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Integrated transcriptomic and
network analysis reveals
candidate immune—metabolic
biomarkers in children with the
inattentive type of ADHD

Qiaoyan Shao™?, Xiaoxia Lin™ and Yanhui Chen™*

Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China, 2Department of
Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a clinically
heterogeneous neurodevelopmental disorder. Its inattentive presentation
(ADHD-I) is a common subtype characterized predominantly by difficulties in
sustaining attention, organization skills, and task completion. The biological
foundations of ADHD-I remain unclear, hampering the development of
effective treatments. This study aimed to identify potential ADHD-I biomarker
candidates to guide the therapeutic strategies.

Methods: We analyzed transcriptome sequencing data from a cohort of 32
children (15 control, 17 ADHD-I; aged 6-12 years;81.2% male). All ADHD-I
participants were medication-naive and without comorbid
neurodevelopmental or major psychiatric conditions) to systematically identify
potential biomarkers for ADHD-I. Candidate genes were identified by integrating
differential expression analysis with weighted gene co-expression network
analysis (WGCNA) modules. High-confidence biomarkers were selected via a
multi-step pipeline combining protein-protein interaction (PPI) network analysis
and machine learning feature selection (LASSO regression, Boruta algorithm).
Biomarker performance was evaluated using ROC and gene expression analyses,
and a predictive nomogram was developed. The ADHD-I molecular landscape
was explored through functional enrichment, immune cell profiling,
pharmacological screening, and ligand-receptor interaction modeling.

Results: Cluster of Differentiation 180(CD180) and Cytochrome c Oxidase
Assembly Factor 3(COA3) were identified as potential ADHD-I biomarker
candidates. Both showed high preliminary diagnostic accuracy (AUC > 0.8) and
significantly elevated expression in ADHD - | cohorts. The nomogram
incorporating these biomarkers showed preliminary predictive accuracy for
ADHD-I risk stratification (AUC = 0.878) in this cohort. Pathway enrichment
analysis further localized CD180 and COA3 to the dorsoventral axis formation
pathway, suggesting their role in developmental patterning. Five significant
differential immune cell types were identified between ADHD-I and control
samples. Both biomarkers demonstrated the significant positive correlation
with gamma delta T cells and the strongest negative correlation with
eosinophils. Compound prediction showed that 20 compounds such as benzo
(a)pyrene targeted CD180, and benzo(a)pyrene had a strong binding ability to
CD18 (AG = —-8.1 kcal/mol).
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Conclusion: The study identified CD180 and COA3 as candidate biomarkers for
ADHD-I, which may provide new clues into the mechanism of ADHD-| and
potential therapeutic targets.

attention deficit hyperactivity disorder, inattentive presentation, transcriptome
sequencing, biomarkers, nomogram, neuroinflammation, mitochondria

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a prevalent
neurodevelopmental disorder and ranks among the most common
neurodevelopmental conditions in pediatric populations, with
hallmark behavioral manifestations encompassing core symptoms
including inattention, hyperactivity, and impulsivity. These
symptoms frequently result in significant impairments in academic
performance, social interactions, and emotional regulation, often
persisting into adulthood with long-term consequences (1).
Although the precise underlying causes continue to be debated,
current research emphasizes the complex interaction between
genetic predispositions, environmental influences, and
neurobiological mechanisms (2). Epidemiological studies estimate
that approximately 5.6% ~7.6% of children worldwide are affected by
ADHD, with a higher incidence in males (3).

However, ADHD is clinically heterogeneous and comprises
three primary presentations according to the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5):
predominantly inattentive (ADHD-I), predominantly hyperactive/
impulsive, and combined presentation (4). The ADHD-I is
characterized predominantly by difficulties in sustaining attention,
organization, and task completion, and by the absence of prominent
hyperactive or impulsive behaviors. Notably, ADHD-I is often
underrecognized due to its subtler behavioral manifestations and
may be more prevalent in girls than other subtypes (5, 6). Emerging
evidence suggests that ADHD-I possesses distinct neurobiological
underpinnings, including atypical development in posterior brain
regions, hippocampal structural specificity, and functional
dissociation within frontoparietal networks, underscoring the
necessity of investigating it as a unique etiological entity (7-9).

Despite being a common clinical presentation (10, 11), ADHD-
I faces significant challenges in clinical practice, including a notable
lack of objective biomarkers to guide precision diagnostics and
therapeutic interventions (12, 13). Current management strategies
primarily rely on stimulant medications, such as methylphenidate
and amphetamines, alongside behavioral interventions and non-
pharmacological approaches, including psychoeducation and
cognitive training. However, these treatments are associated with
various side effects, including sleep disturbances, appetite
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suppression, and mood fluctuations, which limit their long-term
efficacy and patient compliance (14). Given these limitations, the
identification of reliable biomarkers for ADHD-I could improve
early diagnosis, optimize treatment strategies, and minimize
adverse effects, ultimately enhancing patient outcomes.

Transcriptome sequencing, also known as RNA sequencing
(RNA-seq), is an advanced high-throughput technology that
analyzes all RNA molecules in a cell, providing an in-depth view
of gene expression at the transcript level. In contrast to
conventional techniques such as microarrays, RNA-seq is capable
of identifying both known and novel transcripts, thus delivering a
more extensive and precise representation of the transcriptome.
This technique has become indispensable for dissecting complex
biological processes from mapping alternative splicing events and
fusion genes to identifying regulatory mutations with potential
disease implications. Beyond its analytical breadth, RNA-seq
excels in generating high-resolution datasets rapidly, sensitively
detecting low-abundance transcripts, and unraveling multilayered
gene regulation networks. Given these advantages, this study
utilizes transcriptomic profiles to systematically identify potential
biomarkers for ADHD-I, advancing mechanistic understanding of
this neurodevelopmental disorder.

In this current investigation, we conducted an exploratory study
utilizing transcriptome sequencing on peripheral blood samples
from a preliminary, carefully phenotyped cohort of children with
ADHD-I. A comprehensive analytical framework was utilized,
incorporating differential gene expression analysis, WGCNA, PPI
network evaluation, and machine learning techniques, to
systematically pinpoint critical biomarker candidates associated
with ADHD-I. Furthermore, we conducted functional
enrichment, immune infiltration analysis, and exploration of
regulatory mechanisms to deepen our understanding of the
potential biological processes and pathways involved in ADHD-I
pathophysiology. Moreover, drug prediction analyses were
performed to suggest potential pharmacological interventions
based on the identified biomarkers. By integrating these
comprehensive approaches, this study aims to uncover novel
biomarkers that may serve as diagnostic indicators or therapeutic
targets for ADHD-I, providing new insights into its underlying
molecular mechanisms.
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2 Materials and methods
2.1 Study cohort and ethical compliance

Peripheral blood specimens were prospectively collected from a
discovery cohort of 32 age- and gender-matched participants at
Fujian Medical University Union Hospital, comprising 17
medication-naive ADHD-I patients (ADHD-inattentive
presentation, Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition standards (15)) and 15 controls.
Participants in the control group had no ADHD and any known
neuropsychiatric disorders. In this study, the full cohort of 32
participants (17 ADHD-I patients and 15 controls) had an age
range of 6 to 12 years with a mean age of 8.8 years. The cohort was
81.2% male and 18.8% female. All participants in the ADHD-I
group were medication-naive and free of comorbid
neurodevelopmental or major psychiatric conditions, while the
control group was age- and gender-matched to the ADHD-I
group (Supplementary Table 1).

ADHD diagnosis was further validated through Conners’
Parent Symptom Questionnaire (PSQ) and Teacher Rating Scale
(TRS). Exclusion criteria encompassed: (1) history of traumatic
brain injury; (2) comorbid neurodevelopmental conditions
(including autism spectrum disorder, intellectual disability,
specific learning disorders, or tic disorders); (3) major psychiatric
comorbidities. Written informed consent was obtained following
Helsinki Declaration guidelines, with ethical approval granted by
the Institutional Review Board (Approval No. 2024ky215).

2.2 Transcriptome sequencing and data
preprocessing

Total RNA was extracted and purified from 32 blood samples
using TRIzol reagent (Invitrogen, CA, USA). RNA integrity and
purity were verified using a NanoDrop ND-1000
spectrophotometer (NanoDrop, Wilmington, DE, USA) and a
Agilent Bioanalyzer 2100 system (Agilent, CA, USA).

Samples meeting specified quality thresholds were considered
eligible for downstream processing, including minimum
concentration thresholds exceeding 50 ng/uL, RNA Integrity
Number (RIN) values above 7.0, optimal density 260/280
absorbance ratios surpassing 1.8, and total RNA quantities
exceeding 1 pg. Polyadenylated RNA was isolated through two-
stage purification with a Dynabeads Oligo(dT)25-61005 (Thermo
Fisher, CA, USA), starting from 1 pg of total RNA. Subsequent
fragmentation employed the magnesium-mediated fragmentation
protocol (NEB, cat. E6150, USA) involving thermal incubation at
94 °C for 5-7 minutes.

Complementary DNA synthesis was performed using
SuperScrip‘[TM II Reverse Transcriptase (Invitrogen, cat. 1896649,
USA) following manufacturer specifications.

Following Polymerase chain reaction(PCR) amplification, the
resulting ¢cDNA libraries demonstrated consistent insert sizes
averaging 300 + 50 bp. High-throughput sequencing analysis was
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conducted on the Illumina NovaSeq 6000 system (PE150
configuration), generating bidirectional 150 bp reads for
comprehensive transcriptome profiling.

Following sequencing, low-confidence reads were removed with
Fastp (https://github.com/OpenGene/fastp).The retained high-
confidence data were then aligned to the reference genome
(Homo sapiens, GRCh38) using HISAT2(https://ccb.jhu.edu/
software/hisat2). Gene expression patterns were quantified as
Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) using StringTie software (https://ccb.jhu.edu/software/
stringtie). These normalized expression values for all genes from
transcriptomic data were subsequently presented through box plots
created via “ggplot2” package (v 3.4.4) (16).

2.3 Differential expression analysis

To identify ADHD - I -associated transcriptional changes,
differentially expressed genes (DEGs) in ADHD and controls
were analyzed using the ‘DESeq2’ package (v 1.38.0) (17). The
thresholds were set at [log2 FC| > 0.5 and adjusted p-value < 0.05
(Corrected by the Benjamini-Hochberg (BH) method). DEG
distributions were visualized through a volcano plot (generated
with ‘ggplot2’ v3.4.4), while a hierarchical heatmap ‘pheatmap’
package(v 1.0.12) highlighted the top 10 most dysregulated genes
(ranked by [log, FC| magnitude) in ADHD - I samples.

2.4 WGCNA

To delineate ADHD-associated molecular networks, gene co-
expression modules were constructed from transcriptomic data
utilizing the ‘WGCNA’ package (v1.7.1) (18). The process began
with hierarchical clustering to detect and remove any outliers. An
ideal soft-threshold power was determined to achieve a scale-free
network architecture, requiring topology model fit (R*) above 0.85
while preserving minimal mean connectivity.

A hierarchical clustering tree was then constructed with the
following parameters: a minimum module size (min Module Size)
of 100 genes, a deep split parameter (deep Split) of 4, and a module
merging height (merge Cut Height) of 0.25. This approach allowed
for the identification of distinct gene modules, each represented by a
unique color. After module identification, Pearson correlation
coefficients were calculated between ADHD - I samples, control
samples, and each gene module (Jcor| > 0.3, p < 0.05). Modules
demonstrating the highest correlations to the ADHD - I samples
were considered as key modules. Genes in these pivotal modules
were prioritized as key candidates for further detailed analysis.

2.5 Identification and function analysis of
candidate genes

Candidate genes were prioritized through intersectional
analysis of differentially expressed genes (DEGs) and co-
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expression network modules through an integrated analytical
approach employing the ‘ggvenn’ package (v 0.1.9) (https://
CRAN.R-project.org/package=ggvenn). Functional
characterization of prioritized genes involved Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses conducted with the
‘clusterProfiler’ package (v 4.7.1.003) (19), with a significance
threshold of nominal p < 0.05. PPI networks were reconstructed
from the candidate genes via the STRING database (https://string-
db.org/) with a confidence threshold > 0.15 and visualized in
Cytoscape (v3.9.1) (20). Key modules within the PPI network
were detected through Molecular Complex Detection (MCODE)
clustering within Cytoscape (v 3.9.1). High-density subnetworks
were identified through MCODE clustering, and genes within these
core modules were designated as ADHD-I associated hub genes.

2.6 Biomarker identification and validation

To identify potential biomarkers from the transcriptome
sequencing data, we implemented dual machine learning
algorithms. The LASSO analysis was conducted using the ‘glmnet’
package (v 4.1.4) (21), with a binomial family model 10-fold cross-
validation for enhancing model robustness. An ideal model was
selected by confirming the results at the minimum lambda value,
ensuring that only the most significant predictors were retained. In
parallel, the Boruta algorithm was applied via the ‘Boruta’ package
(v 8.0.0) (22), utilizing a significance threshold of p = 0.01 and a
maximum of 100 iterations (maxRuns). This method was used to
assess the relevance of each gene by comparing its importance to
that of randomized shadow features. Biomarkers were identified by
intersecting the gene sets obtained from both LASSO and Boruta
analyses using the ‘ggvenn’ package (v 0.1.9). To assess the
diagnostic accuracy of these biomarkers, receiver operating
characteristic (ROC) curves were created utilizing the pROC’
package (v 1.18.0) (23). An area under the curve (AUC) value
exceeding 0.7 was deemed to indicate strong distinguishing power
in distinguishing the ADHD-I from control groups. Finally, the
Wilcoxon rank-sum tests were utilized to assess the statistical
significance of differences in biomarker expression between the
ADHD-I and control groups. Data analysis was performed using
the ‘rstatix’ package (v.0.7.2) [https://CRAN.R-project.org/
package=rstatix], with p < 0.05 indicating statistical significance.

2.7 Construction and validation of the
nomogram

A nomogram model for ADHD-I risk stratification was
constructed using the identified biomarkers through the ‘rms’
package (v 6.5-0) (24). The nomogram was derived from a fitted
logistic regression model, with the expression level of each
biomarker as the predictive variable, to explore its impact on the
risk of ADHD-I occurrence. Model calibration was evaluated using
calibration curves and the Hosmer-Lemeshow test, with
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nonsignificant deviation (p >0.05) confirming adequate fit.
Additionally, the performance of the nomogram was further
assessed by generating a ROC curve using the pROC’ package
(v 1.18.0) (25), to evaluate its discriminative ability.

2.8 Chromosomal localization and
correlation analysis

The chromosomal locations of candidate biomarkers were
annotated using the ‘RCircos’ package (v 1.2.2) (26) to visualize
their genomic distribution on human chromosomes. Furthermore,
to explore potential relationships between biomarkers, Spearman’s
rank correlation analysis was performed with the ‘psych’ package(v
2.2.9) (27) (|cor| > 0.30, p < 0.05). Correlation coefficients (|cor| >
0.30, p < 0.05) were calculated to identify significant relationships
between biomarkers. A correlation heatmap was generated using
the ‘corrplot’ package (v 0.92) (28) to visually represent
these associations.

2.9 Function analysis of biomarkers

Gene-gene interaction networks were reconstructed using
GeneMANTIA (https://genemania.org/) to identify functional
partners of the candidate biomarkers. Besides, to further delineate
pathway-level mechanisms, transcriptome sequencing data were
analyzed using gene set enrichment analysis (GSEA). Spearman’s
rank correlation coefficients between the biomarkers and
transcriptome-wide gene expression were calculated in
descending order with the ‘psych’ package (v 2.2.9). Gene set
enrichment analysis employed the ‘c2.cp.kegg.v2023.
1.Hs.symbols.gmt’ collection from MSigDB (http://
software.broadinstitute.org/gsea/msigdb), implemented via
‘clusterProfiler’ package (v 4.7.1.003) using predefined gene sets
as background. Significance was determined based on an adjusted
p-value of < 0.05 (BH method was used for correction) and absolute
normalized enrichment score (|NES| > 1). The top five prioritized
pathways (ranked by ascending adjusted p) selected for
biological interpretation.

2.10 Immune infiltration analysis

To investigate immune cell infiltration patterns in ADHD-I,
this study calculated immune infiltration scores for 28 cell subtypes
using transcriptomic data through single-sample gene set
enrichment analysis computational algorithm implemented in the
‘GSVA’ package (v 1.46.0) (29, 30). The analysis employed gene set
variation methodology to quantify immune cell abundance based
on gene expression profiles. Wilcoxon rank-sum tests identified cell
populations with differential infiltration between ADHD and
controls (p < 0.05). Subsequently, Spearman’s rank correlation
analysis was performed using the ‘psych’ package (v 2.2.9) to
explore relationships among the differential immune cell types, as
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well as the correlations between these immune cell types and the
identified biomarkers. A significance threshold of (|cor| > 0.30,
p < 0.05) was applied to identify significant associations.

2.11 Biomarker-disease gene interaction
analysis

To investigate the relationship between biomarkers and disease-
related genes, the top 30 ADHD-linked genes were retrieved from
the GeneCards database (https://www.genecards.org/) using the
searching term ‘Attention deficit hyperactivity disorder’. Gene
expression variations between ADHD-I and the control cohorts
was assessed via Wilcoxon rank-sum tests (p < 0.05). Subsequently,
Spearman’s rank correlation analysis was performed utilizing the
‘psych’ package (v 2.2.9) to assess the correlation between the
biomarkers and ADHD-I -related genes. A threshold of (|cor| >
0.30, p < 0.05) was applied to identify significant associations.

2.12 Regulatory network construction

To predict the microRNAs targeting the identified biomarkers,
we utilized the TargetScan (https://www.targetscan.org/) and
MicroCosm (https://mycocosm.jgi.doe.gov/) databases. The key
miRNAs were selected by overlapping the predictions from both
databases. Subsequently, Starbase (https://rnasysu.com/encori/) was
utilized to predict the long non-coding RNAs (IncRNAs)
interacting with these key miRNAs. Based on these interactions, a
IncRNA-miRNA-mRNA regulatory network was built and
visualized with Cytoscape (v3.9.1). Parallel analysis through the
JASPAR repository (https://jaspar.elixir.no/) revealed transcription
factors (TFs) targeting the biomarkers, with subsequent network
modeling and visualization performed in Cytoscape (v3.9.1) to
elucidate potential regulatory mechanisms.

2.13 Compounds prediction and molecular
docking

Potential therapeutic agents targeting the identified biomarkers
were predicted using the Comparative Toxicogenomics Database
(CTD, https://ctdbase.org/). Subsequently, a network illustrating
biomarker-compounds interactions was developed and
graphically represented through Cytoscape (v 3.9.1). From this
network, candidate compounds were chosen for further molecular
docking analysis. The protein crystal structures of the biomarkers
(acting as receptors) were retrieved from the Protein Data Bank
(PDB, https://www.rcsb.org/), with ligand structures acquired from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).
Molecular docking simulations employing CB-Dock enabled the
determination of binding energies, where values typically below -1.2
kcal/mol demonstrate favorable binding potential between
interacting molecules.
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2.14 Statistical analysis

All the statistical analyses were conducted utilizing R software
(v 4.2.2). Differential expression analysis between the ADHD and
control groups was assessed using a negative binomial distribution
model to account for biological variability. For comparisons of
continuous variables between two groups, the Wilcoxon rank-sum
test was applied, with significance set at p < 0.05 after adjusting for
multiple comparisons using the Benjamini-Hochberg method. To
assess the relationships among biomarkers and other genes or
clinical features, Spearman’s rank correlation coefficients were
calculated, applying a threshold of |cor| > 0.30 and p < 0.05 to
identify significant associations. Receiver operating characteristic
curves were generated to evaluate diagnostic performance, with
AUC values used to measure accuracy. For immune cell infiltration
analysis, single-sample GSEA was performed to calculate
enrichment scores for 28 immune cell types. Differences in
immune cell infiltration scores between patients with ADHD-I
and the control samples were assessed using the Wilcoxon rank-
sum test, with p < 0.05 considered statistically significant.

3 Results
3.1 Identification of candidate genes

Transcriptome sequencing data from 15 control and 17 ADHD-I
samples underwent rigorous quality control, revealing balanced gene
expression profiles across cohorts with no significant batch effects
(Supplementary Figure S1). This finding provided a solid foundation
for subsequent analyses, ensuring the reliability and validity of the
data. Differential expression analysis revealed a total of 382 DEGs.
Among these, 187 genes were up-regulated and 195 genes were
down-regulated in patients with ADHD-I (Figures 1A, B). For the
WGCNA, no outlier samples were detected (Figure 1C).
Subsequently, the optimal soft-thresholding power value was
determined to be 8 (R? = 0.851), exceeding the threshold indicated
by the red line (R = 0.85), with mean connectivity approaching zero
(Figure 1D). Following the Next module detection, similar modules
were merged, resulting in the identification of 7 gene modules
(excluding a grey module for unclassified genes) (Figure 1E).
Notably, the MEblack module demonstrated the strongest positive
association with ADHD-I samples (|cor| = 0.32, p < 0.05) (Figure 1F).
Consequently, the 339 genes within the MEblack module genes were
selected as key candidate genes. Intersectional analysis between these
module genes and the 382 differentially expressed genes (DEGs)
yielded 31 candidate genes (Figure 1G), which were hypothesized to
mediate ADHD-I underlying mechanisms through dysregulated
molecular pathways. Overall, these analyses identified 31 candidate
genes that may contribute to ADHD - I pathophysiology. These
findings provide insights into the molecular mechanisms of ADHD-I
and suggest potential avenues for future research on diagnostic
markers and therapeutic targets.
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FIGURE 1

Identification of candidate genes for ADHD through transcriptomic and network analysis. (A, B) Heatmap and volcano plot of differentially expressed
genes between the ADHD group and the control group. Differential expression analysis revealed a total of 382 DEGs. Among these, 187 genes up-
regulated and 195 genes down-regulated in ADHD patients. (C) Sample Clustering Dendrogram.presents the hierarchical clustering dendrogram of
all samples, illustrating the relationships and groupings among the samples based on their similarities and differences.For the WGCNA, no outlier
samples were detected. (D) illustrates the systematic process for selecting the soft threshold (power). (E) illustrates the cluster dendrogram, which
depicts the hierarchical clustering results of the data samples. (F) illustrates the module—-trait relationships in the context of ADHD. Each row
corresponds to one of the identified gene modules, while each column represents a different trait of interest. The color scale reflects the correlation
coefficients between the module eigengenes and the traits, with red indicating positive correlations and blue indicating negative correlations. (G)
The Venn diagram illustrates the outcome of the gene selection process. The MEblack module, consisting of 339 genes, was identified and selected

as key candidate genes. Subsequently, the intersection of these 339 key module genes with the 382 differentially expressed genes (DEGs) resulted in
the identification of 31 candidate genes. .
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3.2 Exploration of the function of
candidate genes

Functional enrichment analysis revealed that the 31 candidate
genes were significantly enriched in 157 GO terms and in 3 KEGG
pathways. The top 5 GO terms and KEGG pathways, ranked by p-
value from lowest to highest, were presented. Significant GO terms
included ‘mitochondrial respiratory chain complex assembly” (BP),
‘mitochondrial inner membrane’ (CC), and ‘SNAP receptor activity’
(MF) (Figure 2A). The identified KEGG pathways included
‘thermogenesis’, ‘SNARE interactions in vesicular transport’, and
‘terpenoid backbone biosynthesis’ (Figure 2B). Additionally, PPI
network was constructed, comprising 25 genes and 47 interactions
(Figure 2C). Notably, MRPL27 showed close interactions with
several genes, including MRPL52 and UQCCS3, etc. Subsequently,
two key modules in the PPI network were ascertained
(Supplementary Table 2). The 10 genes within these two modules
were selected as candidate genes for further analysis (Figure 2D).

3.3 Identification of CD180 and COA3 as
biomarker candidates for ADHD-I

From an initial set of 10 hub genes, the LASSO method
identified 3 candidate genes with a log () min) of —3.355825
(Figure 3A). The Boruta algorithm, a feature selection method,
independently confirmed 5 of these genes (Figure 3B). By
intersecting the results from LASSO and Boruta, 2 genes CD180
and COA3 were identified as potential biomarkers candidates for
ADHD (Figure 3C). In this preliminary cohort, both biomarkers
demonstrated apparent diagnostic accuracy (AUC > 0.8,
Figure 3D). Further gene expression analysis revealed that CD180
and COA3 were significantly upregulated in ADHD-I samples
compared with control samples (p < 0.05) (Figure 3E). A strong
positive correlation was observed between CD180 and COA3
expression (r = 0.57, p = 0.00066) (Figure 3F). Moreover,
genomic mapping localized CD180 to chromosome 5 and COA3
to chromosome 17 (Figure 3G). In conclusion, our analysis
prioritizes CD180 and COA3 as promising candidate biomarkers
for ADHD-I, based on their preliminary diagnostic performance
and significant differential expression in this cohort.

3.4 Development and validation of a
predictive nomogram

Using the two identified biomarkers, a nomogram was
developed to predict the risk of ADHD-I (Figure 4A). This
nomogram demonstrated a clear correlation between higher total
points and an increased risk of ADHD-I. The calibration curve
confirmed the accuracy of the model’s predictions, with a non-
significant p-value of 0.256, indicating strong concordance between
the predicted and observed outcomes (Figure 4B). The nomogram
incorporating these biomarkers yielded an AUC of 0.878 for risk
stratification in our dataset; however, this value should be
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interpreted with caution due to the limited sample size and the
exploratory nature of this analysis (Figure 4C). Taken together,
these results underscore the robust efficacy of the nomogram in
predicting ADHD-I, reinforcing its potential as a valuable tool in
clinical assessments.

3.5 Investigation of functions and pathways
associated with biomarkers

Using GeneMANIA, 20 functionally related genes associated
with the biomarkers were identified. Notable interactions included
CD180 with GPR18 and COA3 with LY96, highlighting their roles
in processes for instance ‘cellular response to lipopolysaccharide’
(Figure 5A). The GSEA revealed significant co-enrichment of both
biomarkers in pathways associated with ‘ribosome biogenesis’ and
‘dorso ventral axis formation’, etc. (Figures 5B, C). These findings
emphasized the potential involvement of these biomarkers in
critical biological pathways and processes, providing valuable
insights into their roles in the progression of ADHD-I.

3.6 Immune infiltration differences
between ADHD-I and control samples

The heatmap presented the immune infiltration patterns of 28
immune cell subtypes in the ADHD-I and control cohorts
(Figure 6A). Five cell populations exhibited significant abundance
differences (p < 0.05; Figure 6B): activated CD4" T cells, eosinophils,
mast cells, and plasmacytoid dendritic cells were enriched in the
controls, whereas gamma delta (y8) T cells predominated in
ADHD-I patients. Correlation analysis of these differentially
infiltrated immune cells demonstrated a strong positive
association between mast cells and eosinophils (cor = 0.91,
p < 0.05) and a robust negative correlation between Y8 T cells and
plasmacytoid dendritic cells (cor = -0.62, p < 0.05) (Figure 6C).
Furthermore, biomarker association analysis revealed that ¥ T cells
infiltration correlated positively with CD180 (cor = 0.62, p < 0.05)
and COA3 (cor = 0.58, p < 0.05), whereas eosinophils showed the
strongest negative correlation with CD180 (cor = -0.7, p < 0.05) and
COA3 (cor = -0.46, p < 0.05) (Figure 6D). These findings
highlighted the distinct immune landscape in ADHD - I and
underscored the critical relationships between specific immune
cells and biomarkers, providing valuable insights into potential
therapeutic targets for ADHD-I management.

3.7 Investigation of the underlying
molecular mechanisms of biomarkers

The top 30 ADHD-related genes were identified using the
GeneCards database. Among these, HIVEP1, KIF5B, MECP2, and
VPS13B exhibited significantly lower expression levels in the
ADHD-I samples (p < 0.05) (Figure 7A). Correlation analysis
demonstrated a significant negative correlation between these
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Functional enrichment and protein-protein interaction (PPI) network analysis of candidate genes. (A) GO Enrichment Analysis. The results of the
functional enrichment analysis conducted on the 31 candidate genes. Significant GO terms included "mitochondrial respiratory chain complex
assembly” (BP), "mitochondrial inner membrane" (CC), and "SNAP receptor activity" (MF) (B) KEGG pathway analysis of DEGs included
"thermogenesis”’, "SNARE interactions in vesicular transport”, and "terpenoid backbone biosynthesis". (C) PPl Network of Candidate Genes.
Construction of the PPI network and selection of hub genes. (D) Two key modules in the PPl network were ascertained. The 10 genes within these

two modules were selected as hub genes for further analysis.

ADHD-related genes and two biomarkers. Notably, HIVEP1
exhibited the strongest negative correlation with CD180 (cor =
-0.5, p < 0.05) and COA3 (cor = -0.5, p < 0.05) (Figure 7B).
Additionally, by querying the TargetScan and MicroCosm

Frontiers in Psychiatry 08

databases, 26 and 54 miRNAs were identified, respectively. Then,
76 miRNAs were obtained by combining and de-weighting the two
sets of miRNAs. Overlapping these miRNAs led to the discovery of
4 key miRNAs (Figure 7C). A total of 4 IncRNAs targeting these
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Identification and validation of CD180 and COA3 as ADHD biomarkers. (A) LASSO Regression for Biomarker Selection. Identifcation of candidate
diagnostic biomarkers through machine learning algorithms. From an initial set of 10 hub genes, the LASSO method identified three candidate genes
with a log (A. min) of -3.355825. (B) The Boruta algorithm evaluated gene importance against randomized "shadow" features (gray). Five genes,
including CD180 and COA3 (green boxes), were confirmed as significant. (C) Intersection of LASSO and Boruta Results. From LASSO and Boruta, two
genes CD180 and COA3 were identified as potential biomarkers for ADHD. (D) ROC Analysis of Diagnostic Accuracy. Both biomarkers exhibited high
diagnostic accuracy, achieving area under the curve (AUC) values exceeding 0.8. (E) Differential Gene Expression. Gene expression analysis revealed
that CD180 and COA3 were significantly upregulated in ADHD. (F) Correlation Between Biomarkers. Correlation analysis further indicated a strong
positive correlation between the expression levels of CD180 and COA3. (G) Chromosomal Localization. Chromosomal localization analysis indicated

that CD180 was located on chromosome 5, while COA3 is situated on chromosome 17.
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Accuracy. (C) ROC Curve for Diagnostic Performance. The ROC curve indicated an AUC of 0.878 for the nomogram, highlighting its exceptional

predictive performance.

four key miRNAs were predicted. Based on the predicted 76
miRNAs, 17 IncRNAs, and two biomarkers, a IncRNA-miRNA-
mRNA interaction network was subsequently constructed
(Figure 7D). Notably, the miRNA, hsa-miR-29b-1-5p, co-targeted
both CD180 and COA3 (Figure 7D). Furthermore, six TFs were
predicted to target CD180, and nine TFs targeted COA3, creating a
TF-mRNA network. Notably, FOXC1 was identified as a co-target
for both CD180 and COA3 (Figure 7E). These results provide initial
insights into the molecular mechanisms associated with the
biomarkers, opening up new avenues for further investigation of
ADHD pathophysiology.

3.8 Analysis of the interactions of
compounds with CD180 and COA3

A total of 20 and 30 compounds targeting CD180 and COA3,
respectively, were predicted. Notably, five compounds-benzo(a)
pyrene(BaP), cadmium, cadmium chloride, di-n-butylphosphoric
acid, and sodium arsenite — were found to co-target both
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biomarkers (Figure 8A). These five compounds were subsequently
subjected to molecular docking analysis. However, the 3D
structures of cadmium, cadmium chloride, and sodium arsenite
were unavailable, and the protein crystal structure of COA3 was
also lacking, thus preventing molecular docking studies for these
compounds and COA3. Notably, the docking results indicated that
CD180 and BaP exhibited favorable binding energy of —8.1 kcal/
mol, with key interactions involving residues such as A218 and
D220 (Figure 8B). Both CD180 and di-n-butylphosphoric acid
demonstrated a binding energy of —4.3 kcal/mol, with critical
interactions at residues A199 and E197 (Figure 8C). These
findings suggested that these compounds might affect the risk of
ADHD - I through CD180.

4 Discussion
ADHD manifests as a highly heterogenyeous

neurodevelopmental disorder characterized by complex genetic
and environmental interactions. This study specifically focused on
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identifies 20 functionally related genes associated with CD180 and COA3. (B, C) GSEA revealed significant co-enrichment of both biomarkers in
pathways associated with "ribosome biogenesis” and "dorso ventral axis formation”.

its inattentive presentation (ADHD-I), a distinct clinical subtype
with potentially unique pathophysiological mechanisms. Current
diagnostic criteria for ADHD and ADHD-I in particular remain
predominantly reliant on subjective behavioral assessments, with a
notable absence of validated objective biomarkers to facilitate early
and targeted intervention (31). Our study leveraged transcriptomic
profiling and network-based systems biology to identify CD180 and
COA3 as dual immune-metabolic biomarker candidates for
ADHD-I, which exhibited significant diagnostic potential (AUC >
0.8). By integrating differential expression analysis, WGCNA and
machine learning, we systematically bridged peripheral blood
transcriptomic signatures with central pathological mechanisms.
This exploratory study not only highlights the power of multi-omics
integration in biomarker discovery but also provides specific clues
for further exploring the heterogeneity of ADHD-I. The nomogram
model further demonstrated clinical applicability, offering a

Frontiers in Psychiatry

quantitative tool for risk stratification within the ADHD-I
population. These findings not only advance the subtyping and
diagnostics of ADHD, but also open avenues for investigating
immune-metabolic crosstalk in the underlying mechanisms of
ADHD-L

The identification of CD180, a member of the toll-like receptor
(TLR) family, underscores the critical role of neuroimmune
dysregulation in ADHD-I underlying mechanisms. Elevated
CD180 expression may reflect aberrant B-cell activation, as
CD180 is involved in regulating B-cell tolerance and innate
immune responses through TLR signaling (32). This observation
aligns with emerging evidence implicating maternal immune
activation in offspring ADHD (including the inattentive
presentation) risk via TLR pathway dysregulation (33).
Furthermore, genetic studies have linked CD180 polymorphisms
to autoimmune diseases such as systemic lupus erythematosus (34),
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highlighting its dual role in modulating both immunity and
neurodevelopmental processes. TLR signaling is increasingly
implicated in neurodevelopmental disorders through its
modulation of microglial activation and synaptic plasticity (35).
Our findings corroborate recent studies demonstrating that TLR4
activation in maternal immune activation models induces
neurodevelopmental disorders in offspring (36). Importantly, we
identified a robust correlation between CD180 overexpression and
vd T-cell infiltration (r = 0.62), further suggesting a peripheral-to-
central immune axis mediated by chemokine signaling, which may
exacerbate neuroinflammation and impair cortical maturation.
Notably, molecular docking analyses revealed a high-affinity
interaction between CD180 and BaP, an environmental toxin
associated with ADHD (including the inattentive presentation)
risk through aryl hydrocarbon receptor (AhR) -TLR crosstalk
(37). This interaction provides insight into a potential mechanism
by which environmental pollutants amplify genetic vulnerabilities,
offering a novel target for preventive strategies for ADHD - L
COA3 (also known as MITRACI2), a mitochondrial Complex
IV assembly factor, emerged as a metabolic biomarker reflecting
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compensatory responses to bioenergetic deficits (38).
Mitochondrial dysfunction is increasingly implicated in ADHD,
with studies reporting reduced adenosine triphosphate (ATP)
production and elevated oxidative stress in patient-derived cells
(39). Our pathway analysis linked COA3 to dorsoventral axis
formation, implicating its role in WNT/BMP-mediated
dopaminergic neuron differentiation process critical for reward
circuit integrity. Disruption of the WNT/BMP signaling pathway
may underlie the reward circuit deficiencies-a core feature of
ADHD (40).

COA3 interacts with COA1 and COA2 to form a mitochondrial
cytochrome ¢ oxidase (COX) assembly complex, which is essential
for oxidative phosphorylation and electron transport chain(ETC)
efficiency (41). The observed upregulation of COA3 in ADHD-I
may represent a compensatory mechanism to enhance ETC activity,
thereby mitigating bioenergetic deficits and restoring mitochondrial
redox balance (42). By maintaining oxidative phosphorylation
efficiency, COA3 may help ensure adequate ATP production to
support energy-demanding neuronal processes, including synaptic
vesicle cycling and neurotransmitter synthesis.
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The dorsoventral axis formation pathway governs early neural
tube patterning, with BMP/Wnt signaling to dictate neuronal
subtype specification. Mutations in this pathway disrupt neural
tube closure and cortical layer formation, leading to defects such as
spina bifida and cortical malformations (43). Beyond structural
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defects, our data suggest that ADHD-I may involve subtle
disruptions in dorsoventral patterning, leading to altered
dopaminergic or noradrenergic circuitry. The ventral midbrain
dopaminergic neurons, which are critical for reward processing,
require precise BMP4 gradients for their differentiation and survival
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Computational prediction and molecular docking of drugs targeting CD180 and COA3A. (A) Predicted drugs targeting CD180 and COA3.Five drugs
(benzo(a)pyrene, cadmium, cadmium chloride, di-n-butylphosphoric acid, and sodium arsenite) were found to co-target both biomarkers
(highlighted in red). (B) Molecular docking analysis of CD180 and benzo(a)pyrene. (C) Docking results for CD180 and di-n-butylphosphoric acid.

(44).Perturbations in BMP4 signaling may be associated with
disrupted the development of dopaminergic neurons, thereby
contributing to ADHD’s reward deficiency phenotypes. It is
important to note that while altered reward sensitivity and delay
aversion are observed in ADHD, particularly in subtypes with
impulsivity symptoms (45), their relevance to ADHD-I remains
less clearly established.

We also observed the enrichment of ribosomal pathways in
both biomarkers, which is consistent with the emerging association
between ribosomopathies and neurodevelopmental disorders.
Impaired ribosome biogenesis may reduce synaptic protein
synthesis, destabilizing dendritic spines (46). These disruptions in
neuronal connectivity could underlie the cognitive and behavioral
deficits characteristic of ADHD, such as difficulties in attention and
executive functioning. This finding suggests that ribosomal
dysfunction may be a fundamental mechanism in ADHD,
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offering a novel perspective for understanding the molecular
underpinnings of the disorder.

Additionally, the ¥y T cells identified in this study are
unconventional T cells that secrete interleukin (IL)-17 and IFN-v,
contributing to neuroinflammation (47, 48). The positive
correlation between ¥ T cell infiltration and CD180/COA3
expression (r >0.6) suggests a feedforward loop in which CD180
activation on B cells may associate with yd T cell recruitment, while
mitochondrial stress (via COA3) releases damage-associated
molecular patterns that further activate Y8 T cells. This
neuroinflammatory milieu, characterized by elevated pro-
inflammatory cytokines, is hypothesized to contribute to the
cognitive and behavioral symptoms of ADHD.
Neuroinflammation can alter neuromodulator systems and
disrupt cortical excitability, potentially leading to increased
mental fatigue, erratic fluctuations in attention. Some individuals
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with ADHD-I may experience emotional regulation difficulties,
though these are not typically considered core characteristics of
the inattentive subtype (49). In autism, Y§ T cells infiltration
correlates with the severity of social deficits (50). The functional
significance of ¥ T cells in ADHD, however, remains to be
fully elucidated.

Eosinophils, classically recognized for their role in combating
parasitic infections, have emerged as key immunomodulatory cells
capable of exerting anti-inflammatory effects through IL-10
secretion and regulating immune responses in conditions such as
allergies and asthma (51, 52). Our findings reveal a significant
negative correlation between eosinophil counts and disorder-
associated biomarkers (e.g., CD180 and COA3; r < -0.5),
suggesting a possible association with a protective role of
eosinophils in mitigating neuroinflammatory processes. Notably,
reduced eosinophil counts in ADHD-I contrast sharply with their
elevation in autism (53), possibly reflecting divergent immune
—metabolic profiles. Further research is warranted to explore the
functional mechanisms underlying eosinophil activity, such as their
role in regulating neuroinflammation or metabolic pathways, and
their potential as a therapeutic target for ADHD-L

The distinct immune landscape observed in ADHD-I,
characterized by elevated yd T cells and reduced eosinophils,
suggests a state of neuroinflammation that may extend beyond
the periphery to influence central nervous system function. This is
consistent with emerging hypotheses proposing neuroinflammation
as a key mechanism linking immune dysregulation to core
neuropsychiatric symptoms in ADHD, including inattention and
cognitive fatigue (50). Our molecular regulatory network analysis
demonstrates that both hsa-miR-29b-1-5p and FOXCI target
CD180 and COA3. Hsa-miR-29b-1-5p, a member of the miR-29
family, has been implicated in a range of biological processes,
including tumorigenesis and immune responses (54, 55). During
the neural differentiation of embryonic stem cells, miR-29b
regulates the transition of neuroectodermal cells into neural tube
epithelial cells and neural crest cells. Therefore, dysregulation of
hsa-miR-29b-1-5p, as a member of the miR-29 family, may disrupt
normal neural development, potentially contributing to an
increased risk of psychiatric disorders (56). Moreover, in models
of spinal cord ischemia-reperfusion injury, the downregulation of
IncRNA TUGI, mediated by targeting hsa-miR-29b-1-5p, reduces
metadherin-induced inflammatory damage (57). These findings
suggest that hsa-miR-29b-1-5p may modulate neuroinflammatory
responses through similar mechanisms, thereby influencing the
development of psychiatric conditions.

In contrast, FOXC1 plays a crucial role in embryonic
development and nervous system formation. Mutations or
abnormal expression of FOXC1 have been associated with
developmental defects in specific brain regions, such as the
prefrontal cortex and striatum, which may impair cognitive
function and behavioral regulation, thereby increasing the
susceptibility to disorders such as ADHD (58, 59). As a
transcription factor, FOXCI regulates the expression of multiple
downstream genes and may be involved in modulating key
components of neurotransmitter systems, including the
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dopaminergic and noradrenergic pathways, thereby affecting
neural function (60).

Taken together, these findings indicate that hsa-miR-29b-1-5p
and FOXCI may jointly influence neural development,
neuroinflammation, and neurotransmitter regulation through
shared target genes, potentially contributing to the pathogenesis
of psychiatric disorders.

Benzo(a)pyrene, a polycyclic aromatic hydrocarbon found in
tobacco smoke, has been shown to bind CD180 with high affinity
(=8.1 kcal/mol). It activates the AhR, which cross-talks with TLR
signaling to induce IL-6 (61).Epidemiological studies show that
maternal BaP exposure increases ADHD risk, possibly via AhR-
mediated suppression of foetal dopaminergic development through
mechanisms such as altered gene expression or increased apoptosis
(37). AhR activation directly inhibits the expression of Nurrl
(Nuclear receptor related 1), a master regulator of midbrain
dopaminergic neuron differentiation and survival (62). AhR
activation triggers mitochondrial apoptosis by upregulating pro-
apoptotic Bax and downregulating anti-apoptotic Bcl-2, leading to
cytochrome ¢ release and caspase-3/9 activation (63). Our
molecular docking simulations suggest BaP may directly interfere
with the ligand-binding domain of CD180. In contrast, AhR
antagonists, such as resveratrol, may mitigate these inflammatory
effects, highlighting the need for further exploration of AhR
inhibition as a potential therapeutic strategy for preventing or
managing neurodevelopmental disorders, including ADHD-I.

By bridging transcriptomics, network analysis and molecular
docking, this study establishes the dual immune-metabolic
architecture of ADHD, with CD180 and COA3 serving as
mechanistic linchpins.

This study identifies CD180 and COA3 as potential immune
—metabolic biomarkers for ADHD-I, with mechanistic connections
to neurodevelopment processes, inflammation pathways, and
environmental toxins response. The observed diagnostic accuracy
of CD180 and COA3 (AUC > 0.8), supported by a clinically
applicable nomogram, underscores their potential as biomarkers for
subtype stratification and early intervention. However, several
limitations must be acknowledged. First, the modest sample size
increases the risk of overfitting, and although the reported AUC
values are encouraging, they require cautious interpretation. Machine
learning models built on small datasets can perform well on the
training data but may fail to generalize to new populations. Therefore,
our findings are strictly preliminary and must be validated externally.
Furthermore, our sample was restricted to medication-naive children
with ADHD - I, who were predominantly male (~81%) and free of
comorbid neurodevelopmental or psychiatric conditions.
Consequently, the findings may not generalize to other ADHD
subtypes, females, adolescents, adults, or individuals with common
comorbidities such as anxiety or autism spectrum disorder. The high
male predominance also implies that sex-related biological differences
in immune and metabolic function could influence the expression
and relevance of the identified biomarkers, underscoring the need for
future studies with balanced cohorts to explore potential sex-specific
effects. Additionally, the associative nature of our analyses precludes
causal inferences. Functional studies, such as using CRISPR-Cas9-
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mediated CD180/COA3 knockout models or transgenic animals are
essential to establish causal relationships between these biomarkers
and ADHD related behavioral phenotypes. Longitudinal assessments
tracking biomarker expression from childhood to adulthood are
needed to clarify their dynamic roles in disease progression. Finally,
the diagnostic utility of the clinical prediction model requires
validation in larger and independent cohorts. Moreover, further
investigation is needed to explore potential genetic associations
between the CD180 and COA3 gene loci and ADHD-1.

Moving forward, our study underscores the importance of
bridging molecular discoveries with clinical innovation. By
prioritizing functional validation, expanding cohort diversity, and
integrating multi-omics approaches, future studies may unravel the
immune-metabolic crosstalk central to ADHD pathophysiology.

5 Conclusion

In conclusion, this exploratory study employed an integrated
multi-omics approach to identify CD180 and COA3 as potential
dual immune-metabolic biomarker candidates for ADHD-I. Our
integrated analysis suggests that dysregulation of CD180 and COA3
converges on several biological pathways—neurodevelopment,
immunometabolism, and oxidative phosphorylation—that are
critical for normal brain function. We hypothesize that subtle
deficits in these systems may contribute to functional
impairments in distributed neural networks, ultimately
compromising cognitive processes essential for attention and
executive control. These findings offer a novel, mechanistically
grounded framework for understanding the neurobiology of the
inattentive presentation of ADHD-L

Furthermore, immune infiltration analysis revealed altered
proportions of yd T cells and eosinophils, implicating
neuroinflammatory and metabolic crosstalk in ADHD-I
pathophysiology. However, these results are preliminary and
hypothesis-generating, derived from a limited cohort. Future
studies should prioritize independent validation in larger cohorts,
functional interrogation using CRISPR-Cas9 models, and
longitudinal tracking of biomarker dynamics to advance precision
diagnostics and interventions for ADHD heterogeneity.
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