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children with autism spectrum
disorder be associated with
atypical visual-sensory
behaviors?
Mustafa Esad Tezcan1*, Abdullah Enes Ataş2

and Hurşit Ferahkaya3

1Child and Adolescent Psychiatry, Selcuk Universitesi Tip Fakultesi, Konya, Türkiye, 2Radiology,
Necmettin Erbakan Universitesi Meram Tip Fakultesi Hastanesi, Konya, Türkiye, 3Department of Child
and Adolescent Psychiatry, Faculty of Medicine Hospital, Necmettin Erbakan University,
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Introduction: The aim of this study is to investigate, using magnetic resonance

imaging (MRI), the optic nerve diameter, morphometric characteristics of the

optic chiasm (OC), volumes of the lateral, third, and fourth ventricles, as well as

the volumes of the corpus callosum (CC) and choroid plexus (CP) in children with

autism spectrum disorder (ASD), and to compare these findings with those of a

typically developing (TD) control group. Additionally, the study seeks to evaluate

the impact of these neuroanatomical parameters on autism symptom severity

and sensory sensitivity.

Methods: This study included 111 children with ASD and 143 TD control children,

aged between 5 and 13 years. The severity of ASD was assessed using the Social

Communication Questionnaire (SCQ) and the Childhood Autism Rating Scale

(CARS). Symptoms related to sensory sensitivities in ASD were evaluated using

the Autism Behavior Checklist (AuBC).

Results: In the ASD group, OC height, and the volumes of the CP and CC were

significantly higher compared to the TD group, whereas OC width and third

ventricular volume were significantly lower. There were no significant differences

between the two groups in terms of optic nerve volumes, OC cross-sectional

area, lateral and fourth ventricular volumes, or total brain volume. OC height was

positively correlated with CARS, AuBC relationship, and AuBC use of body and

objects scores, while OC width was positively correlated with CARS and AuBC

use of body and objects scores. Conversely, OC height showed a negative

correlation with AuBC personal-social development scores. After controlling

for potential confounding variables such as total brain volume, age, and sex, the

results of the covariance analysis remained unchanged. In multiple logistic

regression analysis, left CP volume was found to be more strongly associated

with ASD diagnosis compared to other morphometric measures.
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Discussion: The findings of this study suggest that increased OC height,

increased CC and CP volumes, and decreased third ventricular volume may

play a role in the etiopathogenesis of altered brain development in children

with ASD.
KEYWORDS

autism spectrum disorder, magnetic resonance imaging, optic nerve diameter, brain
ventricles, corpus callosum, choroid plexus, optic chiasm
1 Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental

disorder (NDD) characterized by impairments in social interactions,

difficulties in verbal and nonverbal communication, repetitive behavior

patterns, and restricted interests (1). In addition to the core symptoms,

ASD is frequently associated with sensory processing dysfunctions,

including visual processing deficits, which may underlie or exacerbate

stereotyped behaviors observed in affected individuals (2, 3). A recent

systematic review indicated that heightened visual and auditory

sensitivities are linked to increased symptom severity in ASD (4).

Atypical visual processing in ASD, including altered color perception,

reduced eye contact, and impairments in gaze tracking, points to the

potential importance of investigating retinal and optic nerve structures

in understanding underlying neurobiological mechanisms (5).

Furthermore, individuals with ASD have been reported to exhibit a

higher prevalence of optic nerve hypoplasia and retinopathy compared

to healthy controls. These visual impairments have been associated

with deficits in depth perception and reduced peripheral visual

processing, which may contribute to the social difficulties observed in

ASD (6–8). Given their embryonic origin from the diencephalon, both

the retina and optic nerve are integral components of the central

nervous system and are frequently described as a ‘window to the brain’

due to their accessibility and neurodevelopmental relevance (9).

Although certain components of the anterior visual pathway related

to the retinal region can be easily assessed using optical coherence

tomography (OCT), magnetic resonance imaging (MRI) may be

required for comprehensive evaluation of the entire visual pathway.

The volume or area of the optic chiasm has been reported as a potential

MRI biomarker and a key component of the anterior visual pathway, as

it can be measured using both automated and manual methods (10).

Due to their neuroanatomical continuity with the brain, retinal and

optic nerve measures have been utilized as structural indicators of

axonal degeneration in conditions such as Alzheimer’s disease, multiple

sclerosis, Parkinson’s disease, and NDDs (11).

NDDs are associated with structural abnormalities not only in

the central nervous system (CNS) but also within subcortical

regions, which are critical not only for motor control but also for

higher-order functions such as learning, memory, attention,

executive functioning, and emotion processing (12). The choroid

plexus (CP) is a subcortical structure located in the lateral, third,
02
and fourth ventricles of the brain. It serves as the primary source of

cerebrospinal fluid (CSF) production, constitutes the core of the

blood–CSF barrier, and plays a key role in maintaining brain

homeostasis. In the context of volumetric alterations observed in

patients with psychiatric disorders, assessment of CP volume—

along with the bilateral lateral ventricles (LV), third, and fourth

ventricles—is critically important for evaluating cognitive functions

and brain development (13, 14). Neuroimaging analyses appear to

be a useful approach for evaluating CP volume in vivo. In patients

diagnosed with schizophrenia, morphological changes such as

increased calcification in the CP have been reported using

computed tomography (CT), and alterations in CP volume have

also been demonstrated in various neuropsychiatric disorders using

MRI (13, 15, 16). Increased volumes of the CP and lateral ventricles

have been reported in individuals with Alzheimer’s disease,

schizophrenia, bipolar disorder, and major depressive disorder.

Moreover, CP abnormalities have been identified in pediatric

cases of ASD, and animal studies have demonstrated ASD-like

behaviors in mice with experimentally induced CP dysfunction (17,

18). The CP has been shown to interact with dopaminergic

pathways, suggesting its involvement in processes related to

learning and neuroplasticity. Additionally, CP enlargement has

been linked to impairments in blood–brain barrier function and

to neuroinflammatory activity (19, 20). Given the presence of

neuroinflammation in ASD, reductions in neurotrophic factor

levels in the CSF of children with ASD have been reported,

potentially reflecting functional changes in the CP (14).

Postmortem analyses in individuals with ASD, as well as findings

from ASD animal models, have revealed elevated levels of

proinflammatory cytokines in the CP, supporting the hypothesis

that neuroinflammation may contribute to the etiopathogenesis of

ASD (21).

The corpus callosum (CC), the brain’s largest commissural

tract, plays a critical role in interhemispheric communication by

integrating cortical and subcortical connections across multiple

lobes. In the context of the atypical connectivity hypothesis in

ASD, developmental differences in CC structure and function may

represent a key neuroanatomical correlate of the disorder (22, 23).

Studies have demonstrated smaller CC volumes in individuals with

ASD, and ASD has been found to be more prevalent among

individuals with agenesis of the CC (24). Recent meta-analytic
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and review studies have identified structural abnormalities in the

CC tract in individuals with attention deficit hyperactivity disorder

(ADHD) and ASD, particularly during the developmental

transition from childhood to adulthood (25, 26). Findings from

neuroimaging studies indicate that behavioral abnormalities

observed in ASD may be attributed to disrupted functional

connectivity across brain neural networks (27).

In this context, the development of MRI-based data for ASD

represents a crucial step toward understanding the etiopathogenesis

of such disorders through more detailed interpretation of

neurobiological pathways, and for addressing the medical needs

of children with ASD. In this study, optic nerve diameters and optic

chiasm (OC) morphometry were examined as these structures

reflect the integrity and functionality of the visual system during

early development. It is proposed that these anatomical features

may be associated with atypical visual perception and social

interaction difficulties observed in ASD. The CC was included in

the study due to its critical role in connectivity anomalies and

impairments in cognitive-social integration reported in ASD. The

volumes of the lateral, third, and fourth ventricles were assessed as

potential indicators of neuroanatomical differences emerging

during brain development. CP volumes were examined based on

their involvement in ventricular system development and the

hypothesis that they may play a role in neuroinflammatory

processes increasingly associated with ASD. The aim of this study

is to investigate the clinical relevance of these volumetric alterations

in ASD and to determine how visual-sensory sensitivity and clinical

symptomatology in individuals with ASD differ morphometrically

from those in typically developing (TD) children. An additional

question addressed in our cross-sectional study is the extent to

which these macroscopic observational findings can predict an ASD

diagnosis. Furthermore, atypical visual behavior and visual

sensitivity observed in children with ASD were investigated

through neuroimaging, with a focus on volumetric variations in

the optic nerve and optic chiasm. Our hypothesis is that these

regions—particularly the optic nerve and optic chiasm—may differ

between children with ASD and TD children. We propose that the

brain regions examined may be associated with symptoms related to

sensory sensitivities and clinical severity in children with ASD. In

our study, symptoms related to sensory sensitivities were assessed

based on the individual’s responses to sensory inputs, as measured

by the ‘Sensory’ and ‘Related Behaviors’ subscales of the Autism

Behavior Checklist.
2 Materials and methods

2.1 Participants and procedures

Study participants were selected from children diagnosed with

ASD at the Child and Adolescent Psychiatry Outpatient Clinic of

Necmettin Erbakan University Faculty of Medicine Hospital, based

on a review of the medical record system and the availability of

appropriate neuroimaging data. Exclusion criteria included absence
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of neuroimaging, lack of clinical assessment scale data, history of

organic brain injury or head trauma, postnatal intubation or

mechanical ventilation, history of hypoxia-ischemia, known

genetic disorders (including Down syndrome, Rett syndrome,

Prader-Willi syndrome, Fragile X syndrome, and tuberous

sclerosis), visual or hearing impairments, and chronic physical

illnesses. Based on these inclusion and exclusion criteria, children

diagnosed with ASD were deemed eligible and included in the study

(Figure 1). In children diagnosed with ASD, brain MRI had

previously been conducted as part of the assessment process to

exclude underlying structural brain changes.

The TD control group consisted of children who had previously

undergone brain MRI for various non-neurological and non-

psychiatric reasons (e.g., vertigo or headache) but had not been

diagnosed with any psychiatric, neurological, or physical disorders.

The TD group was selected based on medical record review, and

included only those who had been previously evaluated by a

certified child psychiatrist. Participants without documented

psychiatric evaluation in the medical record system were excluded

from the study. MRI scans were performed by a specialist

radiologist at the Radiology Department of Necmettin Erbakan

University Faculty of Medicine Hospital. In this study, the TD

children were selected from various neuroimaging procedures

conducted at the same radiology unit, and all scans were obtained

using the same structural imaging sequence. MRI data from both

groups were retrospectively analyzed. A total of 111 children with

ASD (aged 5–13 years) and 143 age- and sex-matched TD children

were included in the study.

The study was conducted in accordance with the Declaration of

Helsinki and was approved by the ethics committee of the

Necmettin Erbakan University Faculty of Medicine (approval

date: 25 April 2025, No. 2025/5727).
2.2 Diagnostic and symptom assessment

The children with ASD and TDs were evaluated with a

certificated interview using the Schedule for Affective Disorders

and Schizophrenia for School-Age Children, Present and Lifetime

Version (K-SADS-PL), and ASD was diagnosed in accordance with

the Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition, criteria. The validity and reliability of the K-SADS-PL in

the Turkish population was determined by Ünal et al. (28).

The Childhood Autism Rating Scale (CARS) is used to assess

children older than 2 years with suspected autism and to

differentiate children with autism from children with other

developmental disorders (29). The scale, which has established

validity and reliability in Turkish, consists of 15 items, each

functioning as a subscale. Each item is rated on a scale from 1 to

4 in 0.5-point increments, resulting in a total score ranging from 15

to 60 (30). The Cronbach alpha value of the total score of the scale

is 0.95.

The Autism Behavior Checklist (AuBC) was first used to

describe the severity and frequency of autistic symptoms in
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school-age children and has been shown to be useful in young

children (31). The scale consists of 57 items completed by parents

and includes 5 subscales (sensorial stimulus, relationship, use of

body and objects, language and personal-social development). Its

validity and reliability in Turkey were determined by Yılmaz et al.

(32). The cut-off score of the scale is 39, and the Cronbach alpha

value of the total score of the scale is 0.92.

The Social Communication Questionnaire (SCQ), for which the

Turkish version has demonstrated good reliability and validity

(Cronbach’s alpha = 0.80), is a 40-item autism screening tool

completed by the primary caregiver. Based on the items of the

Autism Diagnostic Interview-Revised (ADI-R), the SCQ yields a

total score ranging from 0 to 39. For nonverbal children, the total

score ranges from 0 to 33. Each item assesses developmentally

inappropriate behaviors, and higher scores are indicative of greater

symptom severity (33, 34).

Evaluations in both groups were previously conducted by a

specialist in child and adolescent psychiatry. For both groups, the

clinician had completed sociodemographic data forms and recorded

the medical history in the hospital’s electronic system. Following a

review of the caregiver-reported history, the child’s developmental

background and current functioning were assessed. A diagnosis of

ASD was made in participants who met DSM-5 criteria, including

at least two of four symptoms related to restricted and repetitive

behaviors and all three symptoms related to deficits in social

communication. The diagnosis was established by a qualified

child psychiatrist using the DSM-5 and the K-SADS-PL. After the

ASD diagnosis was confirmed, symptom severity was assessed using

the SCQ, CARS, and AuBC, and the corresponding clinical scale

scores were documented in the medical record system.
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2.3 MRI procedures

The scans were performed using the same scanner for both the

ASDs and TD controls. MRI assessment was performed through

repeated measurements by the same rater. All MRI scans were

evaluated by an experienced radiologist. Prior to volumetric

analyses, the radiologist was blinded to the study groups

(participants with ASD and TD controls). Only age and sex

information were provided to the evaluator; diagnostic group

assignments were concealed. Blinding was achieved by randomly

coding the MRI data and conducting the analyses independently of

group identity. To assess the reliability of the MRI measurements,

an intra-rater reliability analysis was conducted. The consistency

between measurements was evaluated using the Intraclass

Correlation Coefficient (ICC), yielding a value of 0.92. MRI

images of the patients were acquired using a 1.5T MAGNETOM

Aera MRI scanner (Siemens, Erlangen, Germany). The parameters

for the MRI sequences utilized for the measurements were as

follows: 3D isotropic T1 MPRAGE (slice thickness: 1 mm, matrix:

256x256, echo time: 3.14 ms, repetition time: 1520 ms, flip angle: 8

degrees, field of view: 250 mm), 2D FLAIR in the axial plane (slice

thickness: 4 mm, matrix: 256x128, echo time: 92 ms, repetition time:

5300 ms, inversion time: 1875 ms, flip angle: 150 degrees, field of

view: 250 mm), and T2 turbo spin echo in the coronal plane (slice

thickness: 4 mm, matrix: 256x132, echo time: 92 ms, repetition time:

5120 ms, flip angle: 150 degrees, field of view: 250 mm). For

reconstruction and volume measurement from the MR images,

Syngo.via (Siemens, Erlangen, Germany) and the open-source 3D-

Slicer applications were employed (35). Segmentation of the

measured volumes was performed manually (Figure 2).
FIGURE 1

Flowchart of inclusion of participants with ASD, ASD, autism spectrum disorders; AuBC, autism behavior checklist; CARS, childhood autism rating
scale; SCQ, social communication questionnaire; n, number.
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2.4 Statistical analyses

The Python programming language (Python Software

Foundation, https://www.python.org/) was used for multiple

logistic regression analysis, while statistical analyses were

performed using SPSS version 26.0 (SPSS Inc., Chicago, IL).

Depending on the distribution characteristics, age and brain

morphometric parameters were compared between the two

groups using either the Student’s t-test or the Mann–Whitney U

test. The chi-square test was used to assess the frequency

distribution of categorical variables between groups. Normal

distribution was determined based on skewness and kurtosis

values, with values between −2 and +2 considered acceptable (36).

A significance level of p < 0.05 was accepted within a 95%

confidence interval. To minimize the risk of Type II error due to

multiple variables, multivariate analyses were performed. Age, total

brain volume, and sex were included as covariates, and brain

morphometric parameters were compared between groups using

multivariate analysis of covariance (MANCOVA). The volumes of

the third ventricle were logarithmically transformed to achieve

normal distribution. Since the MANCOVA test revealed a

significant difference between the groups, follow-up univariate

analyses of covariance (ANCOVA) were conducted for each

outcome variable.
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Effect sizes for both parametric and non-parametric comparisons

were estimated using Cohen’s d and Cramér’s V for categorical

variables. According to conventional benchmarks, Cohen’s

d values ≥ 0.8 were considered large, 0.5–0.7 intermediate, 0.2–0.4

small, and < 0.2 no effect (37, 38). Correlations between brain

morphometric measurements and clinical variables were assessed

using Pearson’s correlation for parametric data and Spearman’s

correlation for non-parametric data.

In addition, a multiple logistic regression model was applied to

evaluate the potential effects of morphometric variables on the ASD

diagnosis. Considering the Cohen’s d effect size, sample sizes, alpha

level (a=0.05) and intergroup sample ratio, post-hoc power was

calculated for each morphometric measurement.
3 Results

A total of 254 participants were included in the study, comprising

111 children diagnosed with ASD and 143 typically developing (TD)

controls. No statistically significant differences were observed between

the two groups in terms of age or sex (t = -1.170, p = 0.243 and x2 =

3.482, p = 0.062, respectively). Demographic characteristics, SCQ,

CARS, and AuBC scores, as well as brain morphometric

measurements of participants in both groups, are presented in Table 1.
FIGURE 2

Manually segmented choroid plexus (a), corpus callosum (b), optic chiasm (c), and optic nerves (d) from the acquired MR images are shown.
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Optic chiasm height, right and left choroid plexus volumes, and

corpus callosum volume were significantly higher in the ASD group

compared to the TD group (t = 3.964, p < 0.001; t = 5.402, p < 0.001; t =

7.659, p < 0.001; t = 2.100, p = 0.037, respectively). In contrast, optic

chiasmwidth and third ventricle volume were significantly lower in the

ASD group compared to the TD group (t = -2.041, p = 0.042; z =

-3.221, p = 0.001, respectively). No significant differences were found
Frontiers in Psychiatry 06
between the two groups in terms of optic nerve volumes, optic chiasm

cross-sectional area, lateral ventricle volumes, fourth ventricle volume,

or total brain volume. Left CP volume was observed to have a large

effect sizes (Cohen’s d= 0.952). Post-hoc power analyses related to the

brain morphometric measurements are presented in Table 1.

Brain MRI parameters for both groups are presented in

Figures 3 and 4. In the multiple logistic regression analysis, left
TABLE 1 Data on brain morphometric measurements, SCQ, CARS, and AuBC scales, as well as the demographic characteristics of participants in
both groups.

ASD (n: 111) TD (n: 143) p t/z/x2 d

Age (years) 7.98± 4.01 8.53 ± 3.46 0.243 -1.170 0.146

Sex
Girl (24)
Boy (87)

Girl (46)
Boy (97)

0.062 3.482 0.117a

Right optic nerve diameter
(mm)

2.61 ± 0.41 2.63 ± 0.42 0.694 -0.393
0.049
0.06b

Left optic nerve diameter
(mm)

2.61 ± 0.40 2.66 ± 0.39 0.274 -1.096
0.138
0.19b

Optic chiasm height
(mm)

2.64 ± 0.55 2.39 ± 0.44 <0.001 3.964
0.494
0.97b

Optic chiasm width
(mm)

11.79 ± 1.40 12.17 ± 1.46 0.042 -2.041
0.025
0.53b

Optic chiasm cross-sectional area
(mm2)

27.49 ± 7.93 25.86 ± 5.47 0.055 1.930
0.023
0.46b

Right CP volume
(cm3)

1.33 ± 0.41 1.04 ± 0.43 <0.001 5.402
0.685
1.0b

Left CP volume
(cm3)

1.39 ± 0.47 0.99 ± 0.36 <0.001 7.659
0.952
1.0b

Right lateral ventricle
volumec (cm3)

6.31 ± 5.18 5.30 ± 4.48 0.059 -1.887
0.209
0.37b

Left lateral ventricle volumec

(cm3)
6.56 ± 6.51 5.56 ± 5.37 0.066 -1.837

0.168
0.26b

Third ventricle volumec

(cm3)
0.60 ± 0.40 0.68 ± 0.35 0.001 -3.221

0.199
0.34b

Fourth ventricle volume
(cm3)

1.59 ± 0.64 1.54 ± 0.47 0.478 0.710
0.088
0.10b

CC volume
(cm3)

3.55 ± 1.01 3.32 ± 0.72 0.037 2.100
0.260
0.53b

Total brain volume
(cm3)

1171.76 ± 137.70 1194.89 ± 113.32 0.143 -1.468
0.018
0.30b

CARS 33.35 ± 6.70 – – – –

AuBC sensorial stimulus 7.92 ± 3.09 – – – –

AuBC relationship 28.05 ± 5.12 – – – –

AuBC use of body and objects 29.56 ± 5.18 – – – –

AuBC language 22.04 ± 6.03 – – – –

AuBC personal-social development 15.46 ± 2.53 – – – –

SCQ Total score 31.25 ± 3.64 – – – –
ASD, autism spectrum disorder; TD, typically developing control; CP, choroid plexus; CC, corpus callosum; AuBC, autism behavior checklist; CARS, childhood autism rating scale; SCQ, social
communication questionnaire; d, Cohen’s d effect size.
aCramér’s V effect size,
bPost-hoc power analysis,
cMann-Whitney U.
Bold values indicate statistically significant results.
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CP volume (b = 2.82, p < 0.001), third ventricle volume (b = -1.95, p

= 0.001), CC volume (b = 0.48, p = 0.018), OC height (b = 0.87, p =

0.020), OC width (b = -0.49, p = 0.002), and OC cross-sectional area

(b = 0.063, p = 0.050) were identified as statistically significant

predictors of ASD diagnosis. The model’s log-likelihood value was

-0.470 (p < 0.05). Among these, left choroid plexus volume was

observed to be the strongest predictor (Figure 5).

A MANCOVA was performed to avoid type II errors caused by

the multi-test effect and to control for confounding factors such as

total brain volume, sex and age. The MANCOVA revealed a

significant difference between the groups [Pillai’s trace V = 0.357, F

(6.244) = 22.549, p < 0.001, hp2 = 0.357]. The same variables were taken
Frontiers in Psychiatry 07
as covariates in the ANCOVA to determine the variables that caused

the differences between the groups. The results were unchanged, and

the OC height [F(1.249) = 16.121, p < 0.001, hp2 = 0.069], right CP

volume [F(1.249) = 32.814, p < 0.001, hp2 = 0.235], left CP volume [F

(1.249) = 66.821, p < 0.001, hp2 = 0.297], and CC volume [F(1.249) =

5.373, p = 0.021, hp2 = 0.089] were significantly higher, whereas the

OC width [F(1.249) = 2.591, p = 0.109, hp2 = 0.209] and log-third

ventricle volume [F(1.249) = 11.487, p = 0.001, hp2 = 0.086] were

significantly lower. The ANCOVA results, after controlling for total

brain volume, sex, and age, are presented in Table 2.

In the ASD group, correlations between SCQ, CARS, and AuBC

scale scores and brain morphometric parameters were assessed
FIGURE 3

Box plots illustrating the distribution of total choroid plexus and lateral ventricle volumes, as well as third and fourth ventricle volume levels, in
children diagnosed with autism spectrum disorder (ASD) and typically developing (TD) control children. The Mann–Whitney U test was used to
compare lateral ventricle volumes and third ventricle volume levels between the two groups.
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using Pearson’s and Spearman’s correlation tests. Right lateral

ventricle and fourth ventricle volumes showed weak positive

correlations (r= 0.193, p= 0.042; r= 0.227, p= 0.017, respectively)

with the total SCQ score, while right and left optic nerve diameters

were weak positively correlated with the AuBC sensorial stimulus

scores (r= 0.190, p= 0.045; r= 0.204, p= 0.032, respectively). OC

height and OC cross-sectional area were weak positively correlated

with CARS (r = 0.289, p = 0.002; r = 0.300, p = 0.001, respectively),

AuBC relationship scores (r = 0.314, p = 0.001; r = 0.262, p = 0.006,

respectively), and AuBC use of body and objects scores (r = 0.307,

p = 0.001; r = 0.248, p = 0.009, respectively). Additionally, OC width

showed weak positive correlations with CARS and AuBC use of

body and objects scores (r= 0.271, p= 0.004; r= 0.306, p= 0.001,
Frontiers in Psychiatry 08
respectively). However, OC height showed a weak negative

correlation with the AuBC personal-social development score,

and OC cross-sectional area was weak negatively correlated with

the AuBC language score (r= -0.208, p= 0.028; r= -0.230, p= 0.015,

respectively). No correlation was found between the other

variables (Table 3).
4 Discussion

To the best of our knowledge, this study is the first to investigate

optic nerve and optic chiasm morphometry using MRI in children

diagnosed with ASD, as well as the relationship between these
FIGURE 4

Box plots showing the distribution of morphometric measurements of the optic nerve, optic chiasm, and corpus callosum in children diagnosed with
autism spectrum disorder (ASD) and typically developing (TD) control children.
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morphometric differences and ASD symptom severity. Optic

chiasm height, right and left choroid plexus volumes, and corpus

callosum volumes were significantly higher in the ASD group

compared to the TD group (regardless of total brain volume, sex

and age). Optic chiasm width and third ventricle volume were

significantly lower in the ASD group compared to the TD group,

regardless of total brain volume, sex, and age. No significant

differences were found between the two groups in optic nerve

volumes, optic chiasm cross-sectional area, lateral ventricle

volumes, fourth ventricle volume, or total brain volume. Multiple

logistic regression analysis revealed that left choroid plexus volume

was more strongly associated with ASD diagnosis compared to

other morphometric variables.
4.1 Optic nerve morphometry in ASD

In our study, the height levels of the optic chiasm were

significantly higher in the ASD group compared to the TD group,

whereas the width of the optic chiasm was significantly lower in the

ASD group than in the TD group. A review of the literature shows

that visual studies related to ASD have predominantly focused on the

retinal layers rather than the optic nerve. In line with this, it has been

reported that children with ASD exhibit significantly reduced average
Frontiers in Psychiatry 09
choroidal thickness and volumes of the ganglion cell layer and inner

plexiform layer in both eyes compared to controls 9. In an optical

coherence tomography (OCT)-based study, participants with ASD

demonstrated higher optic nerve head (ONH) perfusion density in

the peripapillary inferior quadrant, greater macular thickness,

increased peripapillary retinal nerve fiber layer (pRNFL) thickness

in the inferior clock-hour sectors, and higher macular vessel density

compared to TDs (39). In adults diagnosed with ASD, reduced

macular and outer nuclear layer thickness compared to controls

has also been reported, and decreased macular thickness has been

found to be significantly and inversely associated with the severity of

autistic symptoms (40). Using OCT, a significantly increased

thickness of the ellipsoid zone, where cone photoreceptors are

located, has been observed in children with ASD compared to TDs

(5). The RNFL, primarily composed of ganglion cell axons that

synapse directly with the lateral geniculate nucleus (LGN), may

represent an appropriate region for analysis in CNS studies (41).

Moreover, ganglion cells, whose axons form the optic nerve, have

been shown to be particularly vulnerable to damage and

neurodegeneration (42). A recent meta-analysis reported that

patients with schizophrenia spectrum disorders exhibit significantly

reduced ganglion cell layer thickness compared to healthy controls.

Furthermore, it has been observed that the thickness of these layers

may be influenced by antipsychotic medication use (43, 44). Patients
FIGURE 5

Multiple logistic regression model coefficients, CP, choroid plexus; CC, corpus callosum; OC, optic chiasm.
TABLE 2 Comparison of OC, CP, CC, and third ventricle volume levels between the two groups according to ANCOVA.

Total samples
ANCOVAa

ASD (n: 111) TD (n: 143)
F (1.249) p hp

2 Observed
powerMean SD Mean SD

OC height 2.64 0.55 2.39 0.44 16.121 < 0.001 0.069 0.979

OC width 11.79 1.40 12.17 1.46 2.591 0.109 0.209 0.361

Right CP volume 1.33 0.41 1.04 0.43 32.814 < 0.001 0.235 1.000

Left CP volume 1.39 0.47 0.99 0.36 66.821 < 0.001 0.297 1.000

CC volume 3.55 1.01 3.32 0.72 5.373 0.021 0.089 0.636

Log-Third ventricle volume -0.29 0.26 -0.20 0.18 11.487 0.001 0.086 0.922
CP, choroid plexus; CC, corpus callosum; OC, optic chiasm; ANCOVA, analysis of covariance; ASD, autism spectrum disorder; TD, typically developing controls.
aCovariates: total brain volume, age and sex.
Bold values indicate statistically significant results.
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with major depressive disorder have been reported to exhibit

significantly reduced RNFL and macular thickness compared to

healthy controls, and this thinning has been associated with both

sleep quality and the severity of depressive symptoms (45). A

reduction in RNFL thickness has been observed to be associated

with neuroinflammation and neurodegeneration (46).

A recent review also noted that pale-appearing optic discs in

children diagnosed with ASD are often associated with optic nerve

atrophy or hypoplasia, suggesting that monitoring the optic nerve

may be useful for assessing potential progressive neurodegeneration

in ASD (47). White matter abnormalities associated with atypical

myelination have been reported in ASD, and such disruptions may

impair optic nerve development. Additionally, the optic pit

originates from the forebrain during embryonic development.

Abnormal brain development in individuals with autism may lead

to visual impairments related to the neural retina. Furthermore, the

development of the optic nerve and neural retina can be disrupted

due to the loss of oligodendrocytes, which are responsible for

myelination. Myelin expression in oligodendrocytes is regulated

by WNT/b-catenin signaling, a pathway that has been reported to

be altered in ASD (6, 48, 49). In ASD animal models induced by

valproic acid, it has been observed that valproic acid can cause
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developmental delays in the formation of retinal neurons by

affecting the WNT signaling pathway, which in turn may

influence visual behaviors (50, 51). Approximately 30% of

children diagnosed with optic nerve hypoplasia and septo-optic

dysplasia have been reported to exhibit comorbid ASD (52). In

relation to the optic nerve, the retinal layer has been reported to

initially thicken due to early neuroinflammation, followed by

thinning associated with subsequent neurodegeneration (53).

Neuroinflammatory processes observed in ASD have been

reported to lead to neuronal damage and disruption of synaptic

connectivity, which may contribute to the progression of clinical

symptoms (54). In our study, the observed increase in optic chiasm

height and decrease in optic chiasm width in ASD were not clearly

demonstrated to be related to neuroinflammation or age-related

changes. The reduced optic chiasm width may be associated with

retinal layer thinning observed in ASD; however, the nature of this

relationship remains unclear. Considering that retinal and optic

nerve morphometry may vary depending on factors such as age and

psychotropic medication use, further studies with larger sample

sizes, inclusion of individuals on medication, and the use of

advanced analytical methods such as OCT are needed to better

understand the association of this finding with ASD.
TABLE 3 Correlation coefficients between brain morphometric measurement levels and CARS, SCQ and AuBC scores.

Brain
Morphometric
Measurements

CARS SCQ
AuBC sensorial

stimulus
AuBC

relationship

AuBC use of
body

and objects

AuBC
language

AuBC
personal-
social

development

Right CP
p
r

0.560
0.056

0.335
-0.092

0.712
-0.035

0.926
-0.009

0.276
0.104

0.994
-0.001

0.694
0.038

Left CP
p
r

0.415
0.078

0.536
-0.059

0.634
-0.046

0.465
-0.070

0.471
0.069

0.407
0.080

0.721
0.034

Right LV
p
r

0.475
0.069

0.042
0.193

0.971
0.004

0.118
-0.149

0.114
0.151

0.750
-0.031

0.461
0.071

Left LV
p
r

0.665
0.042

0.061
0.178

0.278
0.104

0.431
-0.075

0.171
0.131

0.986
0.002

0.576
0.054

Third ventricle
p
r

0.844
0.019

0.074
0.170

0.778
0.027

0.167
-0.132

0.425
0.076

0.966
-0.004

0.703
-0.037

Fourth ventricle
p
r

0.910
0.011

0.017
0.227

0.551
0.057

0.792
-0.025

0.242
0.112

0.321
0.095

0.106
0.154

CC
p
r

0.751
-0.030

0.822
0.022

0.392
0.082

0.513
-0.063

0.427
-0.076

0.319
0.095

0.829
-0.021

Right optic
nerve diameter

p
r

0.865
0.016

0.061
0.179

0.045
0.190

0.751
-0.030

0.636
-0.045

0.565
-0.055

0.669
0.041

Left optic
nerve diameter

p
r

0.479
-0.068

0.129
0.145

0.032
0.204

0.372
-0.086

0.380
-0.084

0.955
-0.005

0.318
0.096

OC height
p
r

0.002
0.289

0.656
-0.043

0.781
-0.027

0.001
0.314

0.001
0.307

0.065
-0.176

0.028
-0.208

OC width
p
r

0.004
0.271

0.825
0.021

0.362
-0.087

0.193
0.124

0.001
0.306

0.249
-0.110

0.889
-0.013

OC cross-
sectional area

p
r

0.001
0.300

0.960
-0.005

0.156
-0.135

0.006
0.262

0.009
0.248

0.015
-0.230

0.160
-0.134
CP, choroid plexus; CC, corpus callosum; OC, optic chiasm; LV, lateral ventricle; AuBC, autism behavior checklist; CARS, childhood autism rating scale; SCQ, social
communication questionnaire.
Bold values indicate statistically significant results.
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In our study, OC height levels showed a weak positive

correlation with CARS scores, AuBC relationship scores, and

AuBC use of body and objects scores, while OC width levels were

weak positively correlated with CARS and AuBC use of body and

objects scores. Conversely, OC height exhibited a weak negative

correlation with AuBC personal-social development scores.

Previous studies investigating the relationship between the visual

system and clinical symptomatology in ASD have primarily focused

on retinal alterations. In this context, various studies have reported

that retinal layer abnormalities observed in ASD are associated with

increased symptom severity (6, 9, 40, 55). Abnormal development

of the visual cortex in the early stages of ASD suggests the possibility

of disrupted visual information transmission from retinal ganglion

cells to the visual cortex (56). In ASD, retinal dysfunction has been

observed to be accompanied by cortical functional impairments,

and this has been linked to various social and communicative

difficulties associated with the disorder (57, 58). In individuals

with ASD who exhibit marked impairments in verbal intelligence, a

thinner RNFL has been demonstrated (41). In a study focusing on

the olfactory bulb, which is anatomically adjacent to the optic nerve,

olfactory bulb volumes in individuals with ASD were reported to

show a positive correlation with AuBC use of body and objects

scores (59). The retina and cerebral cortex both originate from the

embryonic prosencephalon, one of the three primary brain vesicles.

During the early stages of neurodevelopment, the prosencephalon

differentiates into the optic vesicles—which will give rise to the

retina and optic nerve—and the telencephalic vesicles, which will

later develop into various structures including the cerebral cortex

(60). The retina is often referred to as a ‘window to the brain’ due to

its embryological origin from the same germ layer as the brain and

its cellular similarities. As such, changes occurring in the brain can

potentially be inferred through direct observation of the retina (44).

A recent review reported that clinical features observed in children

diagnosed with ASD are also present in children with visual

impairments, and that the visual system shows a positive

correlation with social-communicative skills. According to the

AuBC, the prevalence of an ASD diagnosis among children with

visual impairments was found to be 23.5%. In visually impaired

children, language and communication difficulties may arise as a

consequence of visual deficits (61). The variability in optic chiasm

measurements observed in ASD in our study may be related to

abnormal sensory sensitivities, as suggested by previous research.

This finding highlights the need for further longitudinal studies

incorporating MRI and other advanced neuroimaging techniques to

clarify the relationship between optic chiasm alterations, clinical

symptoms, and atypical sensory processing in ASD. To gain a better

understanding of visual impairments in this population, future

studies should include detailed evaluations of both the optic nerve

and retinal layers. Moreover, further research utilizing objective or

subjective tools for assessing sensory characteristics (e.g., Sensory

Profile 2) is needed to more clearly investigate the relationship

between the diameters of the right and left optic nerves and sensory

response scores on the AuBC.
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4.2 Choroid plexus and ventricular
volumes in ASD

In our study, right and left CP volumes were significantly higher

in the ASD group compared to the TD group. To the best of our

knowledge, only two MRI studies have investigated CP volume in

ASD. A large-scale retrospective analysis including structural brain

MRIs of 1,769 individuals with ASD and 1,996 TD controls (aged 0–

32 years) reported increased CP and ventricular volumes in the

ASD group (62). Another study also reported abnormalities in the

left choroid plexus in individuals with ASD compared to TD

controls (63). The volumetric enlargement of the choroid plexus

observed in ASD has been reported to be potentially associated with

increased levels of inflammatory cytokines in the CSF (64).

Increased choroid plexus and ventricular volumes have also been

reported in patients with schizophrenia spectrum disorders and

major depressive disorder compared to healthy controls (13, 65, 66).

The CP, which plays a role in cerebrospinal fluid (CSF) production,

has also been observed to synthesize cytokines, neurotrophic

factors, and peptides such as insulin-like growth factor (IGF)

(18). Increased CSF volume has been reported in individuals with

ASD compared to TD controls, and this has been suggested to be

associated with impaired neurogenesis and heightened

neuroinflammatory activity in the choroid plexus (67). Several

studies have reported elevated levels of proinflammatory

cytokines as well as increased IGF-1 and IGF-2 concentrations in

the CSF of individuals with ASD compared to controls (14, 68, 69).

As reported in a meta-analysis, neuroinflammatory activity in ASD

has been observed not only in the CSF but also in peripheral blood

(70). The increased CP volumes observed in our study in

individuals with ASD are consistent with previous findings.

However, neuroinflammation was not assessed and CSF analysis

was not performed in our study. Given that CP enlargement in ASD

may vary with age and be influenced by underlying

neuroinflammatory processes, future studies should include more

detailed evaluations of CSF and markers of neuroinflammation. In

this context, advanced analyses integrating CSF, peripheral blood

biomarkers, and CP volumetric measurements are warranted to

better understand their interrelations and relevance to ASD.

In the regression analysis conducted in our study, the volume of

the left choroid plexus was found to show a stronger association

with the ASD diagnosis compared to other morphometric variables.

A review of the literature suggests that this finding may be related to

alterations in hemispheric dominance observed in individuals with

ASD. A recent review reported greater brain activity in the left

hemisphere compared to the right in individuals with ASD, which

has been hypothesized to result from the left hemisphere exhibiting

less atypical development than the right in ASD (71). In addition, an

asymmetric increase in gray matter volume in the left postcentral

gyrus— corresponding to the primary somatosensory cortex— has

been reported in individuals with ASD (72). Functional

neuroimaging studies have reported altered lateralization during

language-related tasks in both children and adults with ASD,
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characterized by reduced left-hemisphere dominance and increased

rightward asymmetry (73). An age-related increase in hemispheric

asymmetry has also been reported in individuals with ASD (74).

The association between left CP volume and ASD observed in our

study may reflect atypical lateralization related to altered

hemispheric dominance in ASD (75). However, asymmetry

between the right and left CP morphometry could not be assessed

in our study, and therefore could not be linked to ASD.

Additionally, differences between left and right CP volumes were

not examined. A review of the literature suggests that asymmetry

measurements of the CP may hold potential significance. To more

clearly demonstrate the relationship between our findings and

lateralization in ASD, longitudinal studies investigating both

hemispheric asymmetry and interhemispheric differences in CP

volumes are warranted.

In our study, third ventricular volume was significantly lower in

the ASD group compared to the TD group, whereas no significant

differences were found between the groups in terms of lateral and

fourth ventricular volumes. In contrast, several studies have reported

larger lateral, third, and fourth ventricular volumes in individuals

with ASD compared to TDs (62, 76–78). Additionally, significant

asymmetrical differences in ventricular volumes have been reported

in individuals with ASD compared to TDs (79). A longitudinal study

reported that ASD participants with a history of prenatal hypoxic

exposure had larger third ventricular volumes compared to both ASD

participants without such exposure and TD controls. Furthermore,

significant associations were found between prenatal hypoxic

exposure and the severity of sensory dysfunction and sleep

disturbances (80). In patients with first-episode psychosis and

pediatric-onset bipolar disorder, lateral and third ventricular

volumes have been reported to be significantly larger compared to

healthy controls, and antipsychotic medication use has been

suggested to influence ventricular volüme (81, 82). A reduction in

ventricular volumes associated with antidepressant use has also been

reported in various psychiatric disorders (83). Newly produced CSF

flows from the lateral, third, and fourth ventricles into the brain

cisterns and subsequently enters the subarachnoid space, covering the

outer cortical surfaces of the brain. Disruptions in CSF circulation

may affect the ventricles and contribute to the development of

neuroinflammation (84). A recent review reported increases in 26

inflammatory cytokines in the CSF of individuals with ASD, along

with elevated CSF volumes. The increase in CSF volume has been

associated with ventricular enlargement, which may exert pressure on

brain tissue and potentially lead to neural damage. Furthermore, CSF

and ventricular volumes in ASD have been shown to be elevated

compared to TD children up to the age of two, with a tendency to

decrease with age (12, 85). Neuroinflammation has been shown to

affect ventricular volume through increased microglial activation and

elevated cytokine levels (86). The reduced third ventricular volumes

observed in our study in individuals with ASD are not consistent with

previous findings. This finding may vary depending on factors such

as age range, psychotropic medication use, neuroimaging protocols,

and segmentation techniques. Furthermore, in our study,

inflammatory status could not be evaluated either centrally or

peripherally in relation to ventricular morphometry in individuals
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with ASD, and ventricular changes were not examined through

longitudinal follow-up. To better elucidate the relationship between

ASD and brain ventricles, prospective longitudinal studies

incorporating cerebrospinal fluid (CSF) analysis and more detailed

ventricular assessments are needed.
4.3 Corpus callosum volumes in ASD

In our study, corpus callosum (CC) volumes were significantly

higher in the ASD group compared to the TD group. A recent meta-

analysis reported overlapping abnormalities in the corpus callosum

tract during the transition from childhood to adulthood in

individuals with ASD (25). In childhood ASD, reduced corpus

callosum (CC) volumes have been reported in the context of

abnormal white matter structure; however, age-related increases

in CC volume have also been observed, which may be associated

with difficulties in social communication and interaction (87). A

systematic review reported that children under the age of six with

ASD exhibited lower corpus callosum and cerebellar volumes

compared to TDs, and that reduced CC volume was associated

with hypoconnectivity between brain regions (88). A recent

systematic review and meta-analysis reported reduced CC volume

in children diagnosed with ASD, which has been attributed to

atypical white matter structure and potentially linked to abnormal

myelination (89). Another recent review reported reductions in

corpus callosum white matter integrity in individuals with psychotic

bipolar disorder compared to controls (90). A recent meta-analysis

on ADHD reported volumetric reductions in the CC, which, similar

to ASD, may be related to alterations in interhemispheric

connectivity (91). In addition, it has been noted that changes in

the CC are not limited to age-related variation but also exhibit sex-

related differences, and that CC assessments should not rely solely

on a single cross-sectional study but be supported by longitudinal

follow-up studies (92). The corpus callosum alterations observed in

our study may suggest that such morphometric changes can vary

depending on age, sex, and the neuroimaging techniques used. To

better clarify this finding, advanced longitudinal studies

incorporating assessments of atypical white matter and

myelination are needed.

The significant group differences observed in the morphometric

parameters of the optic chiasm, along with the volumes of the

choroid plexus, corpus callosum, and third ventricle, suggest that

both commissural connectivity and specific neurodevelopmental

deviations at the ventricular and optic pathway levels may co-occur

in ASD. An integrated evaluation of these structures may enable the

development of a more comprehensive, systems-level model to

better explain the neurobiological basis of ASD.
4.4 Strengths and limitations

The strengths of our study include the inclusion of young

children in both groups, the matching of groups for age and sex,

and the consideration of confounding factors such as total brain
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volume, age, and sex. Morphometric analyses were conducted using

a multivariate logistic regression model to predict autism diagnosis.

Additionally, post-hoc power analyses were performed to assess the

adequacy of the sample size for the morphometric analyses. To our

knowledge, this is the first MRI-based study to investigate optic

nerve and optic chiasm morphometry in children with ASD and to

examine the impact of these morphometric differences on clinical

severity in ASD.

However, our study has several limitations. ASD diagnoses were

established based on clinical evaluation according to DSM-5 criteria,

without the use of specialized assessment tools such as the Autism

Diagnostic Observation Schedule (ADOS) or the Autism Diagnostic

Interview (ADI). Neuroimaging data were obtained at a single time

point, preventing analysis of the effects of comorbid psychiatric

disorders, which may emerge during follow-up, on the brain regions

studied. Changes in brain morphometric measurements over time

related to sex and age were not examined, nor was the relationship

between these changes and CSF symptom severity assessed through

repeated measurements. Additionally, potential sex- and age-specific

associations of regional measurements in ASD participants were not

evaluated in our study. Specific IQ measurements and socioeconomic

status, which could be potential confounding factors affecting the

statistical results of the morphometric analyses, were not included as

covariates in our study. Additionally, specific IQ scores for participants

in both groups were not available. In our study, psychotropic

medication use among participants with ASD could not be included

as a covariate due to limitations in the data, and the impact of such

medication use could not be examined in detail. This was a

retrospective study utilizing previously acquired MRI data obtained

for other purposes in the control group. As such, potential confounding

variables and the lack of control over imaging parameters in typically

developing participants could not be fully assessed in terms of their

possible influence on the results. Additionally, future emergence of

psychiatric conditions in control participants could not be evaluated

due to the absence of longitudinal follow-up. Our study examined only

macroscopic anatomical differences within a certain age range in both

groups; measurements targeting retinal and choroidal changes, such as

those obtained via optical coherence tomography (OCT), were not

performed. Furthermore, advanced neuroimaging techniques such as

functional MRI (fMRI) and cerebral blood flow assessments, which

could evaluate functional connectivity and brain functionality, were not

utilized in our morphometric analyses. This study utilized only

structural MRI. Incorporating optical coherence tomography (OCT)

and functional MRI (fMRI) in morphometric studies of ASD could

provide better insight into how these structural differences affect brain

function. Advanced studies including OCT, OCT-angiography, and

fMRI are needed to more comprehensively assess structural brain

function in individuals with ASD. While our study focused on

macroscopic changes in the optic chiasm and optic nerve, actual

visual function was not assessed. Had accurate and comprehensive

visual testing been conducted, the functional capacity of optic nerve

anatomy and retinal structures could have been directly measured,

allowing correlations between anatomical measurements and

functional outcomes. This limitation restricts our ability to clearly

elucidate the impact of anatomical changes on visual function. Future
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research should address this limitation by investigating potential

correlations between morphological parameters such as the optic

nerve and optic chiasm and visual test outcomes. In our study,

symptoms related to sensory sensitivities were assessed using the

AuBC; however, other advanced tools for evaluating sensory

sensitivities (such as the Sensory Profile 2) were not included.

Another limitation of our study is that the instrument used was not

specifically designed to assess sensory characteristics. In our study,

differences between the right and left CP volumes were not examined,

and lateralization could not be assessed. Moreover, morphometric

measurements of the visual cortex could not be included in the current

analysis. In terms of neuroimaging, our study evaluated only the

morphometric levels of the optic nerve, optic chiasm, corpus

callosum, choroid plexus, and brain ventricles. Additionally, our

study focused exclusively on children and did not include adult

participants. Neuroinflammation was not assessed, CSF analysis was

not performed, and potential inflammatory variables could not be

correlated with morphometric measurements in the context of ASD.
5 Conclusion

In summary, we found that children with ASD aged 5 to 13

years exhibited increased OC height levels, as well as larger CP and

CC volumes, and decreased third ventricular volumes compared to

TD children. These findings suggest that OC height, CC, CP, and

third ventricular volumes may play a role in the etiopathogenesis of

brain development in children with ASD. Additionally, multivariate

logistic regression indicated that left CP volume was more strongly

associated with ASD diagnosis than other morphometric

differences. Significant structural variations in optic chiasm

morphometry, along with the volumes of the choroid plexus,

corpus callosum, and third ventricle, may reflect ASD-specific

differences in neurodevelopmental trajectories. Integrating these

parameters into combined biomarker profi les through

multidisciplinary assessments could not only enhance early

diagnostic approaches but also provide a structural reference

framework for targeted interventions. Nevertheless, further

research is needed to better understand the potential roles of

these brain regions in ASD, to evaluate visual-sensory sensitivity

through brain morphometric analyses, and to identify abnormal

social-communicative behaviors using neuroimaging techniques.
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2. Wrzesińska M, Kapias J, Nowakowska-Domagała K, Kocur J. Visual impairment
and traits of autism in children. Psychiatria polska. (2017) 51:349–58. doi: 10.12740/PP/
OnlineFirst/61352

3. Do B, Lynch P, Macris EM, Smyth B, Stavrinakis S, Quinn S, et al. Systematic
review and meta-analysis of the association of Autism Spectrum Disorder in visually or
hearing impaired children. Ophthalmic Physiol optics: J Br Coll Ophthalmic Opticians
(Optometrists). (2017) 37:212–24. doi: 10.1111/opo.12350

4. Chen Y, Xi Z, Saunders R, Simmons D, Totsika V, Mandy W. A systematic review
and meta-analysis of the relationship between sensory processing differences and
internalising/externalising problems in autism. Clin Psychol review. (2024) 114:102516.
doi: 10.1016/j.cpr.2024.102516

5. Li M, Wang Y, Gao H, Xia Z, Zeng C, Huang K, et al. Exploring autism via the
retina: Comparative insights in children with autism spectrum disorder and typical
development. Autism research: Off J Int Soc Autism Res. (2024) 17:1520–33.
doi: 10.1002/aur.3204

6. Xiao J, Zhu H, Kong W, Jiang X, Wu C, Chen JG, et al. Stabilizing axin leads to
optic nerve hypoplasia in a mouse model of autism. Exp eye Res. (2024) 245:109988.
doi: 10.1016/j.exer.2024.109988

7. Perna J, Bellato A, Ganapathy PS, Solmi M, Zampieri A, Faraone SV, et al.
Association between Autism Spectrum Disorder (ASD) and vision problems. A
systematic review and meta-analysis. Mol Psychiatry. (2023) 28:5011–23.
doi: 10.1038/s41380-023-02143-7

8. Dahl S, Wickström R, Ek U, Teär Fahnehjelm K. Children with optic nerve
hypoplasia face a high risk of neurodevelopmental disorders. Acta paediatrica (Oslo
Norway: 1992). (2018) 107:484–9. doi: 10.1111/apa.14163
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Dergisi. (2019) 30(1):42–50.

29. Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of
childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord.
(1980) 10:91–103. doi: 10.1007/BF02408436
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Sağlığı Dergisi. (2007) 14:13–23.

33. Rutter M. The social communication questionnaire. Western psychol Serv.
(2003).

34. Avcil S, Baykara B, Baydur H, Münir KM, Emiroğlu NI.̇ 4–18 yas ̧ aralığındaki
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