brainstorm

software (54) and the ICBM152 MRI atlas (64, 65). Left and

middle panel: lateral view highlighting frontal (red), parietal

(yellow), temporal (green), and occipital (purple) lobes. Right

panel: medial view showing the cingulate cortex (blue) alongside

other visible regions.
2.10 Statistical analysis

All statistical analyses were performed using Stata version 17.0

(StataCorp LLC, College Station, TX, USA). Group differences in

age, K-ABC score, and SRS score between the ASD and TD groups

were assessed using two-tailed Student’s t-tests, while sex

differences were evaluated using chi-square tests.

The primary goal of this study was to determine whether the effect

of experimental condition (DR vs. EO) on PAF differed between

diagnostic groups (ASD vs. TD) across specific brain regions. We

also examined whether the magnitude of PAF changes induced by the

EO condition depended on baseline measures obtained under the

DR condition.

To address these questions, we used linear mixed-effects models,

with PAF in each region as the dependent variable. Fixed effects

included diagnosis (ASD vs. TD), experimental condition (DR vs.

EO), their interaction term, age, and sex. A random intercept for each

participant accounted for within-subject correlations, capturing

individual variability and the hierarchical structure of the data.

Because the PAF values from corresponding regions in opposite

hemispheres (e.g., left vs. right temporal lobes) may not be fully
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independent, we applied a Bonferroni correction for multiple

comparisons across the five major regions of interest (cingulate,

frontal, occipital, parietal, and temporal). Accordingly, statistical

significance was set at p < 0.01 (0.05/5) (66).

If any model indicated a significant diagnosis-by-experimental

condition interaction, further investigation was performed to evaluate

the effect of experimental condition on PAF within each diagnostic

group separately. For these subgroup analyses, linear mixed-effects

models were used, including experimental condition (DR vs. EO) as a

fixed effect, along with age and sex, and random intercepts were

retained for each participant. After applying the Bonferroni

correction for two comparisons, the threshold for statistical

significance in these subgroup analyses was set at p < 0.025.

We then calculated the PAF change score (EO minus DR) and,

for each region, ran separate linear regression models predicting

this change from baseline PAF (DR), diagnosis, age, and sex. We

additionally tested models including an interaction term between

diagnosis and baseline PAF to assess group differences in the

predictive relationship. The same Bonferroni-corrected threshold

(p < 0.01) was used to determine statistical significance.

Lastly, we examined whether autistic traits predicted EO-

induced changes in PAF, focusing only on the brain regions that

showed a significant diagnosis-by-condition interaction in the

mixed-effects model. Specifically, we calculated the difference in

PAF between the two experimental conditions (EO minus DR) and

conducted linear regression analyses predicting total SRS scores

from this difference, age, and sex.

Before fitting these models, we verified that all relevant

assumptions were satisfied, including normality of residuals,

homoscedasticity, absence of multicollinearity, and appropriate

distributions of random effects.
3 Results

3.1 Participants

The final sample included 22 children in the ASD group and 29

children in the TD group, with age ranges of 60–95 months and 60–

92 months, respectively. No significant difference was observed

between the groups in sex, age, K-ABC MPS score. However, a

significant difference was observed in total SRS score (t (49) = −6.44,
FIGURE 2

Brain regions for peak alpha frequency analysis.
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p < 0.0001). Depending on the time of recruitment, 32 participants

(13 TD and 19 ASD) completed the K-ABC-I, while 19 participants

(16 TD and 3 ASD) completed the K-ABC-II. An exploratory

analysis of K-ABC-II MPI scores revealed a significant group

difference (t (17) = −2.19, p = 0.043). These findings are

summarized in Table 1. For the ASD group, the mean ADOS-2

social affect, restricted and repetitive behavior, total, and

comparison scores were 6.6 (SD = 3.7), 2.3 (SD = 1.5), 8.9 (SD =

4.4), and 4.9 (SD = 2.3), respectively. To clarify data quality, we

examined the number of usable epochs retained after artifact

rejection. In the DR condition, TD children had significantly

more usable epochs than children with ASD (TD: 99.7 ± 2.7;

ASD: 90.2 ± 3.8; t (49) = 2.10, p = 0.04). In the EO condition, the

difference between these two groups was not significant (TD: 112.7

± 1.1; ASD: 115.0 ± 0.9; t (49) = –1.56, p = 0.12). To further assess

the reliability of our data, we evaluated the proportion of PAF

estimates that fell within the physiologically expected range (7–13

Hz), summarized for each macro-region and condition. For

example, the value of 84.6% for the left frontal region in the EO

condition of the TD group was calculated with a denominator of 11

micro-regions × 29 participants, and a numerator equal to the

number of PAF estimates within the 7–13 Hz range among those

observations. In the TD group, these proportions were generally

high across macro-regions (range: 70.7–97.9%), indicating robust

alpha peak detection. In contrast, the ASD group showed greater

variability and lower proportions in several macro-regions (range:

42.5–69.0%). These results are summarized in Supplementary

Table 1 and likely reflect increased signal variability, artifacts, or

atypical alpha topography in children with ASD. Notably, after

aggregation into 10 macro-regions, valid PAF values were obtained

for nearly all participants. Specifically, in the TD group, 28–29 of 29

participants contributed values across macro-regions in the DR

condition and 25–29 of 29 in the EO condition. In the ASD group,

20–22 of 22 participants contributed values in both the DR and EO

conditions. Here, the ranges (e.g., 28–29) indicate the minimum

and maximum number of participants with valid values across the
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10 macro-regions. To complement this analysis, we also examined

the quality of spectral fitting across regions by calculating the mean

R² values between the modeled and observed PSDs. As shown in

Supplementary Table 2, R² values were generally moderate across

both groups and conditions (range: 0.385–0.766), with some

variability depending on brain region. To further assess the

plausibility of the estimated PAFs, authors T.H. and M.S.

independently conducted visual inspections of the PSDs and

corresponding fitted curves across all regions. This step served as

an additional quality check, ensuring that the estimated alpha peaks

were consistent with the observed spectral profiles.
3.2 Effect of experimental condition on
PAF

Separate linear mixed-effects regression analyses were

conducted to predict PAF across all brain regions (cingulate,

frontal, occipital, parietal, and temporal) in both the left and right

hemispheres. The models included fixed effects for diagnosis (ASD

vs. TD), experimental condition (DR vs. EO), their interaction term,

age, and sex, with a random intercept for each participant to

account for within-subject correlations.

Age was a significant positive predictor of PAF across all regions

(left cingulate: z = 5.58, p < 0.0001; left frontal: z = 4.05, p < 0.0001;

left occipital: z = 5.74, p < 0.0001; left parietal: z = 7.16, p < 0.0001;

left temporal: z = 5.83, p < 0.0001; right cingulate: z = 5.97, p <

0.0001; right frontal: z = 4.43, p = 0.0001; right occipital: z = 4.28, p

< 0.001; right parietal: z = 6.34, p < 0.0001; right temporal: z = 4.41,

p < 0.0001), indicating that older children tended to have higher

PAF values.

As previous studies have suggested that the relationship

between age and PAF may differ across various age ranges in

both TD and ASD populations, we conducted an exploratory

analysis to examine the relationship between age and PAF

separately in each group. The association between age and PAF
TABLE 1 Participant characteristics.

TD ASD c2 or t p

N 29 22

Sex (% male)† 55.2 63.6 0.37 0.54

Age (months)‡ 73.6 ± 1.8 74.3 ± 2.1 0.29 0.78

Total SRS score‡ 47.9 ± 1.7 68.9 ± 3.0 6.43 <0.001*

K-ABC MPS score‡ 115.0 ± 3.5 103.1 ± 4.2 -2.02 0.052

K-ABC-II MPI scores‡ 119.8 ± 4.1 97 ± 9.9 -2.19 0.043*

Number of Epochs, DR‡ 99.7 ± 2.7 90.2 ± 3.8 2.10 0.04*

Number of Epochs, EO‡ 112.7 ± 1.1 115.0 ± 0.9 -1.56 0.12
†Chi-square test.
‡Student’s t-test.
Numbers are presented as mean ± SD.
ASD, autism spectrum disorder; TD, typically developing children; DR, dark room: EO, eyes open; K-ABC, Kaufman Assessment Battery for Children; SRS, Social Responsiveness scale; MPS,
Mental Processing scale; MPI, Mental Processing index.
Asterisks indicate significance
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remained significant in both groups across most regions. The results

are presented in Supplementary Table 3.

In the left and right occipital regions, we observed a significant

main effect of experimental condition (z = 3.64, p = 0.0003; and z =

3.50, p = 0.0005, respectively), indicating a significant increase in

PAF from DR to EO in the occipital region, observed bilaterally. In

the right temporal region, the diagnosis-by-experimental-condition

interaction term was significant (z = −2.79, p = 0.0053), while in the

left temporal region, this interaction showed a trend toward

significance (z = −2.49, p = 0.0126). Detailed results are presented

in Table 2.

To clarify these interactions further, a within-group analysis

was conducted. For the right temporal region, TD children showed

a significant main effect of experimental condition (z = 2.39, p =

0.017), indicating higher PAF under the EO condition compared

with the DR condition, whereas children with ASD showed a

nonsignificant trend in the opposite direction (z = −1.63, p =

0.103). Although the interaction did not reach significance, a

similar pattern was observed in the left temporal region: TD

children again showed a significant main effect of experimental

condition (z = 2.67, p = 0.0076), whereas the results for ASD

children did not reach significance (z = −1.23, p = 0.2203). Detailed

results from these subgroup analyses are presented in Figure 3

and Table 3.
3.3 Relationship between EO-induced
changes and baseline PAF

To determine whether EO-induced changes depended on

baseline DR PAF values, difference in PAF between EO and DR

conditions was calculated, and baseline DR PAF was used to predict

this difference. Separate linear regression analyses were conducted

for each brain region, including fixed effects for diagnosis (ASD vs.

TD), baseline PAF, age, and sex. Heteroscedasticity-robust standard

errors were applied owing to violations of the homoscedasticity

assumption in some models [37].

We also tested models including an interaction term between

diagnosis and baseline PAF to assess group differences in the

predictive relationship. These interaction terms were not

statistically significant in any region (see Supplementary Table 4).

Therefore, we report results from the more parsimonious models

without interaction terms for clarity and interpretability.

Baseline PAF significantly predicted EO-induced changes in all

but the right occipital region (left cingulate: t (46) = –3.78, p =

0.0005; left frontal: t (45) = –3.78, p = 0.0005; left occipital: t (38) = –

4.10, p = 0.0002; left parietal: t (44) = –2.91, p = 0.0057; left

temporal: t (45) = –3.23, p = 0.0023; right cingulate: t(45) = –5.59, p

< 0.0001; right frontal: t(46) = –5.90, p < 0.0001; right parietal(46): t

= –3.88, p = 0.0003; right temporal(42): t = –3.35, p = 0.0017). In

these regions, higher baseline PAF was associated with a smaller

increase from DR to EO.

Age also had a significant effect in most regions (left cingulate: t

(46) = 2.83, p = 0.0068; left occipital(38): t = 5.35, p < 0.0001; left

temporal: t(45) = 2.96, p = 0.0049; right cingulate: t(45) = 5.70, p <
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TABLE 2 Effects of diagnosis, experimental condition, and their
interaction on peak alpha frequency across cortical regions.

Coeff. S.E. z p 95% CI

Cingulate (Left)

Diagnosis (ASD
vs. TD)

0.088 0.153 0.57 0.566 -0.212 – 0.389

Experimental
condition (DR
vs. EO)

0.104 0.107 0.97 0.332 -0.105 – 0.313

Diagnosis *
Experimental
condition

-0.330 0.163 -2.03 0.043 -0.648 – -0.011

Age 0.037 0.007 5.58 <0.001* 0.024 – 0.050

Sex 0.265 0.131 2.02 0.043 0.007 – 0.522

Frontal (Left)

Diagnosis (ASD
vs. TD)

-0.037 0.161 -0.23 0.818 -0.352 – 0.279

Experimental
condition (DR
vs. EO)

0.009 0.083 0.11 0.916 -0.154 – 0.172

Diagnosis *
Experimental
condition

-0.031 0.128 -0.24 0.811 -0.281 – 0.220

Age 0.031 0.008 4.05 <0.001* 0.015 – 0.046

Sex 0.222 0.148 1.50 0.135 -0.068 – 0.513

Occipital (Left)

Diagnosis (ASD
vs. TD)

-0.036 0.206 -0.17 0.862 -0.440 – 0.368

Experimental
condition (DR
vs. EO)

0.668 0.183 3.64 <0.001* 0.307 – 1.028

Diagnosis *
Experimental
condition

-0.331 0.283 -1.17 0.241 -0.884 – 0.223

Age 0.044 0.008 5.74 <0.001* 0.029 – 0.060

Sex 0.386 0.156 2.48 0.013 0.080 – 0.691

Parietal (Left)

Diagnosis (ASD
vs. TD)

-0.100 0.134 -0.75 0.456 -0.362 – 0.163

Experimental
condition (DR
vs. EO)

0.101 0.093 1.09 0.275 -0.080 – 0.284

Diagnosis *
Experimental
condition

-0.094 0.145 -0.65 0.517 -0.377 – 0.190

Age 0.041 0.006 7.16 <0.001* 0.020 – 0.052

Sex 0.363 0.113 3.21 0.001* 0.141 – 0.585

Temporal (Left)

Diagnosis (ASD
vs. TD)

0.030 0.178 0.17 0.866 -0.319 – 0.379

(Continued)
fro
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0.0001; right frontal: t(46) = 3.68, p = 0.0006; right parietal: t(46) =

3.71, p = 0.0006; right temporal: t(42) = 2.92, p = 0.0056), indicating

that older children tended to show a larger increase in PAF from DR

to EO. Detailed results are presented in Table 4.
TABLE 2 Continued

Coeff. S.E. z p 95% CI

Temporal (Left)

Experimental
condition (DR
vs. EO)

0.309 0.135 2.28 0.023 0.043 – 0.574

Diagnosis *
Experimental
condition

-0.522 0.209 -2.49 0.013 -0.931 – -0.112

Age 0.043 0.007 5.83 <0.001* 0.028 – 0.057

Sex 0.345 0.140 2.39 0.017 0.061 – 0.629

Cingulate (Right)

Diagnosis (ASD
vs. TD)

0.079 0.137 0.57 0.566 -0.190 – 0.348

Experimental
condition (DR
vs. EO)

0.147 0.078 1.90 0.058 -0.004 – 0.299

Diagnosis *
Experimental
condition

-0.252 0.119 -2.11 0.035 -0.485 – -0.018

Age 0.038 0.006 5.97 <0.001* 0.025 – 0.051

Sex 0.214 0.125 1.71 0.087 -0.031 – 0.460

Frontal (Right)

Diagnosis (ASD
vs. TD)

0.053 0.160 0.33 0.740 -0.260 – 0.366

Experimental
condition (DR
vs. EO)

0.109 0.106 1.03 0.303 -0.098 – 0.317

Diagnosis *
Experimental
condition

-0.178 0.162 -1.10 0.269 -0.494 – 0.138

Age 0.031 0.007 4.43 <0.001* 0.017 – 0.045

Sex 0.182 0.139 1.31 0.190 -0.090 – 0.455

Occipital (Right)

Diagnosis (ASD
vs. TD)

-0.068 0.229 -0.30 0.766 -0.517 – 0.381

Experimental
condition (DR
vs. EO)

0.608 0.174 3.50 <0.001* 0.268 – 0.949

Diagnosis *
Experimental
condition

-0.355 0.264 -1.34 0.180 -0.873 – 0.164

Age 0.042 0.010 4.28 <0.001* 0.022 – 0.061

Sex 0.584 0.192 3.04 0.002 0.207 – 0.961

Parietal (Right)

Diagnosis (ASD
vs. TD)

-0.062 0.135 -0.46 0.645 -0.326 – 0.202

Experimental
condition (DR
vs. EO)

0.063 0.097 0.65 0.515 -0.126 – 0.252

(Continued)
FIGURE 3

Adjusted mean PAF in the right temporal region for ASD and TD
groups. The means were estimated from a linear mixed-effects
model that included fixed effects for experimental condition,
diagnosis, their interaction, age, and sex, with a random intercept for
each participant. Error bars represent the standard error of these
adjusted means. The figure illustrates the diagnosis-by-
experimental-condition interaction: the ASD group shows a trend
toward decreased PAF, while the TD group show a significant
increase in PAF from DR to EO. ASD, autism spectrum disorder; PAF,
peak alpha frequency; EO, eyes open; DR, dark room; TD children,
typically developing children.
TABLE 2 Continued

Coeff. S.E. z p 95% CI

Parietal (Right)

Diagnosis *
Experimental
condition

-0.074 0.147 -0.50 0.615 -0.362 – 0.214

Age 0.037 0.006 6.34 <0.001* 0.025 – 0.048

Sex 0.421 0.114 3.70 <0.001* 0.197 – 0.645

Temporal (Right)

Diagnosis (ASD
vs. TD)

0.471 0.195 2.42 0.016 0.089 – 0.853

Experimental
condition (DR
vs. EO)

0.387 0.155 2.50 0.012 0.083 – 0.690

Diagnosis *
Experimental
condition

-0.662 0.238 -2.79 0.005* -1.120 – -0.196

Age 0.034 0.008 4.41 <0.001* 0.018 – 0.049

Sex 0.167 0.153 1.09 0.276 -0.133 – 0.468
fro
ntie
ASD, autism spectrum disorder; TD, typically developing; DR, dark room; EO, eyes open; 95%
CI, 95% confidence interval; Coeff., coefficient; S.E., standard error.
Asterisks indicate significance.
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3.4 Relationship between EO-induced
changes and autistic traits

Given the significant diagnosis-by-experimental condition

interactions in the models predicting PAF in the right temporal

region, we investigated whether autistic traits were associated with

EO-induced changes in PAF specifically in this area. Additionally,

because a similar interaction trend was observed in the left temporal

region, the same analysis was conducted.

We calculated the difference in PAF between the two

experimental conditions (EO minus DR) for each participant and

used linear regression to predict raw total SRS scores based on this

difference, age, and sex. Diagnostic checks indicated that the

residuals from the initial model violated the assumption of

normality; therefore, we log-transformed the dependent variable

(raw total SRS scores) to improve the residual distribution.

We found a significant effect of the PAF difference in both

temporal regions (right temporal: t(43) = –2.88, p = 0.0062; left
Frontiers in Psychiatry 10
temporal: t(46) = –4.05, p = 0.0002), indicating that individuals with

more pronounced autistic traits exhibited smaller increases in PAF

from DR to EO. Detailed results are shown in Table 5 and Figure 4.
4 Discussion

This study examined whether children with ASD differ from

their TD peers in PAF reactivity across two conditions: a DR resting

state and an EO condition involving silent, self-selected video

viewing. We also explored whether these differences relate to the

severity of autistic traits. In the DR condition, children lay supine in

a DR while fixating on a central cross, approximating classical

resting-state protocols. In the EO condition, they remained supine

while watching a silent, personally chosen video projected onto a

screen. Specifically, we asked (a) whether PAF shifts from DR to EO

differ between diagnostic groups and (b) whether these shifts

correlate with SRS scores. By focusing on this transition from

minimal to rich visual input, we aimed to clarify how visual

stimulation modulates alpha oscillations in children with

neurodevelopmental conditions. Our analyses revealed that older

children, regardless of diagnosis, generally showed higher PAF

values across multiple brain regions, a finding that aligns with

those of previous developmental studies on alpha frequency

maturation. In the occipital region, both the ASD and TD groups

displayed elevated PAF under the EO condition, suggesting that

alpha activity in primary visual areas is responsive to increased

visual input in a relatively uniform manner. However, in the

temporal regions, a significant (or trend-level) diagnosis-by-

condition interaction was found: TD children consistently showed

higher PAF under the EO condition relative to the DR condition,

whereas children with ASD did not. Furthermore, baseline PAF

during DR predicted the magnitude of PAF change induced by EO,

with higher baseline values generally linked to a smaller increase (or

decrease) in alpha frequency. Finally, we found that children with

more pronounced autistic traits exhibited less EO-related

enhancement of PAF in temporal areas, suggesting that atypical

alpha reactivity to visual stimuli in ASD may be associated with the

severity of social-communicative difficulties.

A key finding of this study was that older children consistently

showed higher PAF values than younger children, a pattern

observed across multiple cortical regions. This aligns with prior

findings suggesting that PAF increases with age in TD individuals

(29, 32, 33, 38). In our exploratory analyses, we found that the

association between age and PAF remained significant in both

groups across most regions (Supplementary Table 3). While

several studies have reported age-related increases in PAF in the

TD group and the group with ASD, including Shen et al. (29),

importantly, in children (16, 29, 32, 33) or adolescents (38) with

ASD, the age–PAF relationship has not consistently reached

statistical significance. A negative association has even been

reported in adults (30). Of particular relevance, two of these

studies (29, 33) included children with similar age ranges to

ours―7.5 ± 0.8 years (TD) vs. 7.8 ± 0.8 years (ASD) in Shen

et al. (29) and 5.96 ± 2.2 years (TD) vs. 5.76 ± 2.0 years (ASD) in
TABLE 3 Within-group effects of experimental condition on peak alpha
frequency in temporal regions.

Coeff. S.E. z p 95% CI

Temporal (Right)

TD

Experimental
condition (DR
vs. EO)

0.387 0.162 2.390 0.017* 0.069 – 0.705

Age 0.024 0.008 2.910 0.004* 0.008 – 0.041

Sex -0.119 0.163 -0.730 0.467 -0.438 – 0.201

ASD

Experimental
condition (DR
vs. EO)

-0.261 0.160 -1.630 0.103 -0.574 – 0.053

Age 0.044 0.013 3.390 <0.001* 0.019 – 0.070

Sex 0.557 0.263 2.120 0.034 0.042 – 1.072

Temporal (Left)

TD

Experimental
condition (DR
vs. EO)

0.309 0.116 2.670 0.008* 0.082 – 0.536

Age 0.036 0.006 6.130 <0.001* 0.025 – 0.048

Sex 0.079 0.116 0.680 0.495 -0.149 – 0.307

ASD

Experimental
condition (DR
vs. EO)

-0.213 0.173 -1.230 0.220 -0.553 – 0.127

Age 0.048 0.015 3.180 0.002* 0.018 – 0.077

Sex 0.708 0.299 2.370 0.018 0.122 – 1.294
ASD, autism spectrum disorder; TD, typically developing; DR, dark room; EO, eyes open; 95%
CI, 95% confidence interval; Coeff., coefficient; S.E., standard error.
Asterisks indicate significance.
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Dickinson et al. (33)―but did not show the same positive

association. Methodological differences may explain these

discrepancies. For example, Shen et al. (29) derived a single,

representative “peak alpha” from nine posterior regions, whereas

Dickinson et al. (33) calculated an average PAF over just six

electrode sites, merging pairs (F3–F4, C3–C4, O1–O2). In

contrast, we estimated PAF for ten source-localized regions

separately, providing a more fine-grained measure. Moreover,

medication usage in some participants of the Dickinson et al. (33)

study may have influenced alpha dynamics. Indeed, Kameya et al.

(37), who used a methodology identical to ours and excluded

participants using medication, found a similarly positive
TABLE 4 Baseline peak alpha frequency and age as predictors of eyes-
open-induced peak alpha frequency changes across cortical regions.

Coeff.
Robust
S.E.

t p 95% CI

Vs. EO-induced PAF changes (EO-DR)

Cingulate (Left)

PAF in
DR
condition

-0.588 0.156 -3.780 <0.001* -0.902 – -0.275

Diagnosis -0.274 0.136 -2.010 0.050 -0.548 – -0.000

Age 0.025 0.009 2.830 0.007* 0.007 – 0.044

Sex 0.079 0.132 0.600 0.553 -0.187 – 0.344

Frontal (Left)

PAF in
DR
condition

-0.446 0.118 -3.780 0.001* -0.684 – -0.209

Diagnosis -0.089 0.103 -0.860 0.395 -0.296 – 0.119

Age 0.014 0.008 1.720 0.092 -0.002 – 0.030

Sex 0.060 0.105 0.570 0.568 -0.151 – 0.272

Occipital (Left)

PAF in
DR
condition

-0.948 0.232 -4.100 <0.001* -1.417 – -0.480

Diagnosis -0.194 0.197 -0.990 0.330 -0.592 – 0.204

Age 0.051 0.010 5.350 <0.001* 0.032 – 0.071

Sex 0.088 0.185 0.480 0.635 -0.286 – 0.463

Parietal (Left)

PAF in
DR
condition

-0.597 0.205 -2.910 0.006* -1.011 – -0.183

Diagnosis -0.110 0.132 -0.830 0.412 -0.377 – 0.157

Age 0.031 0.013 2.390 0.021 0.005 – 0.057

Sex 0.224 0.173 1.290 0.203 -0.126 – 0.574

Temporal (Left)

PAF in
DR
condition

-0.624 0.193 -3.230 0.002* -1.013 – -0.235

Diagnosis -0.509 0.198 -2.580 0.013 -0.907 – -0.111

Age 0.031 0.011 2.960 0.005* 0.010 – 0.053

Sex 0.245 0.163 1.510 0.139 -0.083 – 0.573

Cingulate (Right)

PAF in
DR
condition

-0.514 0.092 -5.590 <0.001* -0.699 – -0.329

Diagnosis -0.217 0.090 -2.400 0.021 -0.399 – -0.035

Age 0.027 0.005 5.700 <0.001* 0.018 – 0.037

(Continued)
TABLE 4 Continued

Coeff.
Robust
S.E.

t p 95% CI

Cingulate (Right)

Sex 0.026 0.093 0.280 0.782 -0.161 – 0.212

Frontal (Right)

PAF in
DR
condition

-0.657 0.111 -5.900 <0.001* -0.882 – -0.433

Diagnosis -0.140 0.109 -1.290 0.204 -0.359 – 0.079

Age 0.023 0.006 3.680 0.001* 0.011 – 0.036

Sex 0.056 0.114 0.490 0.625 -0.173 – 0.284

Occipital (Right)

PAF in
DR
condition

-0.392 0.251 -1.560 0.127 -0.899 – 0.116

Diagnosis -0.342 0.251 -1.370 0.180 -0.850 – 0.166

Age 0.029 0.016 1.740 0.090 -0.005 – 0.062

Sex 0.374 0.290 1.290 0.206 -0.214 – 0.961

Parietal (Right)

PAF in
DR
condition

-0.613 0.158 -3.880 <0.001* -0.932 -0.295

Diagnosis -0.108 0.123 -0.880 0.384 -0.355 – 0.139

Age 0.031 0.008 3.710 0.001* 0.014 – 0.048

Sex 0.128 0.141 0.910 0.368 -0.156 – 0.412

Temporal (Right)

PAF in
DR
condition

-0.734 0.219 -3.350 0.002* -1.176 – -0.291

Diagnosis -0.264 0.240 -1.100 0.277 -0.748 – 0.220

Age 0.028 0.010 2.920 0.006* 0.009 – 0.048

Sex 0.010 0.189 0.050 0.958 -0.372 – 0.392
fro
ntie
ASD, autism spectrum disorder; TD, typically developing children; DR, dark room; EO, eyes
open; 95% CI, 95% confidence interval; Coeff., coefficient; S.E., standard error.
Asterisks indicate significance.
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association between age and PAF, although only in the right and left

cingulate regions, possibly owing to the smaller sample size (24 TD

children aged 69.6 ± 9.0 months; 19 children with ASD aged 72.5 ±

7.5 months; data collected only under EO condition with minimal

visual stimulation). Overall, our results extend prior findings by

demonstrating, within a single cohort, that the positive correlation

between age and PAF is independent of the experimental condition

in children (mean age ~6 years for both TD and ASD). Our findings

also underscore how the choice of analytical methods and

participant inclusion criteria (such as medication use) might

shape our interpretation of the developmental trajectory of PAF.

These observations highlight the importance of considering age-

related changes when examining PAF in patients with

neurodevelopmental disorders.
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Another noteworthy observation from our study was the

significant increase in PAF from DR to EO in the occipital

region, which was observed bilaterally. At first glance, this finding

may appear to contrast with the recent meta-analysis by Freschl

et al. (67), who reported no effect of EO versus EC on resting-state

occipital PAF in individuals aged 0–18 years of age. However,

Freschl et al. collapsed all eyes-open methodologies into a single

category—combining data acquired under DR, lit-room, and

visually stimulating conditions—due to limited sample sizes

within each subgroup. This grouping might have masked

meaningful differences across conditions. Supporting this view,

Edgar et al. (68) examined children aged 6.9–12.6 and found that

PAF measured during an EO condition in a DR was comparable to

that measured during EC. Our results extend those of Edgar et al. by
TABLE 5 Associations between eyes-open-induced temporal peak alpha frequency changes and autistic traits.

Coeff. Robust S.E. t p 95% CI

Vs. Log-transformed raw total SRS scores

Temporal (Right)

Difference in PAF (EO-DR) -0.324 0.113 -2.880 0.006* -0.552 – -0.097

Age 0.017 0.011 1.610 0.114 -0.004 – 0.039

Sex 0.205 0.211 0.970 0.337 -0.220 – 0.630

Temporal (Left)

Difference in PAF (EO-DR) -0.447 0.110 -4.050 <0.001* -0.669 – -0.225

Age 0.013 0.011 1.170 0.249 -0.009 – 0.035

Sex 0.252 0.201 1.250 0.217 -0.153 – 0.657
ASD, autism spectrum disorder; TD, typically developing children; SRS, social responsiveness scale; DR, dark room; EO, eyes open; 95% CI, 95% confidence interval; Coeff., coefficient; S.E.,
standard error.
Asterisks indicate significance.
FIGURE 4

Scatter plots of adjusted raw SRS scores versus adjusted change in PAF in the right temporal region. Left panel. To visualize the results of the
multiple regression models, we adjusted both the log-transformed raw SRS scores and change in PAF (DPAF) for age and sex. First, we regressed
logtransformed raw SRS scores on age and sex to obtain residuals (adjusted SRS scores). Second, we regressed change in PAF on age and sex to
obtain residuals (adjusted DPAF). Third, we created scatter plots of adjusted SRS scores versus adjusted DPAF, along with regression lines
representing the relationships. Right panel. Group‐specific associations between social responsiveness and DPAF. First, we regressed log-
transformed raw SRS scores on age and sex separately for each group to obtain residuals (adjusted SRS scores). Second, we regressed change in PAF
on age and sex to obtain residuals (adjusted DPAF) for each group. Third, we created scatter plots of adjusted SRS scores versus adjusted DPAF for
each group, along with regression lines representing the relationships. ASD, autism spectrum disorder; SRS, Social Responsiveness Scale; PAF, peak
alpha frequency; TD, typically developing children.
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demonstrating that an EO condition involving robust visual

stimulation systematically produces higher PAF compared to the

DR condition. Notably, we observed a main effect of experimental

condition in the occipital cortex without a significant diagnosis-by-

condition interaction, suggesting that children in both ASD and TD

groups exhibit a similar degree of alpha reactivity to increased visual

stimulation in this region.

Turning to the temporal region, we observed a notable

diagnosis-by-condition interaction: TD children consistently

showed higher PAF under the EO condition compared the DR

condition, whereas children with ASD did not. This pattern

contrasts with that of the occipital region, where PAF reactivity to

increased visual input appeared largely similar between the groups.

Recent research suggests that alpha oscillations in the temporal

region play an important role in creativity (69, 70) and in actively

inhibiting distractions during working memory tasks (71).

Interestingly, individuals with ASD often exhibit atypical

creativity profiles (72) and reduced working memory capacity

(73). Therefore, the lack of clear temporal PAF reactivity among

children with ASD may reflect atypical neural mechanisms in

regions responsible for these functions, suggesting a link between

temporal PAF reactivity and autistic traits. Alternatively, it might

indicate a reduced capacity to modulate alpha frequency in

response to more complex or sustained visual inputs, a capacity

that appears to be relatively preserved in TD children.

Consequently, it remains unclear whether EO-related

enhancements in temporal PAF are directly related to autistic traits.

To the best of our knowledge, this study is the first to show that

children with more pronounced autistic traits, as measured by the

SRS, exhibit reduced EO-related increase (or decrease) in temporal

PAF. This finding suggests that atypical alpha reactivity to visual

stimuli in ASD may be related to the severity of social-

communicative difficulties. The temporal cortex has long been

implicated in social cognition (74), perception, and interaction

(72, 75), processes that depend heavily on the integration of both

sensory input and higher-order cognitive functions. Diminished

alpha reactivity in these regions could signify reduced neural

flexibility, potentially limiting the brain’s ability to adapt to

dynamic visual environments that are crucial for social

engagement. Nevertheless, given our relatively small sample size

and the limited variability in participant characteristics (e.g.,

absence of intellectual disability and a narrow age range), it

would be premature to draw definitive conclusions. Further

research with larger samples and a broader spectrum of

participants is necessary to determine whether these findings can

be generalized.

Finally, we found that baseline PAF under the DR condition

predicted the magnitude of subsequent PAF change in response to

EO, such that higher baseline values were generally associated with

a smaller (or even negative) shift in alpha frequency. To the best of

our knowledge, no previous studies have directly examined this

relationship. One possible explanation is that alpha oscillations may

exhibit a “ceiling effect,” whereby children whose resting alpha

frequency is already relatively high have limited capacity for further

enhancement when exposed to increased visual input. Conversely,
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those with lower baseline alpha frequency may showmore flexibility

or “headroom” for neurophysiological adjustment, resulting in a

larger EO-related increase. These findings highlight the importance

of considering initial resting-state parameters when interpreting

a lpha reac t iv i t y , a s base l ine PAF l ike ly cons t r a ins

subsequent changes.

This study has several limitations. First, the modest sample size

may have limited our ability to detect subtle group differences in

PAF. Future studies with larger and more diverse samples are

required to enhance the generalizability of our findings (76).

Second, our participants comprised a narrow age range

(approximately 5–10 years) and excluded individuals with

intellectual disabilities and those using medication. Thus, our

findings may not be generalizable to all children with ASD,

particularly those with intellectual disabilities, with comorbid

psychiatric conditions, or at different developmental stages. Third,

although the use of individualized video stimuli in the EO condition

helped reduce stress and minimize motion artifacts—especially

critical in pediatric populations—it introduced variability in visual

input across participants, which could have influenced neural

responses. The children selected video programs; however, the

specific content varied widely, with almost no overlap in chosen

videos. This diversity made it infeasible to categorize or

quantitatively compare stimulus properties between the group

with ASD and the TD group. Although both groups had access to

the same set of age-appropriate video options, we cannot rule out

the possibility that differences in visual complexity, motion

dynamics, or social content influenced alpha reactivity. Therefore,

caution is warranted when interpreting group differences in the EO

condition, and future studies may benefit from using a standardized

set of stimuli to isolate diagnosis-related effects better. Fourth,

another important limitation concerns the possibility that group

differences in PAF reactivity may reflect behavioral differences

during the scanning session. Although participants were

instructed to keep their eyes open and watch a preferred silent

video, we could not directly monitor attentional engagement or

compliance (e.g., eye closure or gaze aversion) during MEG

acquisition. Given that alpha oscillations are sensitive to eye state

and visual input, reduced PAF reactivity in children with ASD may

partly reflect variability in task engagement or attention to the video

rather than solely underly neural differences. Future studies

incorporating real-time behavioral monitoring (e.g., eye tracking

or video surveillance) would help clarify the contribution of

attentional factors to alpha modulation. Fifth, owing to the cross-

sectional nature of our design, we could not determine the

longitudinal stability of our findings or infer causality between

PAF reactivity and autistic traits. Future longitudinal studies with

larger and more diverse samples are required to validate and extend

our results. Sixth, a limitation concerns the reliability of PAF

estimation at the individual level. Due to the large data volume

(68 PSDs per participant × 51 participants), we could not include

individual power spectra. Instead, we assessed plausibility by

calculating the proportion of predicted PAF values falling within

the physiologically expected range (7–13 Hz). These proportions

were generally high in the TD group (70.7–97.9%) but more
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variable and often lower in the group with ASD (42.5–69.0%),

suggesting reduced robustness in some individuals. While this may

reflect meaningful neurophysiological differences, it is more likely

due to greater signal variability, artifacts, or atypical alpha

topography. To mitigate this concern, we averaged source-level

data into 10 broader anatomical regions to improve stability. This

likely enhanced alpha peak detection, especially in participants with

noisier data. Nonetheless, findings in regions with lower

detectability should be interpreted with caution. Although we

retained this PAF calculation method to maintain consistency

with previous studies using the same approach (30, 33, 34, 37–

39), future research may benefit from refined preprocessing

pipelines (e.g., using the publicly available FOOOF package:

https://fooof-tools.github.io/fooof/) to improve PAF detectability

in clinical populations. Seventh, related to the issue above, we also

acknowledge limitations in evaluating the spectral fit quality. While

we reported R² values to quantify how well the modeled spectrum fit

the observed PSD, these values reflect the overall fit, including both

periodic (e.g., alpha peak) and aperiodic components. Thus, lower

R² values do not necessarily indicate inaccurate estimation of the

peak alpha frequency; instead, they may arise from imperfect

modeling of the aperiodic background. Given that our primary

objective was to determine the peak alpha location, we do not

consider high R² values to be essential for the validity of our

conclusions. To further assess the plausibility of peak detection,

we visually inspected the PSDs and fitted curves across all regions.

This evaluation was independently performed by two authors (T.H.

and M.S.). Although the large number of plots (68 per participant ×

51 participants) precluded inclusion in the manuscript, they are

available upon request from the corresponding author. This visual

confirmation process complemented the quantitative analysis and

helped ensure the reliability of detected peaks.

In summary, our findings provide new insights into how children

with ASD and their TD peers differ in PAF reactivity under DR and

robust visual input conditions. First, we observed that older children,

regardless of diagnosis, tended to have higher PAF values, underscoring

the importance of considering developmental trajectories when

interpreting PAF. Second, while both groups exhibited a similar PAF

increase in occipital regions during video viewing, the temporal regions

showed a diagnosis-by-condition interaction: TD children consistently

displayed elevated PAF during the video condition, whereas children

with ASD did not. This group difference was further moderated by

autistic traits, with more pronounced traits associated with a reduced—

or even negative—shift in temporal PAF in response to visual input.

Lastly, baseline PAF under the DR condition predicted the degree of

modulation during EO silent video viewing, suggesting that individual

differences in DR alpha may constrain dynamic reactivity to visual

stimulation. These findings highlight temporal PAF reactivity as a

potential marker of altered sensory processing in ASD. Future research

—ideally longitudinal—should examine these patterns in larger and

more diverse ASD samples, including individuals with intellectual

disabilities and psychiatric comorbidities, to enhance generalizability.

Such studies should also employ a standardized set of stimuli to better

isolate diagnosis-related effects on PAF reactivity to visual input.
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improved cortical structure segmentation. In: Kuba A, Šáamal M, Todd-Pokropek A,
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