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Drug-induced severe
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therapy: a case report
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Olanzapine and fluvoxamine are commonly used psychotropic medications for

treating anxiety and depressive disorders, particularly in cases with psychotic

symptoms or treatment-resistant presentations. Although there are occasional

reports of hematologic toxicity with monotherapy of these two drugs, no clear

reports in the existing literature have documented severe sideroblastic anemia

induced by their combination. Notably, as a potent CYP1A2 inhibitor, fluvoxamine

significantly inhibits the metabolism of olanzapine, leading to elevated plasma

concentrations. This pharmacokinetic synergy may exacerbate the risk of

myelosuppression, although the specific mechanism remains to be elucidated.

This article presents the first documented case of a 78-year-old male patient with

chronic obstructive pulmonary disease (COPD) who developed severe anemia

(nadir hemoglobin 37 g/L) after the combined use of olanzapine and fluvoxamine.

Through systematic etiological investigation, bonemarrowmorphology findings,

and the Naranjo Adverse Drug Reaction Probability Scale (score 9, indicating a

clear association), the diagnosis was confirmed as drug-induced severe acquired

sideroblastic anemia. This case underscores the importance of thoroughly

evaluating blood system safety when combining psychotropic medications in

elderly patients with chronic diseases, and highlights the need for enhanced

dynamic monitoring to identify and intervene in potential adverse reactions at an

early stage.
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1 Introduction

Olanzapine, a thienobenzodiazepine derivative classified as a

second-generation (atypical) antipsychotic, exerts its therapeutic

effects primarily through antagonism of multiple neurotransmitter

receptors, including 5-hydroxytryptamine (5-HT2A), dopamine D2,

and histamine H1 receptors. It is effective in alleviating both positive

and negative symptoms of schizophrenia and is widely used in the

treatment of schizophrenia, bipolar disorder, and depression with

accompanying psychotic symptoms (1). Compared to first-

generation (typical) antipsychotics, olanzapine offers a superior

tolerability and safety profile while maintaining therapeutic efficacy

(2). Common adverse effects include weight gain, somnolence, and

dizziness (3). In contrast, hematologic toxicity is relatively rare, with

only a few reports in the literature suggesting that olanzapine may

cause hematologic abnormalities such as granulocytopenia,

leukopenia, thrombocytopenia, and pancytopenia (4–11).

Fluvoxamine is a selective serotonin reuptake inhibitor (SSRI)

commonly used to treat psychiatric disorders such as obsessive-

compulsive disorder, anxiety disorders, and depression (12). As it

primarily targets the serotonin system and does not antagonize

cholinergic, adrenergic, or histaminergic receptors, fluvoxamine has

an overall favorable safety profile. The most common adverse effects

are mild to moderate gastrointestinal symptoms, such as nausea and

diarrhea, which are generally reversible (13). Hematologic

abnormalities induced by fluvoxamine are extremely rare, with only

a few reports suggesting that it may affect platelet aggregation by

inhibiting serotonin uptake in platelets, thereby increasing the risk of

bleeding (14–16).

Sideroblastic anemia (SA) constitutes a heterogeneous group of

hematopoietic disorders characterized by pathological iron

accumulation in the mitochondria of erythroid precursors, with the

morphological hallmark being the presence of ringed sideroblasts (RS)

in the bone marrow (≥15%). Depending on the underlying cause, SA

can be classified into two types: congenital and acquired (17). Among

acquired SA cases, some represent clonal myeloid disorders, such as

myelodysplastic syndrome with ring sideroblasts (MDS-RS), while

others are triggered by non-clonal factors, including drugs, toxins,

alcohol, or nutritional deficiencies (18). Remarkably, pharmacokinetic

studies show that olanzapine is primarily metabolized by the CYP1A2

enzyme, while fluvoxamine is a potent CYP1A2 inhibitor that

significantly inhibits olanzapine metabolism, leading to elevated

drug concentrations and an increased risk of toxicity (19).

This article presents the first documented case of a 78-year-old

male patient with chronic obstructive pulmonary disease (COPD)

who developed severe acquired SA (hemoglobin 37 g/L) following

the combined use of olanzapine and fluvoxamine. The significant

association between the adverse reaction and the drugs was

confirmed through a drug timeline analysis, bone marrow

morphology findings, and the Naranjo Adverse Drug Reaction

Probability Scale (score 9, indicating a clear association). We

conducted an in-depth discussion of its potential mechanisms,

diagnostic key points, and management strategies, aiming to

provide a reference for the safe combination of psychotropic

medications in clinical practice.
Frontiers in Psychiatry 02
2 Case presentation

2.1 Diagnosis and treatment of mixed
anxiety and depressive disorder

On January 23, 2024, a 78-year-old Chinese male was admitted

to the Department of Respiratory and Critical Care Medicine due to

acute exacerbation of COPD with significant dyspnea. The patient

had a history of COPD for more than ten years and had been

bedridden for an extended period, receiving oxygen therapy. Upon

admission, the patient developed significant emotional

disturbances, including mood instability, irritability, anxiety,

excessive preoccupation with his condition, and difficulty falling

asleep at night. A psychiatric assessment revealed intact orientation

with no hallucinations, delusions, or other psychotic symptoms.

There was no suicidal ideation or aggressive behavior, and the

clinical diagnosis was Mixed Anxiety and Depressive Disorder. The

patient had no prior history of mood disorders and no family

history of psychiatric illnesses.

On January 28, 2024, the patient commenced oral fluvoxamine

25 mg nightly, achieving initial symptomatic relief of mood

disturbances. From March 1 onward, the symptoms fluctuated,

accompanied by decreased treatment adherence, including

resistance to healthcare personnel, non-adherence to individualized

treatment plans, and nighttime agitation disturbing others’ rest.

Suspecting subtherapeutic dosing as a contributing factor, the

fluvoxamine dosage was increased to 50 mg nightly. Following this

dose adjustment, the emotional symptoms progressively stabilized,

and maintenance therapy continued for approximately 4 months.

By July 4, 2024, the patient exhibited depressive symptoms

again, including emotional blunting, reduced speech and activity,

social withdrawal, and decreased appetite. To optimize mood

regulation, olanzapine 2.5 mg nightly was added to the ongoing

fluvoxamine treatment.
2.2 Occurrence and management of severe
anemia

Since admission, the patient’s hemoglobin (Hb) levels had

remained within the normal range. However, beginning in late

April 2024 (approximately 1 month after fluvoxamine dose

escalation), the patient gradually developed symptoms of fatigue

and dizziness. At the same time, hematologic tests showed a

continuous decline in Hb and red blood cell count (RBC). By

early July (after the addition of olanzapine), the decline in Hb

became more pronounced, reaching a nadir of 37 g/L (reference

range: 130 – 175 g/L), with the corresponding RBC count of

1.38×10¹²/L (reference range: 4.3 – 5.8×10¹²/L). During this

period, the patient received a total of six blood transfusions,

amounting to 9.5 units of O Rh(D)-positive leukocyte-depleted

packed red blood cells, but the anemia did not show

sustained improvement.

The patient had no significant bleeding history or prior

hematologic disorders. Systemic etiological investigation showed
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no abnormalities in immunological markers (antinuclear

antibodies, rheumatoid factor, immunoglobulins, blood and urine

light chains). Hematological analysis revealed a reticulocyte

percentage of 0.10% (reference range: 0.50 – 1.50%), indicating

bone marrow hematopoietic dysfunction. On August 12, 2024, a

bone marrow aspiration was performed. Immunophenotyping

showed an increased proportion of nucleated red blood cells in

the marrow, with mature granulocyte differentiation and no

significant proliferation of primitive cell clusters. Bone marrow

smear exhibited active proliferation, a decreased granulocyte-to-

erythrocyte ratio, reduced cytoplasm in some immature red blood

cells, and increased RS on iron staining (19%), suggesting the need

to exclude MDS-RS. Bone marrow biopsy demonstrated mild active

erythroid proliferation, with no significant dysplastic proliferation

or increase in primitive cells. Genetic testing for SF3B1 gene

mutation returned negative.

After exclusion of viral infections, neoplastic disorders,

autoimmune diseases, and hereditary hematologic disorders, we

observed that the progressive anemia closely correlated with the

timing of fluvoxamine dosage increase and the addition of

olanzapine. On September 5, 2024, considering the possibility of

drug-induced anemia, we adjusted the treatment regimen by

discontinuing olanzapine and reducing the fluvoxamine dosage to

25 mg nightly.
2.3 Outcomes and follow-up

Following therapeutic modification, the patient’s Hb exhibited a

stepwise recovery, rising from 63 g/L to 102 g/L within two weeks

and nearly returning to the normal range within three months.

Symptoms such as fatigue and dizziness also alleviated

simultaneously. During the five-month follow-up period, the

patient’s routine blood tests remained stable within the normal

range, with no recurrence of anemia or need for further blood

transfusions or other targeted treatments. The patient’s bone

marrow morphology results are shown in Figure 1, and the

dynamic changes in Hb and RBC are shown in Figure 2. The

patient’s inpatient medication list is shown in Table 1, changes in

liver function indicators are shown in Table 2, and changes in renal

function indicators are shown in Table 3.
3 Discussion

3.1 Diagnosis of severe acquired
sideroblastic anemia

This study reports a case of a 78-year-old male patient with

COPD who was diagnosed with Mixed Anxiety and Depressive

Disorder during hospitalization. The patient developed severe

anemia (nadir Hb 37 g/L) following combined administration of

olanzapine (2.5 mg nightly) and fluvoxamine (50 mg nightly).

Despite receiving six blood transfusions, the anemia did not

improve. After exclusion of alternative etiologies, drug-induced
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anemia was suspected, and the treatment regimen was adjusted:

olanzapine was discontinued, and fluvoxamine was reduced to 25

mg nightly. Subsequently, the patient’s Hb rose stepwise and

returned to the normal range within three months, with sustained

stability during the five-month follow-up.

In this case, bone marrow iron staining revealed an RS

proportion of 19%, consistent with the morphological features of

SA. According to the 2022 International Consensus Classification of

myeloid neoplasms and acute leukemia (20), a diagnosis of SF3B1-

mutant myelodysplastic syndrome can be made when an SF3B1

mutation is present and RSs comprise ≥5% of erythroid precursors.

In the absence of an SF3B1 mutation, a diagnosis of MDS-RS

requires an RS proportion ≥15%, with secondary causes excluded.

Although the RS proportion in this patient exceeded 15%, SF3B1

testing was negative, and there was no significant dysplasia or

increase in blasts in the bone marrow, thus not fulfilling the

morphological or molecular diagnostic criteria for MDS-RS.

Furthermore, the patient had a clear history of suspected drug-

induced etiology (olanzapine combined with fluvoxamine). After

the drug withdrawal intervention, the Hb rapidly rose from 63 g/L

to 102 g/L within two weeks, normalized within three months, and

no further transfusions were required, demonstrating a clear

temporal correlation and reversibility, which is inconsistent with

the natural course of MDS-RS as a clonal marrow disease.

Considering the patient’s RS ≥ 15%, SF3B1 negativity, absence

of clonal characteristics in the hematopoietic system, nadir Hb level

of 37 g/L, coupled with a clear drug-related cause and significant

improvement following drug withdrawal, the diagnosis of severe

acquired sideroblastic anemia induced by the combined use of

olanzapine and fluvoxamine was established. The Naranjo

Adverse Drug Reaction Probability Scale score of 9 further

supports this conclusion.
3.2 Drug interaction between olanzapine
and fluvoxamine

It is noteworthy that the patient developed progressive severe

anemia following the addition of olanzapine to fluvoxamine

therapy. Although such a phenomenon has been rarely reported

in the literature, studies have demonstrated significant drug

interactions between olanzapine and fluvoxamine (21–26). Based

on clinical therapeutic drug monitoring data, Weigmann et al. (27)

analyzed the pharmacokinetic changes resulting from the combined

use of olanzapine and fluvoxamine. They found that fluvoxamine, a

potent CYP1A2 inhibitor, significantly inhibits the metabolism of

olanzapine, leading to an average 2.3-fold increase in its plasma

concentration, with some patients exhibiting increases of more than

4-fold, approaching the potential toxicity threshold (>100 ng/mL).

In this case, after discontinuing olanzapine and reducing the

fluvoxamine dosage, the anemia improved rapidly, with Hb levels

significantly rising within a short period. Combining the temporal

sequence, laboratory changes, and previous pharmacokinetic studies,

this suggests that the adverse reaction may be closely related to

olanzapine accumulation caused by the drug combination.
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3.3 Possible role of fluvoxamine
monotherapy in this case of severe
acquired sideroblastic anemia

While the above evidence points to the drug interaction as the

primary driver, the possibility that fluvoxamine monotherapy

contributed to the development of anemia merits consideration.

Given that the patient’s Hb levels had already declined before the

initiation of olanzapine therapy, we evaluated the potential

cumulative effects of fluvoxamine alone. However, several factors

suggest its likelihood of being the primary cause of severe acquired

SA is low. Firstly, no published cases to date have implicated
Frontiers in Psychiatry 04
fluvoxamine monotherapy in SA, and in this case, the degree of

Hb reduction during the monotherapy phase did not reach the

diagnostic threshold for severe anemia. Secondly, the precipitous

drop in Hb to 37 g/L closely coincided with olanzapine initiation,

and the pathological finding of a 19% ring sideroblast proportion on

bone marrow iron staining also occurred during the combination

therapy phase. Moreover, after discontinuation of olanzapine,

which was accompanied by a dose reduction but not cessation of

fluvoxamine, the patient’s Hb rose rapidly by 39 g/L within two

weeks, suggesting that olanzapine was the main pathogenic factor.

Nonetheless, a contributory role of fluvoxamine monotherapy

in the development of anemia cannot be entirely excluded.
FIGURE 1

Bone marrow smear from a patient with severe acquired sideroblastic anemia. (A) Shows markedly active hematopoietic proliferation, a decreased
granulocyte-to-erythrocyte ratio, and reduced cytoplasmic volume in some immature erythroid precursors. (B) Iron staining reveals an increased
number of ringed sideroblasts.
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Epidemiological studies have indicated that SSRIs may be associated

with secondary anemia linked to bleeding tendencies. In a

prospective cohort study in Paris involving 6,854 participants,

Vulser et al. (28) found that both depressive states and SSRI use

were significantly associated with lower Hb levels. Additional

studies have shown that SSRI users generally have lower Hb

concentrations compared to non-users, possibly due to inhibition
Frontiers in Psychiatry 05
of platelet serotonin uptake, impairment of platelet aggregation, and

prolonged bleeding time, which may result in chronic occult blood

loss and secondary anemia. Such anemia differs fundamentally in

pathophysiology from drug-induced hematopoietic failure in SA.

Although fluvoxamine was not specifically evaluated in that study,

as an SSRI it warrants caution in elderly patients or those with

chronic comorbidities. In this case, fluvoxamine may have
FIGURE 2

Line chart depicting the temporal changes in the patient’s hemoglobin and red blood cell levels, along with medication adjustments and the timing
of blood transfusions. A total of 9.5 units of O Rh(D)-positive leukocyte-depleted packed red blood cells were transfused on July 22 (1 U), July 24 (2
U), July 26 (2 U), August 13 (1.5 U), August 25 (1.5 U), and August 28 (1.5 U), 2024.
TABLE 1 List of medications administered during the patient’s hospitalization.

Indication Medication Dose Frequency

Asthma, COPD, and allergy-related diseases Montelukast sodium 10 mg Once daily at bedtime

Loratadine 10 mg Once daily at bedtime

Theophylline
sustained-release

100 mg Twice daily (08:00, 16:00)

Anti-inflammatory, immunosuppressive Methylprednisolone 4 mg Once daily

Mucolytic, expectorant Ambroxol 30 mg Twice daily (08:00, 16:00)

Gastroesophageal reflux disease, peptic ulcer Pantoprazole sodium 40 mg Once daily before meals

Dyslipidemia and secondary prevention of atherosclerotic cardiovascular disease Atorvastatin calcium 20 mg Once daily at bedtime

Secondary prevention of coronary heart disease, angina pectoris, and
cerebrovascular disease

Aspirin enteric-coated 100 mg Once daily

Isosorbide mononitrate 20 mg Twice daily (08:00, 16:00)

Trimetazidine
sustained-release

35 mg Twice daily (08:00, 16:00)

Bisoprolol 2.5 mg Once daily

Cardiac edema, related fluid retention Furosemide 20 mg Twice daily (08:00, 16:00)

Spironolactone 20 mg Once daily

Peripheral neuropathy, vitamin B12 deficiency Mecobalamin 0.5 mg Three times daily

Psychiatric, emotional disorders Fluvoxamine 25/50 mg Once daily at bedtime

Olanzapine 2.5 mg Once daily at bedtime
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contributed to the early phase of anemia, but this remains

unsupported by direct evidence.
3.4 Potential mechanisms underlying drug-
induced acquired sideroblastic anemia

3.4.1 Mitochondrial dysfunction
Mitochondrial dysfunction is one of the core mechanisms

underlying the pathogenesis of SA. Normal iron metabolism,

efficient heme synthesis, and oxidative phosphorylation in

erythroid precursor cells all depend on fully functional

mitochondria. When mitochondrial function is disrupted, heme

synthesis is hindered, preventing iron from being properly

incorporated into the porphyrin ring. As a result, iron

accumulates abnormally in the mitochondria of erythroid

precursors, forming RS, which in turn interferes with erythrocyte

maturation and release (29). Rodriguez-Sevilla et al. (30)

summarized that the common features of acquired SA include

impaired heme synthesis within the mitochondria, disrupted iron-
Frontiers in Psychiatry 06
sulfur cluster synthesis, and damaged mitochondrial protein

synthesis. These factors collectively induce mitochondrial iron

overload, triggering cytotoxic stress responses, which then

suppress erythroid development.

Recent studies have shown that the accumulation of olanzapine

in the body can lead to mitochondrial dysfunction in erythroid

precursor cells, which in turn affects heme synthesis and

erythropoiesis (31). Specifically, it can damage the mitochondrial

structure, induce mitochondrial fragmentation, inhibit

mitochondrial autophagy, and disrupt mitochondrial homeostasis.

In addition, olanzapine has been found to downregulate the gene

expression of mitochondrial respiratory chain enzymes and reduce

their activity, thereby impairing cellular energy metabolism and

indirectly suppressing erythropoiesis (32).

Similarly, clinical reports have indicated that certain mitotoxic

drugs, such as chloramphenicol and linezolid, can induce reversible

sideroblast formation and anemia by inhibiting mitochondrial

protein synthesis, further confirming that drug interference with

mitochondrial function may drive acquired SA (30, 33). Therefore,

it is speculated that in this case, fluvoxamine inhibited the CYP1A2

enzyme, leading to excessive accumulation of olanzapine in the

body. This, in turn, impaired hematopoietic precursor

mitochondrial function, thereby inducing acquired SA.

3.4.2 Oxidative stress
Elevated plasma concentrations of olanzapine can induce

excessive oxidative stress, leading to damage of erythroid

precursor cells and the development of erythropoietic disorders.

Previous studies have shown that olanzapine increases oxidative

stress and impairs mitochondrial function, thereby disrupting the

normal differentiation of erythroid precursors. Boz et al. (31), using

a mouse hypothalamic neuron model, reported that olanzapine

significantly elevated reactive oxygen species (ROS) levels and

downregulated the expression of key antioxidant enzymes,

including glutathione reductase (GSR), catalase (CAT), and

glutathione peroxidase (GPX1). This disruption of redox

homeostasis ultimately triggered cellular apoptosis. These findings

are consistent with those of Martin et al. (29), who demonstrated in

a superoxide dismutase 2 (SOD2)-deficient animal model that the

absence of SOD2 in erythroid precursor cells led to the excessive

accumulation of mitochondrial superoxide anions. This oxidative

imbalance induced iron metabolism dysregulation and

mitochondrial iron deposition, promoting the formation of RS

and ultimately resulting in SA.

Kramar et al. (32) further compared the oxidative stress

responses of olanzapine and aripiprazole in hepatocytes and

found that the olanzapine treatment group had significantly

increased ROS levels, decreased glutathione content, and a

marked reduction in antioxidant responses, suggesting that

olanzapine disrupted redox balance and caused sustained

mitochondrial damage. More importantly, the study also showed

that olanzapine activates multiple oxidative stress signaling

pathways, including members of the mitogen-activated protein

kinase (MAPK) family (such as p38, JNK, and ERK), and signal

transducer and activator of transcription 3 (STAT3). It also
TABLE 2 Liver function parameters during the patient’s hospitalization.

Date
ALT
(U/L)

AST
(U/L)

ALP
(U/L)

GGT
(U/L)

TBil
(µmol/

L)

Alb
(g/L)

2024/
01/23

18.3 17.9 99.8 22.1 13.88 42.5

2024/
02/19

24.1 21.9 78.6 29.3 9.00 33.5

2024/
03/01

34.7 23 86.7 58.8 17.10 32

2024/
03/30

25.6 19.4 99.9 25.3 14.1 29.3

2024/
04/30

38.4 18.1 87.9 25.0 12.80 32.3

2024/
05/23

19.0 10.7 96.1 25.3 6.60 32.1

2024/
06/16

10.4 8.7 92.0 19.0 6.28 34.5

2024/
07/22

9.4 8.1 73.4 20.1 12.60 38.4

2024/
08/06

5.8 7.4 86.5 18.8 12.50 38.4

2024/
09/19

9.1 12.5 94.6 20.5 10.90 42.6

2024/
10/11

12.4 15.1 78.3 18.3 6.50 34.9

2024/
11/08

10.8 14.5 86.3 19.8 4.80 34.3

2024/
12/22

22.3 20.1 76.1 16.5 6.06 33.8

2025/
01/22

38.1 27.8 71.9 19.5 19.14 37.6
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enhanced the activity of caspase-3/7 and caspase-9, activating

mitochondrial-mediated programmed cell death. These changes

may directly induce apoptosis or dysfunction of erythroid

precursor cells, thereby inhibiting erythropoiesis.

In summary, the accumulation of olanzapine in the context of

fluvoxamine-mediated metabolic inhibition may exacerbate

oxidative stress, damaging erythroid precursor cells and thereby

inducing erythropoietic suppression and SA.

3.4.3 Endoplasmic reticulum stress
The endoplasmic reticulum (ER) is a pivotal organelle responsible

for protein synthesis and folding, and its proper function is

particularly critical for hemoglobin synthesis in erythroid cells (34,

35). The accumulation of unfolded or misfolded proteins within the

ER lumen triggers ER stress and activates the unfolded protein

response, which is mediated primarily through the ATF6, IRE1, and

PERK pathways. Persistent ER stress can ultimately lead to apoptosis

(36, 37). Previous studies have demonstrated that ER stress plays an

important role in ineffective erythropoiesis. Hyperactivation of ER

stress can induce erythropoietic defects caused by DNA

methyltransferase 1 deficiency via the P53–Caspase3 pathway (38).

Additionally, ER stress can impair erythropoiesis by suppressing

erythropoietin production, thereby contributing to anemia (39).

Another study (35) reported that CD44 deficiency results in reactive

oxygen species accumulation and sustained activation of the PERK/

eIF2a/ATF4/CHOP signaling pathway, leading to protein folding

defects and disruption of proteostasis in erythroid cells. This, in

turn, inhibits terminal differentiation and enucleation, culminating

in ineffective erythropoiesis. Furthermore, the study suggested that the

CD44–hyaluronic acid axis is associated with iron endocytosis, and

that this stress state may further impair iron utilization, thereby

exacerbating erythroid defects.
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In recent years, multiple studies have shown that olanzapine can

induce pronounced ER stress in various cell types. For example, in

pancreatic b-cells, olanzapine triggers significant ER stress and

blocks PERK-mediated protective translational attenuation,

leading to the continuous accumulation of misfolded proteins and

ultimately apoptosis (40). In hypothalamic astrocytes, olanzapine

likewise induces ER stress and promotes apoptosis (41). More

recent findings (42) have demonstrated that olanzapine activates

the PERK–CHOP signaling pathway in adipocytes, inducing

marked ER stress and disrupting key functions such as lipid

metabolism and inflammatory cytokine secretion, suggesting that

its effects may extend to metabolically relevant cell types.

Taken together, olanzapine possesses the potential to induce ER

stress and promote apoptosis in multiple cell types, while erythroid

precursor cells similarly depend on efficient protein folding and

proteostasis to accomplish hemoglobin synthesis and terminal

differentiation. We therefore hypothesize that, under certain

conditions, if olanzapine were to trigger a comparable ER stress

response within the erythroid system, it could disrupt protein

folding and iron metabolism, suppress erythroid maturation, and

lead to ineffective hematopoiesis, thereby precipitating or

aggravating anemia. Notably, when olanzapine is co-administered

with fluvoxamine, its plasma concentration can rise markedly, and

the resulting ER stress response may be further amplified, thus

exacerbating erythroid dysfunction and increasing both the risk and

severity of anemia.

3.4.4 Inhibition of erythroid progenitor cell
proliferation and apoptosis

Olanzapine and its metabolites may directly exert toxicity on

bone marrow erythroid progenitor cells, inhibiting their proliferation

or inducing apoptosis, thereby reducing erythropoiesis. Animal
TABLE 3 Renal function parameters during the patient’s hospitalization.

Date Scr(µmol/L) BUN(mmol/L) eGFR K+(mmol/L) Na+(mmol/L)

2024/01/23 78.5 6.54 82.17 4.25 137.5

2024/02/19 70.7 10.46 85.73 4.75 136.1

2024/03/01 58.6 10.29 92.59 3.90 135.6

2024/03/30 68.1 13.43 87.00 5.07 143.1

2024/04/30 53.7 8.41 95.86 3.64 131.3

2024/05/23 68.6 12.18 86.85 4.08 129.7

2024/06/16 57.8 9.35 92.92 4.17 134.4

2024/07/22 81.5 12.06 79.44 4.40 123.4

2024/08/06 64.7 11.15 88.63 4.78 125.3

2024/09/19 78.8 9.72 81.66 4.09 133.3

2024/10/11 60.9 9.55 90.75 3.97 139.7

2024/11/08 54.7 6.98 94.79 3.89 142.7

2024/12/22 68.4 9.04 86.40 3.66 138.1

2025/01/22 67.7 10.15 86.71 3.74 143.1
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studies have shown that olanzapine, through itself or its unstable

metabolites, can directly affect hematopoietic tissues. For example, in

a mouse pup model, exposure to olanzapine during the lactation

period significantly reduced peripheral blood neutrophil counts,

suggesting that it may directly inhibit bone marrow hematopoietic

cells (43). Since both erythrocytes and granulocytes are derived from

the bone marrow stem cell pool, this direct toxicity may also impair

the proliferation and survival of erythroid progenitor cells.

Despite being rare in clinical practice, case reports of

olanzapine-induced pancytopenia have been documented (5–7,

10, 44). While the underlying mechanisms remain incompletely

elucidated, some studies propose similarities with clozapine:

reactive metabolites generated during metabolism (such as nitroso

ions) covalently bind to critical proteins within hematopoietic cells,

eliciting cytotoxic effects or immune-mediated myelosuppression.

Notably, most of these patients gradually recover their blood cell

counts after discontinuation of the drug, indicating that olanzapine-

induced myelosuppression is reversible. Furthermore, emerging

evidence suggests that olanzapine may induce granulocytopenia

or neutropenia through mechanisms encompassing immune-

mediated cytotoxicity, oxidative stress, and direct metabolite-

induced damage to hematopoietic progenitors (45).
3.5 Limitations

This study has the following limitations: Due to clinical

constraints, plasma concentrations of olanzapine and fluvoxamine

were not monitored. Although therapeutic drug monitoring (TDM)

is not routinely implemented for these agents in clinical practice,

obtaining pharmacokinetic data could directly confirm the in vivo

accumulation of olanzapine. Future studies could incorporate TDM

in high-risk patients receiving combined olanzapine–fluvoxamine

therapy to define the exposure thresholds associated with

hematologic toxicity, thereby providing stronger evidence to guide

safe clinical use.
4 Conclusion

This article reports the first documented rare case of severe

acquired SA induced by combined olanzapine-fluvoxamine

therapy. Based on bone marrow morphological characteristics,

SF3B1 negativity, temporal drug exposure correlation, and rapid

hematologic recovery post-cessation, clonal myeloid disorders such

as MDS-RS were excluded, with drug-induced erythropoietic

dysfunction concomitant with secondary iron metabolism

abnormalities being established. Mechanistically, fluvoxamine-

mediated metabolic inhibition leads to olanzapine accumulation,

potentially interfering with erythropoiesis through multiple

pathways, including mitochondrial dysfunction (impaired heme

synthesis, disturbed iron-sulfur cluster metabolism), oxidative

stress (elevated ROS levels, imbalance in the antioxidant system),
Frontiers in Psychiatry 08
endoplasmic reticulum stress (disrupted protein folding and

proteostasis), and erythroid progenitor apoptosis. Additionally, as

an SSRI agent, fluvoxamine may exacerbate erythroid suppression

through platelet dysfunction, occult hemorrhage, and chronic

inflammatory processes, thereby amplifying the myelotoxicity

of olanzapine.

This case underscores that in clinical practice, when implementing

psychotropic polypharmacy, the impact of pharmacokinetic

interactions on plasma drug concentrations and potential toxicity

warrants rigorous assessment. Particularly in elderly patients and

those with chronic comorbidities, therapy should be initiated at low

doses with serial monitoring of plasma concentrations and

hematologic parameters to optimize treatment safety.
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