
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Animesh Kumar Paul,
University of Alberta, Canada

REVIEWED BY

Georgi Neichev Onchev,
Medical University Sofia, Bulgaria
Ivo Dönnhoff,
Heidelberg University Hospital, Germany
Bahareh Behroozi Behroozi Asl,
University of Alberta, Canada

*CORRESPONDENCE

Ying Duan

Duanying1333@163.com

Wei Yang

epicard@163.com

†These authors have contributed equally to
this work

RECEIVED 10 June 2025

ACCEPTED 02 September 2025
PUBLISHED 22 September 2025

CITATION

Meng X, Wang L, Duan Y, Zhu G, Wang J,
Sun Y, Wang M, Liu M, Sun C, Pang L, Hu K,
Yang W, Shao W, Ren J, Shao X and Zhang Y
(2025) Hierarchical machine learning model
integrating clinical history and nursing
observations for predicting violent
behavior in hospitalized
schizophrenia patients.
Front. Psychiatry 16:1644341.
doi: 10.3389/fpsyt.2025.1644341

COPYRIGHT

© 2025 Meng, Wang, Duan, Zhu, Wang, Sun,
Wang, Liu, Sun, Pang, Hu, Yang, Shao, Ren,
Shao and Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 22 September 2025

DOI 10.3389/fpsyt.2025.1644341
Hierarchical machine
learning model integrating
clinical history and nursing
observations for predicting
violent behavior in hospitalized
schizophrenia patients
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Jinhuan Wang1, Ying Sun1, Mingtao Wang1, Miao Liu1,
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Xiaojun Shao3 and Yang Zhang1

1Liaoning Provincial Mental Health Center, Tieling, Liaoning, China, 2Liaoning Maternal and Child
Health Hospital, Shenyang, Liaoning, China, 3Department of Psychiatry, The First Affiliated Hospital of
China Medical University, Shenyang, Liaoning, China, 4Key Laboratory of Networked Control Systems,
Chinese Academy of Sciences, Shenyang, China, 5Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, China, 6University of Chinese Academy of Sciences, Beijing, China,
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Objective: To develop and validate a hierarchical machine learning model

integrating static clinical features and dynamic behavioral assessments for

accurately predicting violent behaviors among hospitalized schizophrenia patients.

Methods: This retrospective study included 346 schizophrenia patients

hospitalized from July 2021 to July 2024 in Liaoning Province. Patients were

categorized into violent (n = 123) and non-violent (n = 223) groups based on

documented aggressive incidents. Eighteen static clinical variables (e.g., age,

gender, history of violence, manic symptoms) were extracted from electronic

medical records, and 39 dynamic behavioral indicators (e.g., anger expression,

insomnia, auditory hallucinations) were assessed weekly using the Psychiatric

Patient Nursing Observation Scale. Predictive models were separately developed

using six machine learning algorithms: Regularized Logistic Regression (LR),

Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random

Forest (RF), Multi-layer Perceptron (MLP), and K-Nearest Neighbor (KNN).

Regularized logistic regression was selected as the final algorithm due to its

superior predictive performance, indicated by the highest Area Under the Curve

(AUC), in both static baseline and dynamic behavioral models. A hierarchical

predictive model was then established using regularized logistic regression

separately for static baseline risk and dynamic risk fluctuations, subsequently

integrated using a weighted fusion approach.

Results: The integrated hierarchical regularized logistic regression model

achieved an optimal performance with an area under the curve (AUC) of

0.8741, surpassing both the static baseline model (AUC = 0.7953) and dynamic

model (AUC = 0.8003) alone. Optimal predictive performance was obtained with

a fusion parameter (a) of 0.37, balancing sensitivity (0.7838), specificity (0.8358),

and accuracy (0.8173). Key independent predictors included static factors such as
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history of violence (odds ratio [OR]=4.638), manic symptoms (OR = 7.801),

younger age (OR = 0.966), high-risk command hallucinations (OR = 2.602),

and dynamic features like anger expression (OR = 4.649), insomnia (OR = 7.422),

and auditory hallucinations (OR = 2.092).

Conclusion: The hierarchical machine learning model integrating clinical history

and dynamic nursing observations significantly enhances predictive accuracy for

violent behavior in schizophrenia inpatients, providing clinicians with valuable

tools for timely risk assessment and personalized preventive interventions.
KEYWORDS

schizophrenia, violent behavior, predictive models, machine learning, hierarchical
model, risk factors
1 Introduction

Schizophrenia is a severe psychiatric disorder characterized by

disruptions in perception, emotion, cognition, and behavior.

Individuals diagnosed with schizophrenia exhibit an elevated risk

of violent behaviors (1, 2). Aggressive behaviors, defined as actions

with hostile intent, ranging from verbal threats to physical violence

against others, occur frequently among hospitalized schizophrenia

patients, with reported prevalence rates ranging from 15% to over

50% across different clinical settings (3, 4). Such violence

profoundly affects the safety and psychological well-being of other

patients and medical staff, significantly increasing the utilization of

coercive measures such as restraints and seclusion, which in turn

elevate healthcare costs and burden families and institutions (5, 6).

Given these challenges, accurate identification and timely

prediction of patients at risk for violent episodes have become

crucial objectives in clinical psychiatry. Previous studies have

consistently identified static clinical characteristics such as

younger age, male gender, history of substance abuse, and prior

violent behavior as significant predictors of violence in

schizophrenia (7, 8). Additionally, certain dynamic factors,

including the presence of command hallucinations, anger

expression, and acute psychotic or affective symptoms, have also

demonstrated strong associations with violent outcomes (8, 9).

Nevertheless, relying solely on static or dynamic factors in

isolation often results in limited predictive accuracy, as violent

behavior typically arises from the complex interplay between

persistent risk markers and acute symptomatic exacerbations (10).

This recognition of the interplay between static and dynamic factors

has long guided clinical practice and led to the development of

structured professional judgment (SPJ) instruments. The most

prominent of these is the Historical-Clinical-Risk Management-20

(HCR-20), which provides a standardized framework for clinicians

to systematically consider a range of historical (static) and current

clinical (dynamic) risk factors (11). While these tools have proven

invaluable for structuring the risk assessment process, their primary

contribution lies in guiding data collection rather than automating
02
prediction. The final risk estimation still heavily relies on a

clinician’s ability to manually and subjectively integrate the scores

of a predefined set of variables. This manual integration process

may struggle to consistently and objectively weigh the complex,

non-linear relationships among a large number of factors, especially

when dealing with fine-grained dynamic behavioral data. Therefore,

a gap remains for developing more objective, data-driven

approaches that can synthesize a richer set of clinical information

to enhance predictive accuracy.

Machine learning (ML), with its ability to identify complex,

non-linear relationships in large datasets, offers powerful new

approaches for psychiatry (12), particularly for challenging tasks

like violence prediction. Recent studies leveraging ML techniques

have demonstrated superior predictive performance compared to

traditional structured assessments, often achieving higher

sensitivity and specificity by integrating diverse data types,

including clinical histories, nursing observations, and even

neuroimaging data (13, 14) . However , despite these

advancements, there remains substantial room for improvement,

especially in models that systematically integrate long-term (static)

risk factors and short-term (dynamic) indicators of imminent

violent behavior. Nevertheless, most published ML models still

adopt flat (mixed) architectures that treat static and dynamic

predictors at the same level. Tools such as FOxWeb (15)

exemplify this strategy and illustrate a key limitation: within a

single-tier framework, subtle fluctuations in modifiable risk factors

are often overshadowed by high-impact static correlates (e.g., sex,

prior violence), yielding limited incremental predictive value (16).

These findings underscore the need for hierarchical or time-aware

modeling schemes that can explicitly preserve and optimally weight

the distinct contributions of baseline vulnerability and acute state-

dependent risk.

To address this gap, this study develops and validates a novel

hierarchical machine learning model designed to explicitly separate

and optimally integrate static and dynamic risk factors. In contrast

to the ‘flat’ architectures previously discussed, our approach

employs a two-stage process. First, a baseline risk model is
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trained exclusively on static clinical history data to establish each

patient’s long-term, underlying vulnerability. Concurrently, a

separate dynamic risk model is trained on weekly nursing

observation data to capture the short-term fluctuations in

symptoms and behaviors that may signal imminent violent

episodes. In the final stage, the predictions from these two

specialized models are integrated via a weighted fusion strategy to

generate a single, comprehensive risk score. The principal

advantage of this hierarchical design is its ability to prevent the

powerful, stable signals from static predictors from diluting or

overshadowing the more subtle, yet clinically critical, dynamic

indicators. By compelling the model to learn from each data

stream independently before integration, our method aims not

only to enhance overall predictive accuracy but also to provide a

more interpretable framework that clearly distinguishes the

contributions of a patient’s stable predispositions versus their

acute clinical state.

The main contributions of this paper can be summarized as

follows: (1) We construct a robust foundation for model

development by building a rich clinical dataset that integrates

static clinical data with high-granularity dynamic indicators from

weekly nursing observation scales. (2) We propose a novel

hierarchical machine learning framework that structurally

disentangles static and dynamic risk factors to overcome the

“overshadowing” limitations of traditional ‘flat’ models. (3) As a

result, we demonstrate significantly enhanced predictive accuracy

and provide a more clinically interpretable tool that clarifies the

source of patient risk, thereby enabling more targeted and

personalized preventive strategies.
2 Materials and methods

This section systematically details the methodology used to

develop and evaluate a hierarchical predictive model for violent

behavior in schizophrenia patients. To ensure clarity and

reproducibility, we present our approach in a logical sequence. We

begin by describing the study population, including inclusion/

exclusion criteria and baseline characteristics. Following this, we

detail the data collection process, distinguishing between static

clinical history and dynamic nursing observation features. We then

provide a precise operational definition for patient grouping based on

documented violent behavior. Subsequently, we outline the critical

data preprocessing steps, including data cleaning, normalization, and

the strict partitioning of data into training and independent test sets.

The core of this section describes the construction of our hierarchical

model, covering the development of baseline statistical models and

machine learning models, hyperparameter optimization via cross-

validation, and the model fusion strategy. Finally, we specify the

evaluation metrics and the framework used to assess the final model’s

performance on the unseen test data, ensuring an objective measure

of its generalizability.
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2.1 Study population

2.1.1 Study subjects and inclusion/exclusion
criteria

In this retrospective study, we reviewed the electronic medical

records of patients admitted to a psychiatric hospital in Liaoning

Province between July 2021 and July 2024. The inclusion criteria for

participants were as follows: (1) met the diagnostic criteria for

schizophrenia according to the International Classification of

Diseases, 10th Revision (ICD-10); (2) were aged between 18 and

65 years; (3) had a total hospitalization duration of greater than 2

weeks; and (4) had a cumulative total of at least 2 completed

assessments from the Psychiatric Patient Nursing Observation

Scale, which was administered weekly. The primary exclusion

criterion was the presence of severe or unstable physical illnesses

or organic brain disorders that could confound the assessment of

violent behavior. To ensure that dynamic behavioral data reflected

pre-incident behavior, we also excluded patients whose first violent

episode occurred during the initial week of hospitalization, as these

patients lacked sufficient pre-event observation data for meaningful

analysis. Initially, a total of 360 patients were identified. After

applying the inclusion and exclusion criteria, 14 patients were

removed. This resulted in a final sample of 346 participants for

analysis, yielding an effective rate of 96.11%.

2.1.2 Demographic and clinical baseline
characteristics

The analysis was based on a final cohort of 346 patients. The

mean age of the participants was 43.8 ± 12.5 years (range: 18–65

years), with 190 (54.9%) being male and 156 (45.1%) being female.

Regarding their sociodemographic and clinical background, a

majority of patients were unmarried (75.1%), had an educational

level of junior high school or below (76.3%), and were employed

(81.2%). The median duration of illness was 14 years (interquartile

range: 10–23 years), and the mean duration of hospitalization was

6.34 ± 2.67 weeks. A history of substance abuse was recorded in

34.4% of patients, while a prior history of violence was documented

in 75.4%.
2.2 Data collection

2.2.1 Data sources and composition
Data for this study were systematically compiled from two

primary sources: the hospital’s Electronic Medical Record (EMR)

system and the Psychiatric Patient Nursing Observation Scale.

These sources provided two distinct types of data: static features,

representing baseline clinical history extracted once upon

admission, and dynamic features, reflecting behavioral and

symptomatic changes collected weekly throughout the patient’s

hospitalization. The subsequent subsections provide a detailed

account of the variables collected from each source.
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2.2.2 Static features: clinical history
A total of 18 demographic and baseline clinical characteristics

were retrospectively extracted from patients’ electronic medical

records upon admission. These static features included age,

gender, occupation, duration of illness, marital status, educational

level, personality traits, history of substance abuse, prior incidents

of violence, high-risk command hallucinations, persecutory

delusions, disturbances in thought processes, abnormalities in

sensory perception, intelligence assessments, attention deficits,

memory impairment, depressive or hopeless feelings, and

manic symptoms.

These features were selected due to their documented

associations with violence risk in psychiatric settings.

Demographic factors such as younger age and male sex have been

linked to a higher propensity for aggressive behavior in clinical

populations (17, 18). Socio-economic variables (occupation, marital

status, education level) were included because unstable

employment, lack of social support (e.g., being unmarried), or

lower educational attainment can contribute to stress and

diminished coping, which may in turn increase the likelihood of

violent incidents (18). Patients’ long-standing personality traits

were considered as well, since certain trait profiles (especially

those involving impulsivity or antisocial features) are known to

predispose individuals to violent behavior (18). A history of

substance abuse and prior violent acts are among the most robust

predictors of future violence; numerous studies have found that co-

morbid substance use can dramatically elevate violence risk, and

past violent behavior is the single strongest predictor of subsequent

aggression (1, 19). Specific psychopathological symptoms at

admission — notably, persecutory delusions and command

auditory hallucinations directing the patient to harm others —

have been shown to significantly heighten the risk of violent

behavior, underlining the importance of assessing these high-risk

symptoms (18, 20). Likewise, disturbances in thought processes and

other abnormalities in sensory perception (hallucinations) indicate

acute psychotic disorganization, which can impair judgment and

self-control. Cognitive deficits, as evidenced by low performance on

intelligence tests or observed attention and memory impairments,

may further contribute to violence risk by limiting the patient’s

impulse control and problem-solving abilities (1). Finally, extreme

mood symptoms were included because affective states can

modulate aggression: for instance, manic symptoms are

frequently accompanied by heightened irritability and

disinhibition, factors which correlate with increased aggression

potential (17). Incorporating these static factors provides a

comprehensive baseline profile, grounded in prior research, to

inform violence risk assessments in psychiatric inpatients.

2.2.3 Dynamic features: nursing observation scale
Dynamic behavioral data were collected on a weekly basis using

the Psychiatric Patient Nursing Observation Scale, a structured

nurse-rated instrument derived from the validated Nurses’

Observation Scale for Inpatient Evaluation (NOSIE-30) (21). The

NOSIE-30 is a validated 30-item scale originally developed by

Honigfeld and colleagues for quantifying the behavior of
Frontiers in Psychiatry 04
psychiatric inpatient. It has been widely used in clinical settings

and demonstrated robust psychometric properties across cultures,

with studies reporting high internal consistency (Cronbach’s a ≈

0.80–0.90) and strong inter-rater reliability (22). In our study, this

scale was expanded to 39 items by incorporating additional

clinically relevant observations (such as the patient’s insight into

illness and expressed desire for discharge) to enhance its

comprehensiveness. Each item was rated on a 4-point Likert scale

from 0 (normal or not present) to 3 (severe or most abnormal),

reflecting the frequency and intensity of that behavior during the

observation period.

Assessment Procedure: All inpatients were evaluated with this

scale at the end of each week of hospitalization. Specifically, every

Friday afternoon the primary nurse for each patient completed the

39-item rating, based on their observations of the patient’s behavior

and symptoms over the preceding 7 days (from Saturday

through Friday).

Scale Composition: These features included adherence to ward

regulations; ability tomanage personal belongings such as clothes and

snacks; participation in bed-making, cleaning, occupational therapy,

recreational activities, and broadcast gymnastics; appropriate

dressing according to ambient temperature; self-report of physical

discomfort; interpersonal interactions and attitudes toward family,

peers, and staff; emotional expressions including responses to humor;

personal hygiene practices (face washing, teeth brushing, foot

washing, grooming hair, sanitation regarding toileting and

menstruation); dietary habits; episodes of anger, agitation, increased

or rapid speech, self-talk, inappropriate laughter; presence of auditory

hallucinations; sedentary or inactive behaviors such as prolonged

sitting or lying down; psychomotor slowing; insomnia; episodes of

crying; subjective feelings of depression; negative self-evaluation;

insight into illness; and expressed desire for discharge.
2.3 Patient grouping

2.3.1 Operational definition of violent behavior
In this study, “violent behavior” was operationally defined as

any intentional use of physical force or power, whether threatened

(e.g., raising a fist, adopting an aggressive posture) or actual, against

another person or property during the patient’s hospitalization,

which either results in or has a high likelihood of resulting in injury,

psychological harm, or property damage.

This definition was designed to align with the broad definition

of violence by the World Health Organization (WHO) in the Global

Report on Violence and Health and is informed by the operational

criteria for “physical aggression” found in commonly used

psychiatric risk assessment tools, such as the HCR-20, the Overt

Aggression Scale (OAS), and the Brøset Violence Checklist (BVC).

Included Behaviors: Examples of behaviors meeting this

definition included, but were not limited to: beating, punching,

kicking, pushing, grabbing, biting, throwing objects at others, or

using an object as a weapon to attack another person, as well as

destructive acts toward property, such as intentionally smashing

windows or breaking doors.
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Excluded Behaviors: To ensure the specificity of the

classification, purely verbal threats, insults, or non-aggressive

defiant behaviors (e.g., refusal of medication) were not classified

as violent behavior. Similarly, acts of self-harm or suicidality were

explicitly excluded, unless they escalated into or occurred

concurrently with physical aggression directed toward others.

2.3.2 Grouping process and criteria
A rigorous assessment and grouping protocol was established to

accurately assign patients to the “violent group” and “non-

violent group”:
Fron
1. Raters and Training: Two attending psychiatrists, trained

and familiar with violence risk assessment standards,

served as raters. Their training included an in-depth

review of the operational definition used in this study and

discussions of case vignettes to ensure consistency in

applying the criteria.

2. Data Retrieval: The two raters independently and

retrospectively reviewed the complete electronic medical

records (EMRs), nursing shift notes, and adverse event

reports for each patient’s entire hospitalization period. The

review focused on narrative text describing patient behavior,

supplemented by keyword searches (e.g., “hit”, “attack”,

“assault”, “destroy”, “smash”) to screen for potential incidents.

3. Event Tagging and Consistency Check: Raters

independently tagged any behavioral incidents identified

according to the definition in Section 2.3.1. After the

evaluation of all cases was complete, the tagged results

were compared. Any disagreements between the raters were

resolved by a joint review of the original records and

discussion to reach a consensus.
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4. Final Grouping: Based on the final consensus, any patient

with at least one documented incident (≥ 1) meeting the

criteria for violent behavior during their hospitalization was

classified into the violent group (n = 123). Patients with no

such documented incidents were classified into the non-

violent group (n = 223). Detailed distributions of age,

duration of illness, gender, marital status, occupation,

educational level, substance abuse history, and history of

violence between the violent and non-violent groups are

presented in Table 1.
2.4 Data preprocessing

2.4.1 Dataset partitioning
Before any preprocessing, we performed a single random split

of the entire sample (N = 346) and consistently used this

partitioning in all subsequent experiments. Specifically, patients

were randomly assigned by patient ID such that 70% were allocated

to the training set and the remaining 30% to an independent test set.

The training set was exclusively dedicated to model development,

encompassing feature select ion, model training, and

hyperparameter tuning; the test set remained completely isolated

during the development process and was only used once, after the

model was finalized, to objectively assess its performance on unseen

data. This fixed partitioning strategy helps prevent data leakage and

ensures the reliability and reproducibility of the evaluation results.

2.4.2 Data cleaning
Prior to analysis, the dataset was cleaned to ensure accuracy and

completeness. Records with missing key information or insufficient
TABLE 1 Distribution of patient characteristics in violent and non-violent behavior groups.

Characteristics Category or unit Violent group (n=123) Non-violent group (n=223) Total (n=346)

Age Years 38.80 ± 11.40 46.50 ± 12.20 43.80 ± 12.50

Duration of illness Years 13 (8, 20) 16 (11, 24) 14 (10, 23)

Gender Male 72 (58.50%) 118 (52.90%) 190 (54.90%)

Female 51 (41.50%) 105 (47.10%) 156 (45.10%)

Marital Status Married 26 (21.10%) 60 (26.90%) 86 (24.90%)

Unmarried 97 (78.90%) 163 (73.10%) 260 (75.10%)

Occupation Employed 91 (74.00%) 190 (85.20%) 281 (81.20%)

Unemployed 32 (26.00%) 33 (14.80%) 65 (18.80%)

Educational Level High School or above 40 (32.50%) 42 (18.80%) 82 (23.70%)

Junior High or below 83 (67.50%) 181 (81.20%) 264 (76.30%)

Substance Abuse History Yes 40 (32.50%) 79 (35.40%) 119 (34.40%)

No 83 (67.50%) 144 (64.60%) 227 (65.60%)

Violence History Yes 110 (89.40%) 151 (67.70%) 261 (75.40%)

No 13 (10.60%) 72 (32.30%) 85 (24.60%)
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hospitalization duration were excluded during initial screening. For

remaining data, necessary format transformations were applied—

such as extracting numeric values from free-text entries for

“duration of illness.” All fields were checked for outliers, and

residual missing values were imputed using the median for

continuous variables and the mode for categorical variables,

minimizing bias while preserving data integrity.

2.4.3 Data encoding
Categorica l var iables were encoded into numeric

representations suitable for machine learning algorithms. Binary

attributes (such as sex, marital status, employment status, presence

of substance abuse history, prior violence history, and key psychotic

symptoms like command hallucinations or persecutory delusions)

were converted into binary indicator variables (0 = absence, 1 =

presence). This binary encoding ensures that these features are

treated as dichotomous flags in the models. For ordinal variables, we

preserved their rank order by mapping categories to integer codes.

Notably, education level was encoded on an increasing scale (for

example, 0 for no formal schooling or elementary school, 1 for

junior high school, 2 for high school or vocational training, and 3

for college degree or higher), reflecting higher educational

attainment with larger numeric values. The personality trait

variable (introverted vs. extroverted) was similarly coded as a

binary feature. These encoding steps were applied after careful

verification of category values in the dataset (with any unexpected

or out-of-vocabulary entries logged and reviewed). The dynamic

nursing observation features were already numeric (ordinal ratings

from 0 to 3 for each behavioral item) and thus were directly usable

without additional encoding, aside from ensuring that they were

read as numerical data types.

2.4.4 Normalization
After encoding, all continuous numerical features were

normalized to ensure they were on comparable scales, a step that

prevents features with larger ranges from dominating others in

distance-based or gradient based modeling algorithms. In practice,

we applied standard z-score normalization to the relevant features.

Each continuous feature (such as age, illness duration, and each of

the weekly observation scale item scores) was rescaled by

subtracting the mean and dividing by the standard deviation of

that feature (computed from the training set data). This

transformation yielded features with a mean of 0 and a standard

deviation of 1.
2.5 Model construction

2.5.1 Prediction task definition
The goal of this study is to identify which inpatients with

schizophrenia are likely to exhibit violent behavior during

hospitalization. This is formulated as a binary classification

problem with labels defined as 1 for violent patients and 0 for

non-violent patients.
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We construct two separate models to estimate this risk based on

different sources of information, and then combine their outputs:
• Static risk model. The inputs to this model are 18 baseline

clinical features collected at admission, including

demographic variables (e.g. age, sex, marital status) and

clinical history (e.g. previous violence, substance use,

personality traits). This model outputs a probability,

denoted by R0, that the patient belongs to the violent

group. It captures long-term, stable risk factors.

• Dynamic behavioral model. The inputs are 39 behavioral

features from the Nursing Observation Scale. For each

patient, we average all weekly scores prior to the first

violent incident (for violent patients) or all weekly scores

during hospitalization (for non-violent patients) to obtain a

single 39-dimensional vector. Using this vector, the model

outputs a probability, denoted by Rdyn, that the patient

belongs to the violent group. This model focuses on the

patient’s overall behavioral state.
To integrate these two risk estimates, we compute a weighted

combination

R* = aR0 + (1 − a) Rdyn,

where a is a weight between 0 and 1 chosen on the training set.

A decision threshold is applied to R∗ to convert it into a final

binary prediction.

We adopt a hierarchical model design, which not only addresses

the complexity of the data structure but also simulates the clinical

thought process used by physicians when assessing risk. Specifically,

in clinical practice physicians tend to rely on two types of

information: first, long-term or static data about the patient—

such as age, past medical history, and family background—

forming a baseline risk assessment; and second, recent dynamic

information—such as behavioral manifestations, emotional states,

and daily symptoms over the past few weeks—which is used to

adjust the baseline and derive the current risk. This mode of

thinking helps physicians integrate long-term risk with recent

changes to achieve a more comprehensive and timely assessment.

Thus, the hierarchical model aligns the data with this separation of

“long-term versus short-term” information and matches the clinical

reasoning process, making the model structure easier to understand

and trust, and thereby better supporting clinical decision-making.

2.5.2 Baseline logistic regression model
In order to establish an interpretable benchmark for violent-risk

prediction, we first employed a logistic regression (LR) model.

Logistic regression is a classical supervised learning algorithm for

binary classification: it maps a linear combination of the input

variables onto a probability in the interval [0,1], thereby producing

the likelihood that the instance belongs to a particular class. The

model assumes that the independent variables are linearly related to

the log–odds of the outcome and uses an S–shaped sigmoid

function to map the linear predictor to a probability (23). Because
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of its simplicity and the ease with which coefficients can be

interpreted, logistic regression is well suited to provide a

transparent baseline against which more complex models can

later be compared (24).

Step 1: Univariate analysis.

To identify potential risk factors associated with violent

behavior, each candidate feature underwent univariate statistical

analysis prior to modeling. The purpose of this step was to screen

variables that exhibited significant differences between the two

patient groups (violent versus non-violent) and to provide

candidate predictors for subsequent multivariate modeling. All

statistical analyses were performed in a Python 3.10 environment

with the pandas, NumPy, SciPy and statsmodels libraries. The

procedure was as follows:
Fron
1. Normality testing. The Kolmogorov–Smirnov test was used

to assess whether continuous variables followed a normal

distribution. Variables that were normally distributed and

homoscedastic were compared between groups using

independent–sample t tests; variables that violated these

assumptions were compared using the Wilcoxon rank–sum

test. Categorical variables were compared with chi-square

tests or Fisher’s exact test.

2. Univariate regression. To further evaluate the association of

each feature with violent behavior, a univariate logistic

regression model was fitted on the training set for each

static and dynamic feature. Odds ratios (ORs) with 95%

confidence intervals (CIs) were calculated, and features

with P < 0.05 were considered significantly associated

with violent behavior and were entered into the

subsequent multivariate analysis.
Step 2: Multivariate logistic regression analysis.

Because univariate results may be confounded by covariates,

multivariate logistic regression was used to control potential

confounders and to identify independent predictors. We

employed the Logit function from the statsmodels library to fit

multivariate logistic regression models on the training set. The

independent variables comprised those that were significant in the

univariate analysis, and the dependent variable was the violent-

behavior label (1 = violent, 0 = non-violent). Exponentiating the

estimated regression coefficients yielded ORs with 95% confidence

intervals, reflecting each factor’s independent contribution to

violent risk after adjusting for other variables. Statistical

significance was defined as P < 0.05.

Step 3: Hierarchical model development.

After significant variables were identified, regularized logistic

regression models were used to build separate static and dynamic

submodels, and these were combined via a fusion strategy to form

the final hierarchical predictive model. Throughout model

development, patient-level splitting into training and test sets was

strictly observed: the training set was used for model training and

hyperparameter tuning, and the test set was reserved solely for final

performance evaluation.
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1. Static baseline model (R0). The static clinical features selected

from Steps 1 and 2 were used as inputs to a regularized logistic

regression model for violent-risk prediction. Because regularized

logistic regression has tunable regularization parameters, a

hyperparameter search was required to identify the optimal

combination. Five–fold cross validation combined with grid

search was executed on the training set to explore the following

parameters (25):
• Penalty type (penalty): {l1, l2, elasticnet}. L1 regularization

can produce sparse solutions and perform feature selection,

whereas L2 regularization shrinks all coefficients but does

not drive them exactly to zero.

• Regularization strength (C): C is the inverse of the

regularization parameter; smaller values correspond to

stronger regularization. Candidate values were taken on a

logarithmic scale from 10−4 to 104.

• Solver (solver): different optimization algorithms (liblinear,

lbfgs, saga) were considered because they perform

differently on small versus large data sets and with

different regularization schemes (23).

• Maximum iterations (maxiter): to ensure convergence,

maximum iteration limits of 100 and 200 were tested.
Grid search enumerated all combinations of these parameters;

for each combination, five–fold cross validation was used to

compute the mean area under the receiver–operating-

characteristic curve (AUC) and accuracy. The parameter set with

the highest average performance was selected, and the regularized

logistic regression model was then retrained on the entire training

set with these optimal parameters to produce a static baseline risk

score R0. For interpretability, regression coefficients and ORs for

each significant feature were reported.

2. Dynamic behavior model (Rdyn). The same regularized

logistic regression framework was applied to the 39 dynamic

behavior features that were significant in the previous steps.

Because the dynamic features were assessed weekly, each patient’s

weekly scores before their first violent incident (for the violent

group) or before discharge (for the non-violent group) were

averaged to create a single feature vector representing their

overall behavioral state. The same grid–search procedure

described above was used on the training set to tune the penalty,

C, solver and maximum iterations, and the optimal model was

retrained on the full training set to yield a dynamic-risk score

Rdyn (25).

3. Model fusion and integration. We intentionally used a two-

step scheme to combine the static and dynamic sub-models. First,

the static and dynamic models were tuned independently to

estimate the baseline risk R0 and the state-dependent risk Rdyn;

then a single fusion weight a was cross-validated on the training

data. This two-step design has three practical motivations: (i)

interpretability — separate training yields stable, reusable

estimates of R0 and Rdyn, and a is a simple, clinically meaningful

knob to discuss their relative contributions; (ii) lower overfitting risk
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— a single “giant grid” over both sub-models’ hyperparameters plus

a would greatly expand the search space on a small dataset, making

the selection step itself easy to overfit; the two-step procedure

decouples model learning from strategy fusion and keeps the

search compact and auditable; and (iii) modularity and

operational reuse — in practice, hospitals may wish to upgrade or

swap either component (for example, adding new nursing

indicators) without retraining everything; with late fusion, we can

update a sub-model and only re-tune a. To integrate both sources

we adopted a linear weighted fusion:

R = aR0 + (1 − a) Rdyn,

where a ∈ ½0, 1� controls the relative weight of the two

components. To determine the optimal a, grid search was

performed on the training set: values between 0 and 1 were tested

in increments of 0.05, and the average AUC over five-fold cross-

validation was computed for each candidate. The value yielding the

highest mean AUC was selected. The fused score R represents the

predicted probability of violent behavior. Finally, R was compared

with a decision threshold (default 0.5); patients with R above the

threshold were predicted to be violent, and those below were

predicted to be non-violent.

2.5.3 Machine learning model construction
To provide strong comparators of model performance and

capture complex nonlinear relationships, this study introduces

multiple flexible machine learning algorithms beyond the baseline

logistic regression. The static model uses all 18 admission baseline

features, whereas the dynamic model is based on all 39 behavioral

features. We develop and tune these models on the training set and

evaluate their generalization performance on an independent test

set, in order to assess how well each algorithm discriminates

between violent and non-violent patients and to compare the

incremental value of dynamic information.

Step 1: Static model development.

For the static features, we trained five classifiers individually:

multi-layer perceptron (MLP), random forest (RF), k-nearest

neighbors (KNN), support vector machine (SVM) and extreme

gradient boosting (XGBoost). Training adhered strictly to a

training/test split, and hyperparameters were selected on the

training set using fivefold cross-validation with grid search or

random search. The main tuning points were as follows:
Fron
• MLP. The number of hidden layers and neurons, activation

functions (e.g. ReLU or tanh), the L2 regularization

coefficient and the learning rate were adjusted. Because

MLPs are sensitive to feature scaling and require non-

convex optimization, cross-validation helps identify a

stable network architecture (26).

• Random forest. We tuned the number of trees

(n_estimators), the number of features considered at each

split (max_features) and the maximum tree depth

(max_depth). Minimum sample requirements for splitting

nodes (min_samples_spl i t ) and for leaf nodes
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(min_samples_leaf) were also adjusted to control

overfitting (27).

• KNN. The key hyperparameter is the number of neighbors

k. Too small a value leads to overfitting, while too large a

value may miss local structure. We searched k from 3 to 20,

considered different weighting schemes (uniform or

distance) and tried Euclidean and Manhattan distance

metrics (28).

• SVM. Using a radial basis function (RBF) kernel, we tuned

the penalty parameter C and the kernel width g via grid

search to balance margin maximization and classification

error (29).

• XGBoost. We focused on tree depth, minimum child weight

and minimum child sample number, subsample and

column-subsample ratios, learning rate and the number of

boosting rounds. When necessary, additional regularization

parameters such as gamma, reg_alpha and reg_lambda

were adjusted to reduce overfitting (30).
Once the best parameters were identified via cross-validation on

the training set, each model was retrained on the full training data

and evaluated on the test set.

Step 2: Dynamic behavioral model development.

The dynamic models followed the same procedure as the static

models but used the 39 behavioral features as input. Each classifier

(MLP, RF, KNN, SVM, XGBoost) was trained and tuned on the

training set and evaluated on the test set. Because the dynamic

features capture behavioral changes during hospitalization, models

capable of learning complex nonlinear patterns are particularly

useful here.

Step 3: Model fusion and integration.

To combine the predictions of the static and dynamic models,

we adopted a linear weighted fusion. Let R0 denote the probability

output from the static model and Rdyn denote the probability from

the dynamic model. A fused probability was computed as

R = a R0 + (1 − a) Rdyn,

where a ∈ ½0, 1� controls the relative contribution of each part.

We searched a from 0 to 1 in increments of 0.05 using fivefold

cross-validation on the training set and selected the a with the

highest average AUC. Finally, we compared R against a decision

threshold (default 0.5) on the test set to obtain the final predictions.
2.6 Evaluation metrics

To systematically evaluate the clinical value of our hierarchical

predictive model, we selected several evaluation metrics that capture

both discriminative ability and calibration. Sensitivity (recall),

specificity, positive predictive value (PPV), negative predictive

value (NPV), accuracy, the area under the receiver–operating-

characteristic curve (AUC) and the confusion matrix were

computed. These metrics provide complementary information

about how well the model distinguishes between violent and non-
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violent inpatients and how well its predicted probabilities align with

observed outcomes.

2.6.1 Sensitivity (recall)
Sensitivity quantifies the proportion of violent patients who are

correctly classified as high risk. In violence prediction, missing a

patient who subsequently becomes violent (a false negative) may

have serious consequences for other patients and staff. Ethicists

argue that the harm associated with false negatives is generally

viewed as more unacceptable than false positives, so high sensitivity

is critical to ensure that potential violent incidents are not

overlooked (31).

2.6.2 Specificity
Specificity measures the proportion of non-violent patients who

are correctly identified as low risk. High specificity reduces false

positives and thus protects patients from unnecessary restrictions or

interventions. Ogonah et al. note that instruments with high

specificity are most suitable for discharge planning and resource

allocation because they avoid overestimating risk and preserve

patients’ rights (32).

2.6.3 Positive predictive value and negative
predictive value

PPV denotes the proportion of individuals judged to be high

risk who subsequently commit violence, whereas NPV represents

the proportion of those judged to be low risk who do not later

commit violence. Fazel et al. emphasize that many risk assessment

tools demonstrate relatively low PPV but high NPV, reflecting the

low base rate of violence; in their meta-analysis the median PPV

was around 41% but NPV exceeded 90% (33). Reporting PPV and

NPV therefore informs clinicians how many high-risk predictions

translate into actual violent incidents and how confidently low-risk

predictions can be used to rule out future violence.
2.6.4 Accuracy
Accuracy is the overall proportion of correct predictions.

Although accuracy provides an intuitive summary, it can be

misleading in imbalanced data sets where one class predominates.

We therefore report accuracy alongside other metrics to

provide context.
2.6.5 AUC
The area under the receiver operating characteristic (ROC)

curve summarizes the probability that the model will assign a higher

risk score to a randomly selected violent patient than to a randomly

selected non-violent patient. As Connors and Large discuss, AUC

has become the most widely used measure of discrimination

because it is independent of a particular cut-off and relatively

unaffected by base-rate differences (34). However, AUC measures

discrimination only; a model can have a high AUC yet

systematically over- or under-estimate absolute risk (32), so it

must be interpreted together with calibration measures.
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2.6.6 Confusion matrix
The confusion matrix tabulates true positives, false positives,

true negatives and false negatives. It provides a transparent

overview of the model’s errors and forms the basis for calculating

all other metrics. Examining the confusion matrix helps clinicians

understand whether a model tends to over-predict or under-predict

violent behavior, informing decisions about acceptable trade-offs

between sensitivity and specificity.

By reporting both discrimination metrics (sensitivity,

specificity, accuracy, AUC) and calibration metrics (PPV, NPV),

our evaluation aligns with recommendations that violence risk

assessments should consider multiple aspects of performance.

Such a comprehensive evaluation helps balance public safety

against patients’ rights in clinical decision-making (32).
3 Results

This section systematically presents the core findings of our

study on violence prediction. We begin by reporting the results of

the univariate analysis for both static clinical features and dynamic

nursing observation features to initially screen for potential risk

factors significantly associated with violent behavior. Building on

this, we then present the findings from the multivariate logistic

regression analysis, which aims to identify the key variables that

independently predict violence risk. Finally, this section provides a

detailed evaluation of the predictive performance of the constructed

baseline regularized logistic regression model and the hierarchical

machine learning models, comprehensively demonstrating their

accuracy, discriminative ability, and clinical value using a range of

metrics on an independent test set.
3.1 Univariate analysis

To identify the key variables for constructing the predictive

models, we first conducted univariate analysis to screen for

potential risk factors associated with violent behavior.

3.1.1 Single-factor analysis of static features
Static baseline features were retrospectively extracted from

electronic medical records and clinical baseline assessments upon

patient admission. Statistical analyses were conducted to evaluate

differences between violent and non-violent behavior groups.

Continuous variables, such as age and duration of illness, were

analyzed using the Mann-Whitney U test due to non-normal

distributions. Categorical variables, including binary and ordinal

variables, were assessed with the Chi-square (c2) test or Fisher’s

exact test, as appropriate. As shown in Table 2, several static

features demonstrated statistically significant differences (P <

0.05) between the two groups. Patients exhibiting violent

behaviors were significantly younger (P < 0.001) and had a

shorter disease duration (P = 0.003). A history of violence was

also more prevalent in the violent group (P < 0.001). Additionally,
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the violent group showed higher incidences of mania (P = 0.002),

hopelessness or depression (P = 0.011), and high-risk command

hallucinations (P = 0.015). Significant differences were also

observed regarding education level (P = 0.003) and occupation

status (P = 0.016).
3.1.2 Single-factor analysis of dynamic features
Dynamic behavioral features assessed weekly using the

Psychiatric Patient Nursing Observation Scale were analyzed to

determine differences between the violent and non-violent patient

groups. Each of the 39 dynamic variables was rated on an ordinal

scale from 0 (absent or normal) to 3 (severe or highly abnormal).

The Mann-Whitney U test or Chi-square test was employed for

statist ical comparison, depending on the distribution

characteristics of each variable. Significant differences (P < 0.05)

were observed in 31 of the 39 dynamic variables. The detailed

statistical results are summarized in Table 3. Patients in the violent

behavior group consistently exhibited significantly higher severity

in behavioral disturbances such as anger expression (P < 0.001),

lower adherence to ward regulations (P < 0.001), reduced

cooperation with staff (P < 0.001), increased auditory

hallucinations (P < 0.001), and greater difficulty participating in

structured activities like exercises (P < 0.001), recreational

activities (P < 0.001), and occupational therapy (P < 0.001).

Moreover, significant impairments in basic daily activities such

as cleaning (P < 0.001), personal affairs management (P < 0.001),

face washing (P < 0.001), teeth brushing (P < 0.001), and

maintaining neat appearance (P < 0.001) were more prevalent

among violent patients. Additional notable behavioral differences

included higher rates of insomnia (P < 0.001), agitation (P <

0.001), inappropriate laughter (P = 0.002), and self-talking

behaviors (P < 0.001). Violent patients also demonstrated

significantly decreased engagement in interpersonal and social

interactions, such as reduced conversation with others (P = 0.008),

less interest in surroundings (P < 0.001), and diminished family

concern (P = 0.001). These findings underscore the predictive

utility of dynamic behavioral monitoring in identifying patients at

higher risk for violent behaviors during hospitalization.
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3.2 Multivariate logistic regression analysis

Building upon the univariate analysis, we then conducted

multivariate logistic regression analysis to further control for

confounding factors and identify the core factors that

independently predict violent behavior.

3.2.1 Logistic regression analysis of static features
Based on the results from the univariate analysis, static features

demonstrating significant differences (P < 0.05) between the violent

and non-violent patient groups were included in a multivariate

logistic regression model to identify independent predictors of

violent behavior among schizophrenia patients. Specifically,

variables such as age, duration of illness, history of violence,

manic symptoms, and other statistically significant factors (a total

of eight variables) were initially selected for inclusion.

Multivariate logistic regression analysis identified four static

clinical characteristics as independent predictors of violent

behavior, as shown in Table 4. Patients with a history of violence

had significantly increased odds of exhibiting violent behavior (OR =

4.638, 95% CI: 2.169–9.918, P < 0.001). Additionally, manic

symptoms substantially elevated the risk of violent incidents (OR =

7.801, 95% CI: 1.449–41.997, P = 0.017). Younger age was associated

with a higher likelihood of violent behaviors (OR = 0.966, 95% CI:

0.937–0.997, P = 0.030). Patients experiencing high-risk command

hallucinations were also significantly more likely to engage in violent

behaviors (OR = 2.602, 95% CI: 1.033–6.553, P = 0.043).

These findings suggest that a history of violence, presence of

manic symptoms, younger age, and high-risk command

hallucinations are independently associated with an increased risk

of violent behavior among schizophrenia patients, highlighting their

potential utility as predictive indicators for early clinical assessment

and preventive interventions.

3.2.2 Logistic regression analysis of dynamic
scale features

Based on the results from the univariate analysis, dynamic

behavioral variables that showed significant differences (P < 0:05)
TABLE 2 Single-factor analysis of significant static features between violent and non-violent groups.

Feature Feature type Test method P Significant

Age Continuous variable Mann-Whitney U test <0.001 Yes

Violence History Binary variable Chi-square test <0.001 Yes

Mania Binary variable Fisher’s exact test 0.002 Yes

Disease Duration Continuous variable Mann-Whitney U test 0.003 Yes

Education Level
Ordinal categorical
variable

Mann-Whitney U test 0.003 Yes

Hopelessness/Depression Binary variable Chi-square test 0.011 Yes

High-risk Command
Hallucinations

Binary variable Chi-square test 0.015 Yes

Occupation Binary variable Chi-square test 0.016 Yes
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between the violent and non-violent patient groups were included in a

multivariate logistic regression model. This analysis aimed to identify

dynamic clinical features independently associated with violent

behavior among schizophrenia patients. Variables such as anger

expression, insomnia, auditory hallucinations, and other statistically

significant factors (a total of 33 variables) were initially selected.

Multivariate logistic regression analysis identified five dynamic

behavioral features independently predictive of violent behaviors, as

shown in Table 5. Specifically, higher ratings of anger expression
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significantly increased the likelihood of violent incidents (OR =

4:649, 95% CI: 2:555– 8:458, P < 0:001). Similarly, insomnia (OR

= 7:422, 95% CI: 2:212– 24:900,   P = 0:001) and auditory

hallucinations (OR = 2:092,95% CI: 1:319– 3:317,     P = 0:002)

were also significantly associated with increased risk. Conversely,

higher ratings of psychomotor retardation (OR = 0:467, 95% CI:

0:235– 0:927, P = 0:030) and greater illness awareness (OR = 0:636

, 95% CI: 0:415– 0:973, P = 0:037) were associated with reduced

odds of violent behavior.
TABLE 3 Single-factor analysis of significant dynamic features between violent and non-violent groups.

Feature Feature type Test method P Significant

Anger Expression Ordinal Variable Mann-Whitney U test <0.001 Yes

Rule Compliance Ordinal Variable Mann-Whitney U test <0.001 Yes

Cooperation with Staff Ordinal Variable Mann-Whitney U test <0.001 Yes

Auditory Hallucinations Ordinal Variable Mann-Whitney U test <0.001 Yes

Exercise Participation Ordinal Variable Mann-Whitney U test <0.001 Yes

Recreational Activities Ordinal Variable Mann-Whitney U test <0.001 Yes

Insomnia Ordinal Variable Mann-Whitney U test <0.001 Yes

Cleaning Ordinal Variable Mann-Whitney U test <0.001 Yes

Work Therapy Participation Ordinal Variable Mann-Whitney U test <0.001 Yes

Personal Affairs Management Ordinal Variable Mann-Whitney U test <0.001 Yes

Interest in Surroundings Ordinal Variable Mann-Whitney U test <0.001 Yes

Attitude Toward Others Ordinal Variable Mann-Whitney U test <0.001 Yes

Face Washing Ordinal Variable Mann-Whitney U test <0.001 Yes

Bed Making Ordinal Variable Mann-Whitney U test <0.001 Yes

Teeth Brushing Ordinal Variable Mann-Whitney U test <0.001 Yes

Neat Appearance Ordinal Variable Mann-Whitney U test <0.001 Yes

Talking to Self Ordinal Variable Mann-Whitney U test <0.001 Yes

Illness Awareness Ordinal Variable Mann-Whitney U test <0.001 Yes

Hand Washing Before Meals Ordinal Variable Mann-Whitney U test <0.001 Yes

Agitation Ordinal Variable Mann-Whitney U test <0.001 Yes

Laughs at Jokes Ordinal Variable Mann-Whitney U test <0.001 Yes

Psychomotor Retardation Ordinal Variable Mann-Whitney U test <0.001 Yes

Family Concern Ordinal Variable Mann-Whitney U test 0.001 Yes

Clothing Adjustment Ordinal Variable Mann-Whitney U test 0.001 Yes

Discussing Personal Interests Ordinal Variable Mann-Whitney U test 0.001 Yes

Inappropriate Laughing Ordinal Variable Mann-Whitney U test 0.002 Yes

Rapid Speech Ordinal Variable Mann-Whitney U test 0.003 Yes

Foot Washing Ordinal Variable Mann-Whitney U test 0.006 Yes

Hair Grooming Ordinal Variable Mann-Whitney U test 0.008 Yes

Conversation with Others Ordinal Variable Mann-Whitney U test 0.008 Yes

Physical Discomfort
Description

Ordinal Variable Mann-Whitney U test 0.012 Yes
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These results emphasize that dynamic changes in anger, sleep

disturbances, and auditory hallucinations independently predict an

increased risk of violent episodes. In contrast, psychomotor slowing

and better illness insight appear to confer protective effects. Regular

monitoring of dynamic factors, such as anger expression, insomnia,

and auditory hallucinations, facilitates the early identification of

violence risk in patients with schizophrenia and the prompt

implementation of preventive measures.
3.3 Performance of hierarchical machine
learning models

To systematically verify the effectiveness of the hierarchical

fusion strategy, we adopted a step-wise modeling and evaluation

approach tailored to the feature selection results: the regularized

logistic regression model used only the significant features
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identified through univariate and multivariate analyses, with the

static model including history of violence, manic symptoms, age

and high-risk command hallucinations, and the dynamic model

including anger expression, insomnia, auditory hallucinations,

psychomotor retardation and illness awareness. This was

intentional: regularized logistic regression assumes a linear

relationship between predictors and the log-odds and prefers

parsimonious models, so using a small number of significant

features avoids overfitting and aids clinical interpretation. In

contrast, the other machine learning algorithms (SVM, XGBoost,

random forest, MLP and KNN) can capture complex nonlinear

relationships and handle highly correlated features, so all 18

baseline variables or all 39 dynamic nursing-observation variables

were used as inputs to retain as much information as possible. All

models were tuned using five-fold cross-validation on the same

training set to ensure fair comparison.

3.3.1 Performance of the static baseline model
For the 18 baseline features at admission, we trained six

algorithms. The regularized logistic regression model used the

four significant predictors mentioned above and tuned the type of

regularization (L1, L2 or Elastic Net), regularization parameter C,

solver and number of iterations via grid search. The optimal static

LR model employed L2 regularization, C = 1:0, the liblinear solver

and 200 iterations; it achieved an AUC of 0.7953, the highest among

all static models, and balanced sensitivity (0.4846), specificity

(0.8955) and accuracy (0.7500). The other nonlinear models were

trained on all 18 baseline features and tuned similarly: the MLP

used two hidden layers (with 64 and 32 neurons), a ReLU activation

function, a learning rate of 0.001 and an L2 regularization

coefficient of 0.001; the random forest used 200 trees, a maximum

depth of 6 and sqrt as the maximum feature fraction; KNN used

k = 7, distance weighting and the Euclidean distance metric; SVM

used an RBF kernel with C = 1 and g = 0:01; and XGBoost was set

with a maximum depth of 4, a learning rate of 0.1, 100 boosting

rounds, subsample and column subsample rates of 0.8, and a

minimum child weight of 1. Under these optimal settings,

regularized logistic regression still exhibited the strongest

discrimination, indicating that a carefully selected subset of static

features adequately captures long-term risk. Detailed performance

metrics and model comparisons are presented in Table 6.
TABLE 4 Multivariate logistic regression of static features predicting
violent behavior.

Feature Coefficient P OR 95% CI

Violence History 1.534 <0.001 4.638 2.169–9.918

Mania 2.054 0.017 7.801 1.449–41.997

Age -0.034 0.030 0.966 0.937–0.997

High-risk Command
Hallucinations

0.956 0.043 2.602 1.033–6.553
TABLE 5 Multivariate logistic regression of dynamic features predicting
violent behavior.

Feature Coefficient P-value OR 95% CI

Anger Expression 1.536 <0.001 4.649 2.555–8.458

Insomnia 2.004 0.001 7.422 2.212–24.900

Auditory
Hallucinations

0.738 0.002 2.092 1.319–3.317

Psychomotor
Retardation

-0.762 0.030 0.467 0.235–0.927

Illness Awareness -0.453 0.037 0.636 0.415–0.973
TABLE 6 Predictive performance of static baseline models for violent behavior.

Model
type

Sensitivity Specificity
Positive predictive

value
Negative predictive

value
Accuracy AUC

MLP 0.4595 0.8806 0.6800 0.7468 0.7308 0.5484

RF 0.2973 0.8060 0.4583 0.6750 0.6250 0.6769

KNN 0.2973 0.8358 0.5000 0.6829 0.6442 0.6480

SVM 0.4865 0.8955 0.7200 0.7595 0.7500 0.7691

LR 0.4846 0.8955 0.7200 0.7595 0.7500 0.7953

XGBoost 0.4865 0.9104 0.7500 0.7625 0.7596 0.7749
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3.3.2 Performance of the dynamic behavioral
model

Dynamic behavioral models were developed using weekly

nursing-observation scores following a similar procedure. The

dynamic LR model used only the five significant behavioral

indicators and tuned the regularization type, C and solver. The

best dynamicLR model adopted L2 regularization, C = 0:5 and the

liblinear solver; it achieved an AUC of 0.8003, specificity of 0.8507

and positive predictive value of 0.6552, showing that behavioral

fluctuations are highly predictive of imminent violence. For

comparison, MLP (two hidden layers with 128 and 64 neurons,

ReLU activation and a 0.001 learning rate), random forest (300

trees, maximum depth 10, sqrt feature sampling), KNN (k = 9,

distance weighting), SVM (RBF kernel, C = 0:5, g = 0:005) and

XGBoost (maximum depth 3, learning rate 0.05, 200 boosting

rounds, subsample and column subsample rates of 0.8) were all

trained using the full set of 39 features, but none exceeded the AUC

of LR. This further indicates that the small number of dynamic

predictors identified in the univariate and multivariate analyses

contain most of the predictive information. Detailed performance

metrics and model comparisons are presented in Table 7.
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3.3.3 Performance of the integrated model
To integrate long-term and short-term risk information, we

combined the static and dynamic predictions using a decision-level

weighted fusion, R = a R0 + (1 − a) Rdyn. The weight a was

selected by grid search on the training set with a step size of 0.05; the

optimal a varied by model pair: the LR+LR combination had an

optimal weight of 0.37, while the optimal weights for the SVM

+SVM, XGBoost+XGBoost, random forest+random forest, MLP

+MLP and KNN+KNN combinations were 0.40, 0.35, 0.45, 0.43

and 0.30 respectively. Because LR achieved the highest AUC in both

static and dynamic submodels, we ultimately adopted the LR+LR

fusion as the hierarchical predictor. This fused model increased the

AUC to 0.8741, with sensitivity 0.7838, specificity 0.8358 and

accuracy 0.8173, clearly outperforming the individual static or

dynamic models. The performance improvement indicates that

static predictions provide a stable baseline, dynamic indicators

capture short-term exacerbations, and the weighted combination

of the two probability outputs yields more accurate and timely

predictions of violent behavior in hospitalized schizophrenia

patients. Detailed experimental results can be found in Figure 1

and Table 8.
4 Discussion

The present study developed and validated a hierarchical machine

learning model integrating both static clinical characteristics and

dynamic behavioral observations to predict violent behavior among

hospitalized schizophrenia patients. The key findings underscore the

feasibility and efficacy of employing a two-tier predictive framework,

achieving significantly higher predictive performance compared to

relying solely on static baseline characteristics or dynamic behavioral

indicators independently.

Our study identified multiple independent risk factors from

static clinical features, specifically history of violence, manic

symptoms, younger age, and high-risk command hallucinations,

as significant predictors of violent behavior. These findings align

closely with existing literature, where prior violence, manic

presentations, and younger age have consistently been identified

as robust predictors of violent incidents among schizophrenia

patients (1, 7, 35, 36). Additionally, the association between high-

risk command hallucinations and violent behaviors is also well
TABLE 7 Predictive performance of dynamic behavioral models for violent behavior.

Model
type

Sensitivity Specificity
Positive predictive

value
Negative predictive

value
Accuracy AUC

MLP 0.6216 0.7612 0.5897 0.7846 0.7115 0.7370

RF 0.6486 0.7612 0.6000 0.7969 0.7212 0.7475

KNN 0.2703 0.9851 0.9091 0.7097 0.7308 0.6846

SVM 0.5405 0.8209 0.6250 0.7639 0.7212 0.7348

LR 0.5135 0.8507 0.6552 0.7600 0.7308 0.8003

XGBoost 0.4865 0.8060 0.6061 0.7606 0.7115 0.7402
FIGURE 1

Confusion matrix of integrated hierarchical model predictions.
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documented, highlighting how psychotic symptoms can exacerbate

impulsivity and aggression (35, 37, 38).

Regarding dynamic behavioral features, our study highlighted

that anger expression, insomnia, and auditory hallucinations were

significant independent predictors of violent episodes. These

dynamic variables reflect acute symptomatic exacerbations and

disturbed behavioral states closely linked to imminent violent

behavior. This aligns with previous research emphasizing that

acute psychotic and affective symptoms are highly predictive of

immediate risk (9, 39). Conversely, psychomotor retardation and

increased illness insight were identified as protective, suggesting

that reduced psychomotor activity and greater self-awareness may

inhibit impulsive aggressive responses, consistent with findings by

prospective ward-based findings (40) and outpatient prediction

studies (41).

Our integrated hierarchical model demonstrated substantial

improvements in predictive performance, achieving an AUC of

0.8741, significantly surpassing both the static (AUC = 0.7953) and

dynamic (AUC = 0.8003) models alone. The optimal fusion

parameter (a = 0.37) indicated a stronger predictive contribution

from dynamic features, suggesting the temporal sensitivity of these

variables is crucial for precise short-term prediction. This

hierarchical integration approach echoes similar strategies

adopted in other fields of psychiatric risk prediction, where

combining stable historical data with dynamic clinical

observations significantly enhances predictive accuracy (13, 42, 43).

The present study also underscores the potential clinical utility

of machine learning approaches in psychiatric risk assessment.

Compared to traditional clinical judgment alone, our findings

highlight the benefits of systematically combining a broad array

of static and dynamic patient data. Machine learning can identify

subtle patterns and complex interactions that might elude

conventional assessment methods, thus providing clinicians with

objective, data-driven tools to enhance decision-making processes

(44–46). Notably, unstructured clinical judgment in violence risk

assessment is prone to evaluator bias and shows limited inter-rater

agreement (40). Meta-analytic evidence indicates that structured or

algorithmic methods outperform clinician judgment when

predicting violent outcomes. Consequently, automated machine-

learning tools can offer consistent, data-driven risk estimates that

reduce subjective variability and complement clinicians’ decisions.

Despite these promising results, several limitations should be

acknowledged. Firstly, our findings should be interpreted as

demonstrating strong associations rather than definitive causal

links. This limitation stems mainly from our reliance on

predictive machine-learning algorithms, which focus on

correlations rather than causal mechanisms, and is compounded

by the retrospective nature of the dataset (47, 48). Future studies

employing prospective or real-time data collection methods could
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offer stronger validation of predictive models (49). Secondly, the

generalizability of our findings might be limited, as our patient

cohort was sourced from a single psychiatric institution in Liaoning

Province. Thus, multicenter studies encompassing broader

geographical and cultural diversity are needed to further validate

our hierarchical predictive framework. Thirdly, although our

dynamic data collection was systematic, the weekly assessment

frequency may miss finer-grained temporal dynamics. Real-time

or more frequent monitoring using digital health technologies could

improve the model’s temporal precision and sensitivity (44). A

further limitation is that both the overall sample and the number of

violent cases were small. Small training sets make machine-learning

models prone to overfitting and inflated effect estimates, and a

pronounced class imbalance (few violent cases) can bias predictions

toward the non-violent majority (40). Larger, more balanced multi-

center cohorts with external validation are therefore needed to

improve robustness and generalizability.

Future research directions should consider integrating

biological markers such as neuroimaging or genetic data, which

might further improve predictive accuracy and elucidate underlying

neurobiological mechanisms of violent behavior in schizophrenia

patients (13, 50). Moreover, implementing real-time monitoring

systems in clinical practice, possibly leveraging wearable devices or

digital behavioral tracking technologies, may provide clinicians with

timely alerts and facilitate preemptive interventions (51).

Overall, this study demonstrates that a hierarchical machine

learning model integrating static clinical information with dynamic

behavioral observations has a clear advantage in predicting short-

term violence risk among hospitalized patients with schizophrenia.

The model shows that dynamic indicators contribute more and

identifies that symptoms such as anger expression, insomnia, and

auditory hallucinations are closely related to the occurrence of

violent incidents. These results provide a basis for adopting data-

driven, dynamic risk assessments in future clinical practice.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Liaoning

Provincial Mental Health Center. The studies were conducted in

accordance with the local legislation and institutional requirements.

Written informed consent for participation in this study was

provided by the participants’ legal guardians/next of kin.
TABLE 8 Predictive performance of the integrated hierarchical model for violent behavior.

Model
type

Sensitivity Specificity
Positive predictive

value
Negative predictive

value
Accuracy AUC

LR + LR 0.7838 0.8358 0.7250 0.8750 0.8173 0.8741
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1644341
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Meng et al. 10.3389/fpsyt.2025.1644341
Author contributions

XM: Writing – original draft, Writing – review & editing. LW:

Writing – review & editing. YD:Writing – review & editing,Writing –

original draft. GZ:Writing – review & editing. JW:Writing – review &

editing. YS: Writing – review & editing. MW: Writing – review &

editing. ML: Writing – review & editing. CS: Writing – review

& editing. LP: Writing – review & editing. KH: Writing – review &

editing. WY:Writing – review & editing, Writing – original draft.WS:

Writing – review & editing. JR: Writing – review & editing. XS:

Writing – review & editing. YZ: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This study was funded by

the Applied Basic Research Program of the Liaoning Provincial

Science and Technology Plan (Grant No. 2023JH2/101300063) and

the Joint Program of the Department of Science & Technology,

Liaoning Province (2024JH2/102600305).
Acknowledgments

We thank the members of Liaoning Provincial Mental Health

Center, The First Hospital of China Medical University, and

Shenyang Institute of Automation, Chinese Academy of Sciences
Frontiers in Psychiatry 15
for their helpful discussions and support. We apologize to the

scientists whose work could not be cited due to space limitations.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Witt K, van Dorn R, Fazel S. Risk factors for violence in psychosis: Systematic
review and meta-regression analysis of 110 studies. PloS One. (2013) 8:e55942.
doi: 10.1371/journal.pone.0055942

2. Dack C, Ross J, Papadopoulos C, Stewart D, Bowers L. A review and meta-analysis
of the patient factors associated with psychiatric in-patient aggression. Acta Psychiatr
Scand. (2013) 127:255–68. doi: 10.1111/acps.12053

3. Zhou J-S, Zhong B-L, Xiang Y-T, Chen Q, Cao X-L, Correll CU, et al. Prevalence
of aggression in hospitalized patients with schizophrenia in China: A meta-analysis.
Asia-Pac Psychiatry. (2016) 8:60–9. doi: 10.1111/appy.12209

4. Iozzino L, Ferrari C, Large M, Nielssen O, De Girolamo G. Prevalence and risk
factors of violence by psychiatric acute inpatients: a systematic review and meta-
analysis. PloS One. (2015) 10:e0128536. doi: 10.1371/journal.pone.0128536

5. Renwick L, Stewart D, Richardson M, Lavelle M, James K, Hardy C, et al.
Aggression on inpatient units: Clinical characteristics and consequences. Int J Ment
Health Nurs. (2016) 25:308–18. doi: 10.1111/inm.12191

6. Schlup N, Gehri B, Simon M. Prevalence and severity of verbal, physical, and
sexual inpatient violence against nurses in swiss psychiatric hospitals and associated
nurse-related characteristics: Cross-sectional multicentre study. Int J Ment Health Nurs.
(2021) 30:1550–63. doi: 10.1111/inm.12905

7. SoykaM, Graz C, Bottlender R, Dirschedl P, Schoech H. Clinical correlates of later
violence and criminal offences in schizophrenia. Schizophr Res. (2007) 94:89–98.
doi: 10.1016/j.schres.2007.03.027

8. Parsaei M, Arvin A, Taebi M, Seyedmirzaei H, Cattarinussi G, Sambataro F, et al.
Machine learning for prediction of violent behaviors in schizophrenia spectrum disorders: a
systematic review. Front Psychiatry. (2024) 15:1384828. doi: 10.3389/fpsyt.2024.1384828

9. Swanson JW, Swartz MS, Van Dorn RA, Elbogen EB, Wagner HR, Rosenheck RA,
et al. A national study of violent behavior in persons with schizophrenia. Arch Gen
Psychiatry. (2006) 63:490–9. doi: 10.1001/archpsyc.63.5.490
10. Whiting D, Lichtenstein P, Fazel S. Violence and mental disorders: a structured
review of associations by individual diagnoses, risk factors, and risk assessment. Lancet
Psychiatry. (2021) 8:150–61. doi: 10.1016/S2215-0366(20)30262-5

11. Douglas KS, Hart SD, Webster CD, Belfrage H. HCR-20 V3: Assessing Risk for
Violence – User Guide. Burnaby, Canada: Mental Health, Law, and Policy Institute,
Simon Fraser University (2013).

12. Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical
psychology and psychiatry. Annu Rev Clin Psychol. (2018) 14:91–118. doi: 10.1146/
annurev-clinpsy-032816-045037

13. Gou N, Xiang Y, Zhou J, Zhang S, Zhong S, Lu J, et al. Identification of violent
patients with schizophrenia using a hybrid machine learning approach at the individual
level. Psychiatry Res. (2021) 306:114294. doi: 10.1016/j.psychres.2021.114294

14. Cheng N, Guo M, Yan F, Guo Z, Meng J, Ning K, et al. Application of machine
learning in predicting aggressive behaviors from hospitalized patients with
schizophrenia. Front Psychiatry. (2023) 14:1016586. doi: 10.3389/fpsyt.2023.1016586

15. Gulati G, Cornish R, Al-Taiar H, Miller C, Khosla V, Hinds C, et al. Web-based
violence risk monitoring tool in psychoses: Pilot study in community forensic patients.
J Forensic Psychol Pract. (2016) 16:49–59. doi: 10.1080/15228932.2016.1128301

16. Fazel S, Toynbee M, Ryland H, Vazquez-Montes M, Al-Taiar H, Wolf A, et al.
Modifiable risk factors for inpatient violence in psychiatric hospital: Prospective study
and predict ion model . psychol Med . (2023) 53:590–6. doi : 10.1017/
S0033291721002063

17. Weltens I, BakM, Verhagen S, Vandenberk E, Domen P, van Amelsvoort T, et al.
Aggression on the psychiatric ward: Prevalence and risk factors. a systematic review of
the literature. PloS One. (2021) 16:e0258346. doi: 10.1371/journal.pone.0258346

18. Guo W, Gu Y, Zhou J, Wang X, Sun Q. Characteristics and associated factors of
violence in male patients with schizophrenia in China. Front Psychiatry. (2023)
14:1106950. doi: 10.3389/fpsyt.2023.1106950
frontiersin.org

https://doi.org/10.1371/journal.pone.0055942
https://doi.org/10.1111/acps.12053
https://doi.org/10.1111/appy.12209
https://doi.org/10.1371/journal.pone.0128536
https://doi.org/10.1111/inm.12191
https://doi.org/10.1111/inm.12905
https://doi.org/10.1016/j.schres.2007.03.027
https://doi.org/10.3389/fpsyt.2024.1384828
https://doi.org/10.1001/archpsyc.63.5.490
https://doi.org/10.1016/S2215-0366(20)30262-5
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1016/j.psychres.2021.114294
https://doi.org/10.3389/fpsyt.2023.1016586
https://doi.org/10.1080/15228932.2016.1128301
https://doi.org/10.1017/S0033291721002063
https://doi.org/10.1017/S0033291721002063
https://doi.org/10.1371/journal.pone.0258346
https://doi.org/10.3389/fpsyt.2023.1106950
https://doi.org/10.3389/fpsyt.2025.1644341
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Meng et al. 10.3389/fpsyt.2025.1644341
19. Fazel S, Gulati G, Linsell L, Geddes JR, Grann M. Schizophrenia and violence:
Systematic review and meta-analysis. PloS Med. (2009) 6:e1000120. doi: 10.1371/
journal.pmed.1000120

20. McNiel DE, Eisner JP, Binder RL. The relationship between command hallucinations
and violence. Psychiatr Serv. (2000) 51:1288–92. doi: 10.1176/appi.ps.51.10.1288

21. Honigfeld G, Gillis RD, Klett CJ. Nosie-30: A treatment-sensitive ward
behaviour scale. psychol Rep. (1966) 19:180–2. doi: 10.2466/pr0.1966.19.1.180

22. Sirati Nir M, Khalili R, Mahmoudi H, Ebadi A, Habibi R. Validation of the 30-
item nurses’ observation scale for inpatient evaluation and mental health-care
promotion. J Educ Health Promotion. (2020) 9:281. doi: 10.4103/jehp.jehp_156_20

23. scikit-learn developers. Logistic regression: scikit-learn documentation (2023).
Available online at: https://scikit-learn.org/stable/modules/linear_model.htmllogistic-
regression (Accessed August 11, 2025).

24. scikit-learn developers. L1 penalty and sparsity in logistic regression (2025).
Available online at: https://scikit-learn.org/stable/auto_examples/linear_model/plot_
logistic_l1_l2_sparsity.html (Accessed August 11, 2025).

25. scikit-learn developers. Tuning the hyper-parameters of an estimator: scikit-
learn documentation (2023). Available online at: https://scikit-learn.org/stable/
modules/grid_search.html (Accessed August 11, 2025).

26. scikit-learn developers. Multi-layer perceptron: scikit-learn documentation
(2023). Available online at: https://scikit-learn.org/stable/modules/neural_networks_
supervised.html (Accessed August 11, 2025).

27. Orange Data Mining. Random forest (orange widget catalog) (2025). Available
online at: https://orangedatamining.com/widget-catalog/model/randomforest/
(Accessed August 11, 2025).

28. scikit-learn developers. Nearest neighbors: scikit-learn documentation (2023).
Available online at: https://scikit-learn.org/stable/modules/neighbors.html (Accessed
August 11, 2025).

29. scikit-learn developers. Support vector machines: scikit-learn documentation
(2023). Available online at: https://scikit-learn.org/stable/modules/svm.html (Accessed
August 11, 2025).

30. Chen T, Guestrin C. (2016). “Xgboost: A scalable tree boosting system“, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA: Association for Computing
Machinery (ACM). pp. 785–94. doi: 10.1145/2939672.2939785

31. Roychowdhury A, Adshead G. Violence risk assessment as a medical intervention:
ethical tensions. Psychiatr Bull. (2014) 38:75–82. doi: 10.1192/pb.bp.113.043315

32. Ogonah MGT, Seyedsalehi A, Whiting D, Fazel S. Violence risk assessment
instruments in forensic psychiatric populations: a systematic review and meta-analysis.
Lancet Psychiatry. (2023) 10:780–9. doi: 10.1016/S2215-0366(23)00256-0

33. Fazel S, Singh JP, Doll H, Grann M. Use of risk assessment instruments to
predict violence and antisocial behaviour in 73 samples involving 24827 people:
systematic review and meta-analysis. BMJ. (2012) 345:e4692. doi: 10.1136/bmj.e4692

34. Connors MH, Large MM. Calibrating violence risk assessments for uncertainty.
Gen Psychiatry. (2023) 36:e100921. doi: 10.1136/gpsych-2022-100921

35. Whiting D, Gulati G, Geddes JR, Fazel S. Association of schizophrenia spectrum
disorders and violence perpetration in adults and adolescents from 15 countries: a
systematic review and meta-analysis. JAMA Psychiatry. (2022) 79:120–32. doi: 10.1001/
jamapsychiatry.2021.3721

36. Yu T, Zhang X, Liu X, Xu C, Deng C. The prediction and influential factors of
violence in male schizophrenia patients with machine learning algorithms. Front
Psychiatry. (2022) 13:799899. doi: 10.3389/fpsyt.2022.799899
Frontiers in Psychiatry 16
37. Volavka J, Citrome L. Pathways to aggression in schizophrenia affect
results of treatment. Schizophr Bull. (2011) 37:921–9. doi: 10.1093/schbul/
sbr041

38. Araya T, Ebnemelek E, Getachew R. Prevalence and associated factors of
aggressive behavior among patients with schizophrenia at ayder comprehensive
specialized hospital, Ethiopia. BioMed Res Int. (2020) 2020:7571939. doi: 10.1155/
2020/7571939

39. Sun L, Han X, Wang K, Xu C, Song Z, Zhang J, et al. Candidate symptomatic
markers for predicting violence in schizophrenia: a cross-sectional study of 7711
patients in a chinese population. Asian J Psychiatry. (2021) 59:102645. doi: 10.1016/
j.ajp.2021.102645
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