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Integrated transcriptomic and
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biomarkers in children with the
inattentive type of ADHD
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1Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China, 2Department of
Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a clinically

heterogeneous neurodevelopmental disorder. Its inattentive presentation

(ADHD-I) is a common subtype characterized predominantly by difficulties in

sustaining attention, organization skills, and task completion. The biological

foundations of ADHD-I remain unclear, hampering the development of

effective treatments. This study aimed to identify potential ADHD-I biomarker

candidates to guide the therapeutic strategies.

Methods: We analyzed transcriptome sequencing data from a cohort of 32

children (15 control, 17 ADHD-I; aged 6–12 years;81.2% male). All ADHD-I

p a r t i c i p an t s we r e med i c a t i o n -n a ï v e and w i t hou t como rb i d

neurodevelopmental or major psychiatric conditions) to systematically identify

potential biomarkers for ADHD-I. Candidate genes were identified by integrating

differential expression analysis with weighted gene co-expression network

analysis (WGCNA) modules. High-confidence biomarkers were selected via a

multi-step pipeline combining protein-protein interaction (PPI) network analysis

and machine learning feature selection (LASSO regression, Boruta algorithm).

Biomarker performance was evaluated using ROC and gene expression analyses,

and a predictive nomogram was developed. The ADHD-I molecular landscape

was explored through functional enrichment, immune cell profiling,

pharmacological screening, and ligand-receptor interaction modeling.

Results: Cluster of Differentiation 180(CD180) and Cytochrome c Oxidase

Assembly Factor 3(COA3) were identified as potential ADHD-I biomarker

candidates. Both showed high preliminary diagnostic accuracy (AUC > 0.8) and

significantly elevated expression in ADHD – I cohorts. The nomogram

incorporating these biomarkers showed preliminary predictive accuracy for

ADHD-I risk stratification (AUC = 0.878) in this cohort. Pathway enrichment

analysis further localized CD180 and COA3 to the dorsoventral axis formation

pathway, suggesting their role in developmental patterning. Five significant

differential immune cell types were identified between ADHD-I and control

samples. Both biomarkers demonstrated the significant positive correlation

with gamma delta T cells and the strongest negative correlation with

eosinophils. Compound prediction showed that 20 compounds such as benzo

(a)pyrene targeted CD180, and benzo(a)pyrene had a strong binding ability to

CD18 (DG = –8.1 kcal/mol).
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Conclusion: The study identified CD180 and COA3 as candidate biomarkers for

ADHD-I, which may provide new clues into the mechanism of ADHD-I and

potential therapeutic targets.
KEYWORDS

attention deficit hyperactivity disorder, inattentive presentation, transcriptome
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a prevalent

neurodevelopmental disorder and ranks among the most common

neurodevelopmental conditions in pediatric populations, with

hallmark behavioral manifestations encompassing core symptoms

including inattention, hyperactivity, and impulsivity. These

symptoms frequently result in significant impairments in academic

performance, social interactions, and emotional regulation, often

persisting into adulthood with long-term consequences (1).

Although the precise underlying causes continue to be debated,

current research emphasizes the complex interaction between

genetic predispositions, environmental influences, and

neurobiological mechanisms (2). Epidemiological studies estimate

that approximately 5.6% ~7.6% of children worldwide are affected by

ADHD, with a higher incidence in males (3).

However, ADHD is clinically heterogeneous and comprises

three primary presentations according to the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5):

predominantly inattentive (ADHD-I), predominantly hyperactive/

impulsive, and combined presentation (4). The ADHD-I is

characterized predominantly by difficulties in sustaining attention,

organization, and task completion, and by the absence of prominent

hyperactive or impulsive behaviors. Notably, ADHD-I is often

underrecognized due to its subtler behavioral manifestations and

may be more prevalent in girls than other subtypes (5, 6). Emerging

evidence suggests that ADHD-I possesses distinct neurobiological

underpinnings, including atypical development in posterior brain

regions, hippocampal structural specificity, and functional

dissociation within frontoparietal networks, underscoring the

necessity of investigating it as a unique etiological entity (7–9).

Despite being a common clinical presentation (10, 11), ADHD-

I faces significant challenges in clinical practice, including a notable

lack of objective biomarkers to guide precision diagnostics and

therapeutic interventions (12, 13). Current management strategies

primarily rely on stimulant medications, such as methylphenidate

and amphetamines, alongside behavioral interventions and non-

pharmacological approaches, including psychoeducation and

cognitive training. However, these treatments are associated with

various side effects, including sleep disturbances, appetite
02
suppression, and mood fluctuations, which limit their long-term

efficacy and patient compliance (14). Given these limitations, the

identification of reliable biomarkers for ADHD-I could improve

early diagnosis, optimize treatment strategies, and minimize

adverse effects, ultimately enhancing patient outcomes.

Transcriptome sequencing, also known as RNA sequencing

(RNA-seq), is an advanced high-throughput technology that

analyzes all RNA molecules in a cell, providing an in-depth view

of gene expression at the transcript level. In contrast to

conventional techniques such as microarrays, RNA-seq is capable

of identifying both known and novel transcripts, thus delivering a

more extensive and precise representation of the transcriptome.

This technique has become indispensable for dissecting complex

biological processes from mapping alternative splicing events and

fusion genes to identifying regulatory mutations with potential

disease implications. Beyond its analytical breadth, RNA-seq

excels in generating high-resolution datasets rapidly, sensitively

detecting low-abundance transcripts, and unraveling multilayered

gene regulation networks. Given these advantages, this study

utilizes transcriptomic profiles to systematically identify potential

biomarkers for ADHD-I, advancing mechanistic understanding of

this neurodevelopmental disorder.

In this current investigation, we conducted an exploratory study

utilizing transcriptome sequencing on peripheral blood samples

from a preliminary, carefully phenotyped cohort of children with

ADHD-I. A comprehensive analytical framework was utilized,

incorporating differential gene expression analysis, WGCNA, PPI

network evaluation, and machine learning techniques, to

systematically pinpoint critical biomarker candidates associated

with ADHD-I. Furthermore, we conducted functional

enrichment, immune infiltration analysis, and exploration of

regulatory mechanisms to deepen our understanding of the

potential biological processes and pathways involved in ADHD-I

pathophysiology. Moreover, drug prediction analyses were

performed to suggest potential pharmacological interventions

based on the identified biomarkers. By integrating these

comprehensive approaches, this study aims to uncover novel

biomarkers that may serve as diagnostic indicators or therapeutic

targets for ADHD-I, providing new insights into its underlying

molecular mechanisms.
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2 Materials and methods

2.1 Study cohort and ethical compliance

Peripheral blood specimens were prospectively collected from a

discovery cohort of 32 age- and gender-matched participants at

Fujian Medical University Union Hospital, comprising 17

medication-naïve ADHD-I patients (ADHD-inattentive

presentation, Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition standards (15)) and 15 controls.

Participants in the control group had no ADHD and any known

neuropsychiatric disorders. In this study, the full cohort of 32

participants (17 ADHD-I patients and 15 controls) had an age

range of 6 to 12 years with a mean age of 8.8 years. The cohort was

81.2% male and 18.8% female. All participants in the ADHD-I

group were medicat ion-naïve and free of comorbid

neurodevelopmental or major psychiatric conditions, while the

control group was age- and gender-matched to the ADHD-I

group (Supplementary Table 1).

ADHD diagnosis was further validated through Conners’

Parent Symptom Questionnaire (PSQ) and Teacher Rating Scale

(TRS). Exclusion criteria encompassed: (1) history of traumatic

brain injury; (2) comorbid neurodevelopmental conditions

(including autism spectrum disorder, intellectual disability,

specific learning disorders, or tic disorders); (3) major psychiatric

comorbidities. Written informed consent was obtained following

Helsinki Declaration guidelines, with ethical approval granted by

the Institutional Review Board (Approval No. 2024ky215).
2.2 Transcriptome sequencing and data
preprocessing

Total RNA was extracted and purified from 32 blood samples

using TRIzol reagent (Invitrogen, CA, USA). RNA integrity and

pu r i t y we r e v e r ifi ed u s i ng a NanoDrop ND-1000

spectrophotometer (NanoDrop, Wilmington, DE, USA) and a

Agilent Bioanalyzer 2100 system (Agilent, CA, USA).

Samples meeting specified quality thresholds were considered

eligible for downstream processing, including minimum

concentration thresholds exceeding 50 ng/μL, RNA Integrity

Number (RIN) values above 7.0, optimal density 260/280

absorbance ratios surpassing 1.8, and total RNA quantities

exceeding 1 μg. Polyadenylated RNA was isolated through two-

stage purification with a Dynabeads Oligo(dT)25-61005 (Thermo

Fisher, CA, USA), starting from 1 μg of total RNA. Subsequent

fragmentation employed the magnesium-mediated fragmentation

protocol (NEB, cat. E6150, USA) involving thermal incubation at

94 °C for 5–7 minutes.

Complementary DNA synthesis was performed using

SuperScript™ II Reverse Transcriptase (Invitrogen, cat. 1896649,

USA) following manufacturer specifications.

Following Polymerase chain reaction(PCR) amplification, the

resulting cDNA libraries demonstrated consistent insert sizes

averaging 300 ± 50 bp. High-throughput sequencing analysis was
Frontiers in Psychiatry 03
conducted on the Illumina NovaSeq 6000 system (PE150

configuration), generating bidirectional 150 bp reads for

comprehensive transcriptome profiling.

Following sequencing, low-confidence reads were removed with

Fastp (https://github.com/OpenGene/fastp).The retained high-

confidence data were then aligned to the reference genome

(Homo sapiens, GRCh38) using HISAT2(https://ccb.jhu.edu/

software/hisat2). Gene expression patterns were quantified as

Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) using StringTie software (https://ccb.jhu.edu/software/

stringtie). These normalized expression values for all genes from

transcriptomic data were subsequently presented through box plots

created via “ggplot2” package (v 3.4.4) (16).
2.3 Differential expression analysis

To identify ADHD – I -associated transcriptional changes,

differentially expressed genes (DEGs) in ADHD and controls

were analyzed using the ‘DESeq2’ package (v 1.38.0) (17). The

thresholds were set at |log2 FC| > 0.5 and adjusted p-value < 0.05

(Corrected by the Benjamini-Hochberg (BH) method). DEG

distributions were visualized through a volcano plot (generated

with ‘ggplot2’ v3.4.4), while a hierarchical heatmap ‘pheatmap’

package(v 1.0.12) highlighted the top 10 most dysregulated genes

(ranked by |log2 FC| magnitude) in ADHD – I samples.
2.4 WGCNA

To delineate ADHD-associated molecular networks, gene co-

expression modules were constructed from transcriptomic data

utilizing the ‘WGCNA’ package (v1.7.1) (18). The process began

with hierarchical clustering to detect and remove any outliers. An

ideal soft-threshold power was determined to achieve a scale-free

network architecture, requiring topology model fit (R²) above 0.85

while preserving minimal mean connectivity.

A hierarchical clustering tree was then constructed with the

following parameters: a minimum module size (min Module Size)

of 100 genes, a deep split parameter (deep Split) of 4, and a module

merging height (merge Cut Height) of 0.25. This approach allowed

for the identification of distinct gene modules, each represented by a

unique color. After module identification, Pearson correlation

coefficients were calculated between ADHD – I samples, control

samples, and each gene module (|cor| > 0.3, p < 0.05). Modules

demonstrating the highest correlations to the ADHD – I samples

were considered as key modules. Genes in these pivotal modules

were prioritized as key candidates for further detailed analysis.
2.5 Identification and function analysis of
candidate genes

Candidate genes were prioritized through intersectional

analysis of differentially expressed genes (DEGs) and co-
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expression network modules through an integrated analytical

approach employing the ‘ggvenn’ package (v 0.1.9) (https://

CRAN .R -p r o j e c t . o r g / p a c k a g e=gg v enn ) . Fun c t i on a l

characterization of prioritized genes involved Gene Ontology

(GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses conducted with the

‘clusterProfiler’ package (v 4.7.1.003) (19), with a significance

threshold of nominal p < 0.05. PPI networks were reconstructed

from the candidate genes via the STRING database (https://string-

db.org/) with a confidence threshold ≥ 0.15 and visualized in

Cytoscape (v3.9.1) (20). Key modules within the PPI network

were detected through Molecular Complex Detection (MCODE)

clustering within Cytoscape (v 3.9.1). High-density subnetworks

were identified through MCODE clustering, and genes within these

core modules were designated as ADHD-I associated hub genes.
2.6 Biomarker identification and validation

To identify potential biomarkers from the transcriptome

sequencing data, we implemented dual machine learning

algorithms. The LASSO analysis was conducted using the ‘glmnet’

package (v 4.1.4) (21), with a binomial family model 10-fold cross-

validation for enhancing model robustness. An ideal model was

selected by confirming the results at the minimum lambda value,

ensuring that only the most significant predictors were retained. In

parallel, the Boruta algorithm was applied via the ‘Boruta’ package

(v 8.0.0) (22), utilizing a significance threshold of p = 0.01 and a

maximum of 100 iterations (maxRuns). This method was used to

assess the relevance of each gene by comparing its importance to

that of randomized shadow features. Biomarkers were identified by

intersecting the gene sets obtained from both LASSO and Boruta

analyses using the ‘ggvenn’ package (v 0.1.9). To assess the

diagnostic accuracy of these biomarkers, receiver operating

characteristic (ROC) curves were created utilizing the ‘pROC’

package (v 1.18.0) (23). An area under the curve (AUC) value

exceeding 0.7 was deemed to indicate strong distinguishing power

in distinguishing the ADHD-I from control groups. Finally, the

Wilcoxon rank-sum tests were utilized to assess the statistical

significance of differences in biomarker expression between the

ADHD-I and control groups. Data analysis was performed using

the ‘rstatix’ package (v.0.7.2) [https://CRAN.R-project.org/

package=rstatix], with p < 0.05 indicating statistical significance.
2.7 Construction and validation of the
nomogram

A nomogram model for ADHD-I risk stratification was

constructed using the identified biomarkers through the ‘rms’

package (v 6.5-0) (24). The nomogram was derived from a fitted

logistic regression model, with the expression level of each

biomarker as the predictive variable, to explore its impact on the

risk of ADHD-I occurrence. Model calibration was evaluated using

calibration curves and the Hosmer-Lemeshow test, with
Frontiers in Psychiatry 04
nonsignificant deviation (p >0.05) confirming adequate fit.

Additionally, the performance of the nomogram was further

assessed by generating a ROC curve using the ‘pROC’ package

(v 1.18.0) (25), to evaluate its discriminative ability.
2.8 Chromosomal localization and
correlation analysis

The chromosomal locations of candidate biomarkers were

annotated using the ‘RCircos’ package (v 1.2.2) (26) to visualize

their genomic distribution on human chromosomes. Furthermore,

to explore potential relationships between biomarkers, Spearman’s

rank correlation analysis was performed with the ‘psych’ package(v

2.2.9) (27) (|cor| > 0.30, p < 0.05). Correlation coefficients (|cor| >

0.30, p < 0.05) were calculated to identify significant relationships

between biomarkers. A correlation heatmap was generated using

the ‘corrplot’ package (v 0.92) (28) to visually represent

these associations.
2.9 Function analysis of biomarkers

Gene-gene interaction networks were reconstructed using

GeneMANIA (https://genemania.org/) to identify functional

partners of the candidate biomarkers. Besides, to further delineate

pathway-level mechanisms, transcriptome sequencing data were

analyzed using gene set enrichment analysis (GSEA). Spearman’s

rank correlation coefficients between the biomarkers and

transcriptome-wide gene expression were calculated in

descending order with the ‘psych’ package (v 2.2.9). Gene set

enrichment analysis employed the ‘c2.cp.kegg.v2023.

1 .Hs . symbol s . gmt ’ co l l ec t ion f rom MSigDB (ht tp : / /

software.broadinstitute.org/gsea/msigdb), implemented via

‘clusterProfiler’ package (v 4.7.1.003) using predefined gene sets

as background. Significance was determined based on an adjusted

p-value of < 0.05 (BH method was used for correction) and absolute

normalized enrichment score (|NES| > 1). The top five prioritized

pathways (ranked by ascending adjusted p) selected for

biological interpretation.
2.10 Immune infiltration analysis

To investigate immune cell infiltration patterns in ADHD-I,

this study calculated immune infiltration scores for 28 cell subtypes

using transcriptomic data through single-sample gene set

enrichment analysis computational algorithm implemented in the

‘GSVA’ package (v 1.46.0) (29, 30). The analysis employed gene set

variation methodology to quantify immune cell abundance based

on gene expression profiles. Wilcoxon rank-sum tests identified cell

populations with differential infiltration between ADHD and

controls (p < 0.05). Subsequently, Spearman’s rank correlation

analysis was performed using the ‘psych’ package (v 2.2.9) to

explore relationships among the differential immune cell types, as
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well as the correlations between these immune cell types and the

identified biomarkers. A significance threshold of (|cor| > 0.30,

p < 0.05) was applied to identify significant associations.
2.11 Biomarker-disease gene interaction
analysis

To investigate the relationship between biomarkers and disease-

related genes, the top 30 ADHD-linked genes were retrieved from

the GeneCards database (https://www.genecards.org/) using the

searching term ‘Attention deficit hyperactivity disorder’. Gene

expression variations between ADHD-I and the control cohorts

was assessed via Wilcoxon rank-sum tests (p < 0.05). Subsequently,

Spearman’s rank correlation analysis was performed utilizing the

‘psych’ package (v 2.2.9) to assess the correlation between the

biomarkers and ADHD-I -related genes. A threshold of (|cor| >

0.30, p < 0.05) was applied to identify significant associations.
2.12 Regulatory network construction

To predict the microRNAs targeting the identified biomarkers,

we utilized the TargetScan (https://www.targetscan.org/) and

MicroCosm (https://mycocosm.jgi.doe.gov/) databases. The key

miRNAs were selected by overlapping the predictions from both

databases. Subsequently, Starbase (https://rnasysu.com/encori/) was

utilized to predict the long non-coding RNAs (lncRNAs)

interacting with these key miRNAs. Based on these interactions, a

lncRNA-miRNA-mRNA regulatory network was built and

visualized with Cytoscape (v3.9.1). Parallel analysis through the

JASPAR repository (https://jaspar.elixir.no/) revealed transcription

factors (TFs) targeting the biomarkers, with subsequent network

modeling and visualization performed in Cytoscape (v3.9.1) to

elucidate potential regulatory mechanisms.
2.13 Compounds prediction and molecular
docking

Potential therapeutic agents targeting the identified biomarkers

were predicted using the Comparative Toxicogenomics Database

(CTD, https://ctdbase.org/). Subsequently, a network illustrating

biomarker-compounds interactions was developed and

graphically represented through Cytoscape (v 3.9.1). From this

network, candidate compounds were chosen for further molecular

docking analysis. The protein crystal structures of the biomarkers

(acting as receptors) were retrieved from the Protein Data Bank

(PDB, https://www.rcsb.org/), with ligand structures acquired from

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

Molecular docking simulations employing CB-Dock enabled the

determination of binding energies, where values typically below -1.2

kcal/mol demonstrate favorable binding potential between

interacting molecules.
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2.14 Statistical analysis

All the statistical analyses were conducted utilizing R software

(v 4.2.2). Differential expression analysis between the ADHD and

control groups was assessed using a negative binomial distribution

model to account for biological variability. For comparisons of

continuous variables between two groups, the Wilcoxon rank-sum

test was applied, with significance set at p < 0.05 after adjusting for

multiple comparisons using the Benjamini–Hochberg method. To

assess the relationships among biomarkers and other genes or

clinical features, Spearman’s rank correlation coefficients were

calculated, applying a threshold of |cor| > 0.30 and p < 0.05 to

identify significant associations. Receiver operating characteristic

curves were generated to evaluate diagnostic performance, with

AUC values used to measure accuracy. For immune cell infiltration

analysis, single-sample GSEA was performed to calculate

enrichment scores for 28 immune cell types. Differences in

immune cell infiltration scores between patients with ADHD-I

and the control samples were assessed using the Wilcoxon rank-

sum test, with p < 0.05 considered statistically significant.
3 Results

3.1 Identification of candidate genes

Transcriptome sequencing data from 15 control and 17 ADHD-I

samples underwent rigorous quality control, revealing balanced gene

expression profiles across cohorts with no significant batch effects

(Supplementary Figure S1). This finding provided a solid foundation

for subsequent analyses, ensuring the reliability and validity of the

data. Differential expression analysis revealed a total of 382 DEGs.

Among these, 187 genes were up-regulated and 195 genes were

down-regulated in patients with ADHD-I (Figures 1A, B). For the

WGCNA, no outlier samples were detected (Figure 1C).

Subsequently, the optimal soft-thresholding power value was

determined to be 8 (R2 = 0.851), exceeding the threshold indicated

by the red line (R2 = 0.85), with mean connectivity approaching zero

(Figure 1D). Following the Next module detection, similar modules

were merged, resulting in the identification of 7 gene modules

(excluding a grey module for unclassified genes) (Figure 1E).

Notably, the MEblack module demonstrated the strongest positive

association with ADHD-I samples (|cor| = 0.32, p < 0.05) (Figure 1F).

Consequently, the 339 genes within the MEblack module genes were

selected as key candidate genes. Intersectional analysis between these

module genes and the 382 differentially expressed genes (DEGs)

yielded 31 candidate genes (Figure 1G), which were hypothesized to

mediate ADHD-I underlying mechanisms through dysregulated

molecular pathways. Overall, these analyses identified 31 candidate

genes that may contribute to ADHD – I pathophysiology. These

findings provide insights into the molecular mechanisms of ADHD-I

and suggest potential avenues for future research on diagnostic

markers and therapeutic targets.
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FIGURE 1

Identification of candidate genes for ADHD through transcriptomic and network analysis. (A, B) Heatmap and volcano plot of differentially expressed
genes between the ADHD group and the control group. Differential expression analysis revealed a total of 382 DEGs. Among these, 187 genes up-
regulated and 195 genes down-regulated in ADHD patients. (C) Sample Clustering Dendrogram.presents the hierarchical clustering dendrogram of
all samples, illustrating the relationships and groupings among the samples based on their similarities and differences.For the WGCNA, no outlier
samples were detected. (D) illustrates the systematic process for selecting the soft threshold (power). (E) illustrates the cluster dendrogram, which
depicts the hierarchical clustering results of the data samples. (F) illustrates the module−trait relationships in the context of ADHD. Each row
corresponds to one of the identified gene modules, while each column represents a different trait of interest. The color scale reflects the correlation
coefficients between the module eigengenes and the traits, with red indicating positive correlations and blue indicating negative correlations. (G)
The Venn diagram illustrates the outcome of the gene selection process. The MEblack module, consisting of 339 genes, was identified and selected
as key candidate genes. Subsequently, the intersection of these 339 key module genes with the 382 differentially expressed genes (DEGs) resulted in
the identification of 31 candidate genes. .
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3.2 Exploration of the function of
candidate genes

Functional enrichment analysis revealed that the 31 candidate

genes were significantly enriched in 157 GO terms and in 3 KEGG

pathways. The top 5 GO terms and KEGG pathways, ranked by p-

value from lowest to highest, were presented. Significant GO terms

included ‘mitochondrial respiratory chain complex assembly’ (BP),

‘mitochondrial inner membrane’ (CC), and ‘SNAP receptor activity’

(MF) (Figure 2A). The identified KEGG pathways included

‘thermogenesis’, ‘SNARE interactions in vesicular transport’, and

‘terpenoid backbone biosynthesis’ (Figure 2B). Additionally, PPI

network was constructed, comprising 25 genes and 47 interactions

(Figure 2C). Notably, MRPL27 showed close interactions with

several genes, including MRPL52 and UQCC3, etc. Subsequently,

two key modules in the PPI network were ascertained

(Supplementary Table 2). The 10 genes within these two modules

were selected as candidate genes for further analysis (Figure 2D).
3.3 Identification of CD180 and COA3 as
biomarker candidates for ADHD-I

From an initial set of 10 hub genes, the LASSO method

identified 3 candidate genes with a log (l. min) of −3.355825

(Figure 3A). The Boruta algorithm, a feature selection method,

independently confirmed 5 of these genes (Figure 3B). By

intersecting the results from LASSO and Boruta, 2 genes CD180

and COA3 were identified as potential biomarkers candidates for

ADHD (Figure 3C). In this preliminary cohort, both biomarkers

demonstrated apparent diagnostic accuracy (AUC > 0.8,

Figure 3D). Further gene expression analysis revealed that CD180

and COA3 were significantly upregulated in ADHD-I samples

compared with control samples (p < 0.05) (Figure 3E). A strong

positive correlation was observed between CD180 and COA3

expression (r = 0.57, p = 0.00066) (Figure 3F). Moreover,

genomic mapping localized CD180 to chromosome 5 and COA3

to chromosome 17 (Figure 3G). In conclusion, our analysis

prioritizes CD180 and COA3 as promising candidate biomarkers

for ADHD-I, based on their preliminary diagnostic performance

and significant differential expression in this cohort.
3.4 Development and validation of a
predictive nomogram

Using the two identified biomarkers, a nomogram was

developed to predict the risk of ADHD-I (Figure 4A). This

nomogram demonstrated a clear correlation between higher total

points and an increased risk of ADHD-I. The calibration curve

confirmed the accuracy of the model’s predictions, with a non-

significant p-value of 0.256, indicating strong concordance between

the predicted and observed outcomes (Figure 4B). The nomogram

incorporating these biomarkers yielded an AUC of 0.878 for risk

stratification in our dataset; however, this value should be
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interpreted with caution due to the limited sample size and the

exploratory nature of this analysis (Figure 4C). Taken together,

these results underscore the robust efficacy of the nomogram in

predicting ADHD-I, reinforcing its potential as a valuable tool in

clinical assessments.
3.5 Investigation of functions and pathways
associated with biomarkers

Using GeneMANIA, 20 functionally related genes associated

with the biomarkers were identified. Notable interactions included

CD180 with GPR18 and COA3 with LY96, highlighting their roles

in processes for instance ‘cellular response to lipopolysaccharide’

(Figure 5A). The GSEA revealed significant co-enrichment of both

biomarkers in pathways associated with ‘ribosome biogenesis’ and

‘dorso ventral axis formation’, etc. (Figures 5B, C). These findings

emphasized the potential involvement of these biomarkers in

critical biological pathways and processes, providing valuable

insights into their roles in the progression of ADHD-I.
3.6 Immune infiltration differences
between ADHD-I and control samples

The heatmap presented the immune infiltration patterns of 28

immune cell subtypes in the ADHD-I and control cohorts

(Figure 6A). Five cell populations exhibited significant abundance

differences (p < 0.05; Figure 6B): activated CD4+ T cells, eosinophils,

mast cells, and plasmacytoid dendritic cells were enriched in the

controls, whereas gamma delta (gd) T cells predominated in

ADHD-I patients. Correlation analysis of these differentially

infiltrated immune cells demonstrated a strong positive

association between mast cells and eosinophils (cor = 0.91,

p < 0.05) and a robust negative correlation between gd T cells and

plasmacytoid dendritic cells (cor = -0.62, p < 0.05) (Figure 6C).

Furthermore, biomarker association analysis revealed that gd T cells

infiltration correlated positively with CD180 (cor = 0.62, p < 0.05)

and COA3 (cor = 0.58, p < 0.05), whereas eosinophils showed the

strongest negative correlation with CD180 (cor = -0.7, p < 0.05) and

COA3 (cor = -0.46, p < 0.05) (Figure 6D). These findings

highlighted the distinct immune landscape in ADHD – I and

underscored the critical relationships between specific immune

cells and biomarkers, providing valuable insights into potential

therapeutic targets for ADHD-I management.
3.7 Investigation of the underlying
molecular mechanisms of biomarkers

The top 30 ADHD-related genes were identified using the

GeneCards database. Among these, HIVEP1, KIF5B, MECP2, and

VPS13B exhibited significantly lower expression levels in the

ADHD-I samples (p < 0.05) (Figure 7A). Correlation analysis

demonstrated a significant negative correlation between these
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ADHD-related genes and two biomarkers. Notably, HIVEP1

exhibited the strongest negative correlation with CD180 (cor =

-0.5, p < 0.05) and COA3 (cor = -0.5, p < 0.05) (Figure 7B).

Additionally, by querying the TargetScan and MicroCosm
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databases, 26 and 54 miRNAs were identified, respectively. Then,

76 miRNAs were obtained by combining and de-weighting the two

sets of miRNAs. Overlapping these miRNAs led to the discovery of

4 key miRNAs (Figure 7C). A total of 4 lncRNAs targeting these
FIGURE 2

Functional enrichment and protein-protein interaction (PPI) network analysis of candidate genes. (A) GO Enrichment Analysis.The results of the
functional enrichment analysis conducted on the 31 candidate genes. Significant GO terms included "mitochondrial respiratory chain complex
assembly" (BP), "mitochondrial inner membrane" (CC), and "SNAP receptor activity" (MF) (B) KEGG pathway analysis of DEGs included
"thermogenesis", "SNARE interactions in vesicular transport", and "terpenoid backbone biosynthesis". (C) PPI Network of Candidate Genes.
Construction of the PPI network and selection of hub genes. (D) Two key modules in the PPI network were ascertained. The 10 genes within these
two modules were selected as hub genes for further analysis.
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FIGURE 3

Identification and validation of CD180 and COA3 as ADHD biomarkers. (A) LASSO Regression for Biomarker Selection. Identifcation of candidate
diagnostic biomarkers through machine learning algorithms. From an initial set of 10 hub genes, the LASSO method identified three candidate genes
with a log (l. min) of -3.355825. (B) The Boruta algorithm evaluated gene importance against randomized "shadow" features (gray). Five genes,
including CD180 and COA3 (green boxes), were confirmed as significant. (C) Intersection of LASSO and Boruta Results. From LASSO and Boruta, two
genes CD180 and COA3 were identified as potential biomarkers for ADHD. (D) ROC Analysis of Diagnostic Accuracy. Both biomarkers exhibited high
diagnostic accuracy, achieving area under the curve (AUC) values exceeding 0.8. (E) Differential Gene Expression. Gene expression analysis revealed
that CD180 and COA3 were significantly upregulated in ADHD. (F) Correlation Between Biomarkers. Correlation analysis further indicated a strong
positive correlation between the expression levels of CD180 and COA3. (G) Chromosomal Localization. Chromosomal localization analysis indicated
that CD180 was located on chromosome 5, while COA3 is situated on chromosome 17.
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four key miRNAs were predicted. Based on the predicted 76

miRNAs, 17 lncRNAs, and two biomarkers, a lncRNA-miRNA-

mRNA interaction network was subsequently constructed

(Figure 7D). Notably, the miRNA, hsa-miR-29b-1-5p, co-targeted

both CD180 and COA3 (Figure 7D). Furthermore, six TFs were

predicted to target CD180, and nine TFs targeted COA3, creating a

TF–mRNA network. Notably, FOXC1 was identified as a co-target

for both CD180 and COA3 (Figure 7E). These results provide initial

insights into the molecular mechanisms associated with the

biomarkers, opening up new avenues for further investigation of

ADHD pathophysiology.
3.8 Analysis of the interactions of
compounds with CD180 and COA3

A total of 20 and 30 compounds targeting CD180 and COA3,

respectively, were predicted. Notably, five compounds–benzo(a)

pyrene(BaP), cadmium, cadmium chloride, di-n-butylphosphoric

acid, and sodium arsenite – were found to co-target both
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biomarkers (Figure 8A). These five compounds were subsequently

subjected to molecular docking analysis. However, the 3D

structures of cadmium, cadmium chloride, and sodium arsenite

were unavailable, and the protein crystal structure of COA3 was

also lacking, thus preventing molecular docking studies for these

compounds and COA3. Notably, the docking results indicated that

CD180 and BaP exhibited favorable binding energy of −8.1 kcal/

mol, with key interactions involving residues such as A218 and

D220 (Figure 8B). Both CD180 and di-n-butylphosphoric acid

demonstrated a binding energy of −4.3 kcal/mol, with critical

interactions at residues A199 and E197 (Figure 8C). These

findings suggested that these compounds might affect the risk of

ADHD – I through CD180.
4 Discussion

ADHD man i f e s t s a s a h i g h l y h e t e r o g e n y e ou s

neurodevelopmental disorder characterized by complex genetic

and environmental interactions. This study specifically focused on
FIGURE 4

Development and validation of the ADHD risk prediction nomogram. (A) Nomogram for ADHD Risk Stratification. (B) Calibration Curve for Prediction
Accuracy. (C) ROC Curve for Diagnostic Performance. The ROC curve indicated an AUC of 0.878 for the nomogram, highlighting its exceptional
predictive performance.
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its inattentive presentation (ADHD-I), a distinct clinical subtype

with potentially unique pathophysiological mechanisms. Current

diagnostic criteria for ADHD and ADHD-I in particular remain

predominantly reliant on subjective behavioral assessments, with a

notable absence of validated objective biomarkers to facilitate early

and targeted intervention (31). Our study leveraged transcriptomic

profiling and network-based systems biology to identify CD180 and

COA3 as dual immune–metabolic biomarker candidates for

ADHD-I, which exhibited significant diagnostic potential (AUC >

0.8). By integrating differential expression analysis, WGCNA and

machine learning, we systematically bridged peripheral blood

transcriptomic signatures with central pathological mechanisms.

This exploratory study not only highlights the power of multi-omics

integration in biomarker discovery but also provides specific clues

for further exploring the heterogeneity of ADHD-I. The nomogram

model further demonstrated clinical applicability, offering a
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quantitative tool for risk stratification within the ADHD-I

population. These findings not only advance the subtyping and

diagnostics of ADHD, but also open avenues for investigating

immune–metabolic crosstalk in the underlying mechanisms of

ADHD-I.

The identification of CD180, a member of the toll–like receptor

(TLR) family, underscores the critical role of neuroimmune

dysregulation in ADHD-I underlying mechanisms. Elevated

CD180 expression may reflect aberrant B-cell activation, as

CD180 is involved in regulating B-cell tolerance and innate

immune responses through TLR signaling (32). This observation

aligns with emerging evidence implicating maternal immune

activation in offspring ADHD (including the inattentive

presentation) risk via TLR pathway dysregulation (33).

Furthermore, genetic studies have linked CD180 polymorphisms

to autoimmune diseases such as systemic lupus erythematosus (34),
FIGURE 5

Functional networks and pathway enrichment of ADHD biomarkers CD180 and COA3. (A) The interaction network generated by GeneMANIA
identifies 20 functionally related genes associated with CD180 and COA3. (B, C) GSEA revealed significant co-enrichment of both biomarkers in
pathways associated with "ribosome biogenesis" and "dorso ventral axis formation".
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highlighting its dual role in modulating both immunity and

neurodevelopmental processes. TLR signaling is increasingly

implicated in neurodevelopmental disorders through its

modulation of microglial activation and synaptic plasticity (35).

Our findings corroborate recent studies demonstrating that TLR4

activation in maternal immune activation models induces

neurodevelopmental disorders in offspring (36). Importantly, we

identified a robust correlation between CD180 overexpression and

gd T-cell infiltration (r = 0.62), further suggesting a peripheral-to-

central immune axis mediated by chemokine signaling, which may

exacerbate neuroinflammation and impair cortical maturation.

Notably, molecular docking analyses revealed a high-affinity

interaction between CD180 and BaP, an environmental toxin

associated with ADHD (including the inattentive presentation)

risk through aryl hydrocarbon receptor (AhR) –TLR crosstalk

(37). This interaction provides insight into a potential mechanism

by which environmental pollutants amplify genetic vulnerabilities,

offering a novel target for preventive strategies for ADHD – I.

COA3 (also known as MITRAC12), a mitochondrial Complex

IV assembly factor, emerged as a metabolic biomarker reflecting
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compensatory responses to bioenergetic deficits (38).

Mitochondrial dysfunction is increasingly implicated in ADHD,

with studies reporting reduced adenosine triphosphate (ATP)

production and elevated oxidative stress in patient-derived cells

(39). Our pathway analysis linked COA3 to dorsoventral axis

formation, implicating its role in WNT/BMP-mediated

dopaminergic neuron differentiation process critical for reward

circuit integrity. Disruption of the WNT/BMP signaling pathway

may underlie the reward circuit deficiencies-a core feature of

ADHD (40).

COA3 interacts with COA1 and COA2 to form a mitochondrial

cytochrome c oxidase (COX) assembly complex, which is essential

for oxidative phosphorylation and electron transport chain(ETC)

efficiency (41). The observed upregulation of COA3 in ADHD-I

may represent a compensatory mechanism to enhance ETC activity,

thereby mitigating bioenergetic deficits and restoring mitochondrial

redox balance (42). By maintaining oxidative phosphorylation

efficiency, COA3 may help ensure adequate ATP production to

support energy-demanding neuronal processes, including synaptic

vesicle cycling and neurotransmitter synthesis.
FIGURE 6

Immune infiltration dysregulation and biomarker associations in ADHD. (A) Immune cell composition across groups. The heatmap depicting the i
mmune infiltration status of 28 immune cell types. (B) Differential immune infiltration. Bar plot comparing five immune cell types with significant
differences (P < 0.05) between ADHD patients and controls (P < 0.05). (C) Correlation analysis of these differentially infiltrated immune cells
demonstrated a strong positive association between mast cells and eosinophils (cor = 0.91, P < 0.05) and a robust negative correlation between gd
T cells and plasmacytoid dendritic cells (cor = -0.62, P < 0.05) (D) Biomarker-immune cell correlations. Scatter plots and coefficients show relationships
between CD180/COA3 and immune cells. gd T cells had the strongest positive correlation with CD180 (cor = 0.62, P < 0.05) and COA3 (cor = 0.58,
P < 0.05), whereas eosinophils showed the strongest negative correlation with CD180 (cor = -0.7, P < 0.05) and COA3 (cor = -0.46, P < 0.05).
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The dorsoventral axis formation pathway governs early neural

tube patterning, with BMP/Wnt signaling to dictate neuronal

subtype specification. Mutations in this pathway disrupt neural

tube closure and cortical layer formation, leading to defects such as

spina bifida and cortical malformations (43). Beyond structural
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defects, our data suggest that ADHD-I may involve subtle

disruptions in dorsoventral patterning, leading to altered

dopaminergic or noradrenergic circuitry. The ventral midbrain

dopaminergic neurons, which are critical for reward processing,

require precise BMP4 gradients for their differentiation and survival
FIGURE 7

Molecular mechanisms of ADHD biomarkers CD180 and COA3. (A) illustrates the identification of the top 30 ADHD-related genes using the
GeneCards database. Among these genes, HIVEP1, KIF5B, MECP2, and VPS13B were found to exhibit significantly reduced expression levels in ADHD
samples compared to controls (P < 0.05). (B) Correlation analysis between ADHD-related genes and biomarkers. HIVEP1 showed the strongest
negative correlation with CD180 (cor = -0.5, P < 0.05) and COA3 (cor = -0.5, P < 0.05). (C) miRNA identification via TargetScan and MicroCosm.
Venn diagram illustrates the overlap of miRNAs predicted by TargetScan (26 miRNAs) and MicroCosm (54 miRNAs), yielding 76 unique miRNAs after
deduplication. Four key miRNAs (highlighted) were prioritized for further analysis. (D) lncRNA-miRNA-mRNA regulatory network. Based on the
predicted 76 miRNAs, 17 lncRNAs, and two biomarkers, a lncRNA-miRNA-mRNA network was constructed. (E) TF-mRNA interaction network. 6 TFs
were predicted to target CD180, and 9 TFs targeted COA3, creating a TF-mRNA network. Notably, FOXC1 was identified as a co-target for both
CD180 and COA3.
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(44).Perturbations in BMP4 signaling may be associated with

disrupted the development of dopaminergic neurons, thereby

contributing to ADHD’s reward deficiency phenotypes. It is

important to note that while altered reward sensitivity and delay

aversion are observed in ADHD, particularly in subtypes with

impulsivity symptoms (45), their relevance to ADHD-I remains

less clearly established.

We also observed the enrichment of ribosomal pathways in

both biomarkers, which is consistent with the emerging association

between ribosomopathies and neurodevelopmental disorders.

Impaired ribosome biogenesis may reduce synaptic protein

synthesis, destabilizing dendritic spines (46). These disruptions in

neuronal connectivity could underlie the cognitive and behavioral

deficits characteristic of ADHD, such as difficulties in attention and

executive functioning. This finding suggests that ribosomal

dysfunction may be a fundamental mechanism in ADHD,
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offering a novel perspective for understanding the molecular

underpinnings of the disorder.

Additionally, the gd T cells identified in this study are

unconventional T cells that secrete interleukin (IL)-17 and IFN-g,
contributing to neuroinflammation (47, 48). The positive

correlation between gd T cell infiltration and CD180/COA3

expression (r >0.6) suggests a feedforward loop in which CD180

activation on B cells may associate with gd T cell recruitment, while

mitochondrial stress (via COA3) releases damage-associated

molecular patterns that further activate gd T cells. This

neuroinflammatory milieu, characterized by elevated pro-

inflammatory cytokines, is hypothesized to contribute to the

c o g n i t i v e a n d b e h a v i o r a l s ym p t om s o f ADHD .

Neuroinflammation can alter neuromodulator systems and

disrupt cortical excitability, potentially leading to increased

mental fatigue, erratic fluctuations in attention. Some individuals
FIGURE 8

Computational prediction and molecular docking of drugs targeting CD180 and COA3A. (A) Predicted drugs targeting CD180 and COA3.Five drugs
(benzo(a)pyrene, cadmium, cadmium chloride, di-n-butylphosphoric acid, and sodium arsenite) were found to co-target both biomarkers
(highlighted in red). (B) Molecular docking analysis of CD180 and benzo(a)pyrene. (C) Docking results for CD180 and di-n-butylphosphoric acid.
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with ADHD-I may experience emotional regulation difficulties,

though these are not typically considered core characteristics of

the inattentive subtype (49). In autism, gd T cells infiltration

correlates with the severity of social deficits (50). The functional

significance of gd T cells in ADHD, however, remains to be

fully elucidated.

Eosinophils, classically recognized for their role in combating

parasitic infections, have emerged as key immunomodulatory cells

capable of exerting anti-inflammatory effects through IL-10

secretion and regulating immune responses in conditions such as

allergies and asthma (51, 52). Our findings reveal a significant

negative correlation between eosinophil counts and disorder-

associated biomarkers (e.g., CD180 and COA3; r < −0.5),

suggesting a possible association with a protective role of

eosinophils in mitigating neuroinflammatory processes. Notably,

reduced eosinophil counts in ADHD-I contrast sharply with their

elevation in autism (53), possibly reflecting divergent immune

−metabolic profiles. Further research is warranted to explore the

functional mechanisms underlying eosinophil activity, such as their

role in regulating neuroinflammation or metabolic pathways, and

their potential as a therapeutic target for ADHD-I.

The distinct immune landscape observed in ADHD-I,

characterized by elevated gd T cells and reduced eosinophils,

suggests a state of neuroinflammation that may extend beyond

the periphery to influence central nervous system function. This is

consistent with emerging hypotheses proposing neuroinflammation

as a key mechanism linking immune dysregulation to core

neuropsychiatric symptoms in ADHD, including inattention and

cognitive fatigue (50). Our molecular regulatory network analysis

demonstrates that both hsa-miR-29b-1-5p and FOXC1 target

CD180 and COA3. Hsa-miR-29b-1-5p, a member of the miR-29

family, has been implicated in a range of biological processes,

including tumorigenesis and immune responses (54, 55). During

the neural differentiation of embryonic stem cells, miR-29b

regulates the transition of neuroectodermal cells into neural tube

epithelial cells and neural crest cells. Therefore, dysregulation of

hsa-miR-29b-1-5p, as a member of the miR-29 family, may disrupt

normal neural development, potentially contributing to an

increased risk of psychiatric disorders (56). Moreover, in models

of spinal cord ischemia-reperfusion injury, the downregulation of

lncRNA TUG1, mediated by targeting hsa-miR-29b-1-5p, reduces

metadherin-induced inflammatory damage (57). These findings

suggest that hsa-miR-29b-1-5p may modulate neuroinflammatory

responses through similar mechanisms, thereby influencing the

development of psychiatric conditions.

In contrast, FOXC1 plays a crucial role in embryonic

development and nervous system formation. Mutations or

abnormal expression of FOXC1 have been associated with

developmental defects in specific brain regions, such as the

prefrontal cortex and striatum, which may impair cognitive

function and behavioral regulation, thereby increasing the

susceptibility to disorders such as ADHD (58, 59). As a

transcription factor, FOXC1 regulates the expression of multiple

downstream genes and may be involved in modulating key

components of neurotransmitter systems, including the
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dopaminergic and noradrenergic pathways, thereby affecting

neural function (60).

Taken together, these findings indicate that hsa-miR-29b-1-5p

and FOXC1 may jointly influence neural development,

neuroinflammation, and neurotransmitter regulation through

shared target genes, potentially contributing to the pathogenesis

of psychiatric disorders.

Benzo(a)pyrene, a polycyclic aromatic hydrocarbon found in

tobacco smoke, has been shown to bind CD180 with high affinity

(−8.1 kcal/mol). It activates the AhR, which cross-talks with TLR

signaling to induce IL-6 (61).Epidemiological studies show that

maternal BaP exposure increases ADHD risk, possibly via AhR-

mediated suppression of foetal dopaminergic development through

mechanisms such as altered gene expression or increased apoptosis

(37). AhR activation directly inhibits the expression of Nurr1

(Nuclear receptor related 1), a master regulator of midbrain

dopaminergic neuron differentiation and survival (62). AhR

activation triggers mitochondrial apoptosis by upregulating pro-

apoptotic Bax and downregulating anti-apoptotic Bcl-2, leading to

cytochrome c release and caspase-3/9 activation (63). Our

molecular docking simulations suggest BaP may directly interfere

with the ligand-binding domain of CD180. In contrast, AhR

antagonists, such as resveratrol, may mitigate these inflammatory

effects, highlighting the need for further exploration of AhR

inhibition as a potential therapeutic strategy for preventing or

managing neurodevelopmental disorders, including ADHD-I.

By bridging transcriptomics, network analysis and molecular

docking, this study establishes the dual immune−metabolic

architecture of ADHD, with CD180 and COA3 serving as

mechanistic linchpins.

This study identifies CD180 and COA3 as potential immune

−metabolic biomarkers for ADHD-I, with mechanistic connections

to neurodevelopment processes, inflammation pathways, and

environmental toxins response. The observed diagnostic accuracy

of CD180 and COA3 (AUC > 0.8), supported by a clinically

applicable nomogram, underscores their potential as biomarkers for

subtype stratification and early intervention. However, several

limitations must be acknowledged. First, the modest sample size

increases the risk of overfitting, and although the reported AUC

values are encouraging, they require cautious interpretation. Machine

learning models built on small datasets can perform well on the

training data but may fail to generalize to new populations. Therefore,

our findings are strictly preliminary and must be validated externally.

Furthermore, our sample was restricted to medication-naïve children

with ADHD – I, who were predominantly male (∼81%) and free of

comorbid neurodevelopmental or psychiatric conditions.

Consequently, the findings may not generalize to other ADHD

subtypes, females, adolescents, adults, or individuals with common

comorbidities such as anxiety or autism spectrum disorder. The high

male predominance also implies that sex-related biological differences

in immune and metabolic function could influence the expression

and relevance of the identified biomarkers, underscoring the need for

future studies with balanced cohorts to explore potential sex-specific

effects. Additionally, the associative nature of our analyses precludes

causal inferences. Functional studies, such as using CRISPR-Cas9-
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mediated CD180/COA3 knockout models or transgenic animals are

essential to establish causal relationships between these biomarkers

and ADHD related behavioral phenotypes. Longitudinal assessments

tracking biomarker expression from childhood to adulthood are

needed to clarify their dynamic roles in disease progression. Finally,

the diagnostic utility of the clinical prediction model requires

validation in larger and independent cohorts. Moreover, further

investigation is needed to explore potential genetic associations

between the CD180 and COA3 gene loci and ADHD-I.

Moving forward, our study underscores the importance of

bridging molecular discoveries with clinical innovation. By

prioritizing functional validation, expanding cohort diversity, and

integrating multi-omics approaches, future studies may unravel the

immune–metabolic crosstalk central to ADHD pathophysiology.
5 Conclusion

In conclusion, this exploratory study employed an integrated

multi-omics approach to identify CD180 and COA3 as potential

dual immune-metabolic biomarker candidates for ADHD-I. Our

integrated analysis suggests that dysregulation of CD180 and COA3

converges on several biological pathways—neurodevelopment,

immunometabolism, and oxidative phosphorylation—that are

critical for normal brain function. We hypothesize that subtle

deficits in these systems may contribute to functional

impairments in distributed neural networks, ultimately

compromising cognitive processes essential for attention and

executive control. These findings offer a novel, mechanistically

grounded framework for understanding the neurobiology of the

inattentive presentation of ADHD-I.

Furthermore, immune infiltration analysis revealed altered

proportions of gd T cells and eosinophils, implicating

neuroinflammatory and metabolic crosstalk in ADHD-I

pathophysiology. However, these results are preliminary and

hypothesis-generating, derived from a limited cohort. Future

studies should prioritize independent validation in larger cohorts,

functional interrogation using CRISPR-Cas9 models, and

longitudinal tracking of biomarker dynamics to advance precision

diagnostics and interventions for ADHD heterogeneity.
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