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Introduction: The long-term effects of the coronavirus disease 2019 (COVID-19)

are a major concern in today’s society, with cognitive impairment being an

important manifestation. Notably, men and women exhibit differences in disease

progression and the prevalence of long-COVID. This study aims to investigate

sex differences in cognitively impaired long-COVID individuals and their potential

association with alterations in gray matter volume (GMV).

Methods: We conducted MRI at 3 Tesla to investigate brain structural correlates

of cognitive impairment in long-COVID patients using voxel-based

morphometry (VBM) and compared these patients to a healthy control (HC)

group (n=30, female=13, male=17). Long-COVID patients underwent scanning

and neuropsychiatric assessment on average 9.9 months after their acute and

mostly mild COVID-19 infection. Based on Montreal Cognitive Assessment

(MoCA) scores, they were classified into two groups: the PCn group, showing

preserved cognitive function with MoCA scores of 26 or higher (n=36,

female=23, male=13), and the PCcog group, characterized by cognitive

impairment with MoCA scores below 26 (n=28, female=15, male=13).

Subsequent analyses were performed separately for males and females to

investigate sex-specific brain structural correlates of cognitive impairment.

Results:Our analysis revealed significant GMV alterations in long-COVID patients

across various brain regions, encompassing both shared and sex-specific

regional changes. In females, these alterations were more restricted, affecting

anterior frontal, limbic, and diencephalic regions. In males, GMV alterations were

more widespread, involving neocortical regions such as the parietal, occipital,

and motor cortices, and were characterized by a greater number of

affected clusters.
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Discussion: Our findings demonstrate GMV alterations in both men and women

with cognitive impairment, exhibiting sex-specific differences in affected regions.

These differences suggest potentially distinct underlying mechanisms,

highlighting the need for further research into their functional implications and

relevance for personalized treatment strategies.
KEYWORDS

long-covid, post-COVID, COVID-19, GMV, VBM, MOCA, sex-difference,
cognitive impairment
Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused

by severe acute respiratory syndrome coronavirus 2 (SARS−CoV

−2) has raised awareness of its long-term effects on human health.

While many individuals recover fully, some continue to experience

symptoms well beyond the initial infection. This condition is

referred to by various terms, including long-COVID, post-

COVID-19 syndrome, post-COVID condition (PCC), or post-

acute COVID-19 syndrome (PACS). In this study, the term long-

COVID is used.

Long-COVID encompasses both ongoing symptomatic

COVID-19 (4–12 weeks) and post-COVID-19 condition (12

weeks or more) (1). It can occur in both hospitalized and non-

hospitalized individuals and is known to affect multiple organ

systems (2). During the early stages of the pandemic cognitive

impairment has been reported in 13,5% to 28.85% of individuals

with prior SARS-CoV2 infection (3, 4). A large English study

conducted between 2020 and 2022 with 112,964 participants

found that objectively measurable cognitive deficits persisted for a

year or more following SARS-CoV-2 infection, particularly in those

with severe illness, prolonged symptoms, or infections during the

early phase of the pandemic (5). However, cognitive impairment

has also been observed regardless of disease severity (6, 7).

From the onset of the pandemic, sex differences in infection

rates and disease progression became evident. Men exhibited higher

mortality rates and more severe disease courses (8, 9). A Swedish

study on ICU patients conducted between 2020 and 2022 found that

critically ill men faced a greater risk of poor long-term outcomes

(10), a disparity linked to comorbidities, behavioral and lifestyle

factors (9, 11), aging, and biological sex differences (8). While men

were more prone to severe acute illness, women appeared to be at

higher risk for persistent symptoms (12, 13). A comprehensive

review involving 1.32 million patients revealed that women were

significantly more likely than men to experience long-term effects of

COVID-19 across multiple categories (14, 15). This may be

attributed to greater symptom self-awareness in women

compared to men (16) as well as a more persistent immune

response (17). Beyond these biological and perceptual factors,
02
sex-specific differences in pandemic-related psychosocial stressors

and in coping strategies may also contribute to the observed

disparities (18).

While previous research has investigated structural brain

alterations following SARS-CoV-2 infection using various imaging

techniques, findings remain inconsistent. Some studies suggest that

COVID-19 can lead to changes in brain structure, including negative

associations between gray matter volume (GMV) and neuropsychiatric

symptoms, indicative of atrophy and loss of connectivity (19, 20).

Others report positive correlations of GMV in specific brain regions

and memory loss, a key neuropsychiatric symptom (21), or no

alteration at all (22). These positive correlations, likely reflecting

ongoing low-grade inflammation in the hippocampus, basal ganglia,

thalamus, and insula, were also observed by our group (23). We

hypothesized that structural alterations in these regions, which are

partly components of the limbic system and the secondary olfactory

network, might contribute to the neuropsychiatric symptoms observed

in long-COVID (23).

Additionally, we found a negative correlation between

functional connectivity in the caudate and the left precentral

gyrus and Montreal Cognitive Assessment (MoCA) scores (24).

Given the inconsistent findings regarding long-COVID related

brain structural changes and the lack of sex-disaggregated data,

further investigation is essential to clarify the potential impact of

COVID-19 on brain structure and its relationship to cognitive

impairment. Reliable and standardized techniques are necessary

to investigate structural brain changes in people with long-COVID,

focusing on well characterized subgroups defined by age, sex,

clinical features, and recovery time. Voxel-based morphometry

(VBM) is a well-established neuroimaging technique for assessing

GMV changes in specific brain regions (25) and has been widely

applied in the study of structural alterations across various

neurological and psychiatric conditions (26).

This study aimed to determine whether cognitive deficits in

long-COVID individuals, assessed by the MoCA, are associated

with GMV changes compared to a long-COVID group without

cognitive deficits and a healthy control (HC) group. Given the

previously described sex-related clinical disparities, we also

hypothesized sex-specific patterns of GMV alterations.
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2 Methods

2.1 Participants and assessments

A total of 94 participants were included in this cross-sectional

case-control study and assigned to one of three groups.

All long-COVID patients were recruited from the long-COVID

outpatient clinics of the Department of Internal Medicine IV

(Infectiology) and the Department of Neurology at the University

Hospital of Jena. Participants were included based solely on a

confirmed long-COVID diagnosis to ensure a broad symptom

spectrum; without requiring specific symptom profiles. A positive

polymerase chain reaction (PCR) test was used to verify SARS-

CoV-2 infection at both clinics. The diagnosis of long-COVID was

based on the 2021 NICE and AWMF guidelines, which defined

long-COVID as symptoms newly occurring after SARS-CoV-2

infection, not explained by other medical conditions, and

persisting for > 4 weeks after infection onset (27, 28). The

presence and duration of long-COVID symptoms were

systematically recorded in a descriptive way via self-report, the

symptom spectrum was as multi-facetted as in representative

population-based studies with pronounced fatigue and cognitive

impairment (29). Accordingly, 61.1% of the PCn cohort and 73.1%

of the PCcog cohort reported cognitive impairment, while 75% of

the PCn group and 96.2% of the PCcog group reported fatigue.

Additional symptoms are listed in Table 1 (see also Supplementary

Table 2). On average, the PCn group experienced 5.14 long-COVID

symptoms, whereas the PCcog group reported 6.9 (see Table 1).

Medical history, including information on the timing of previous

SARS-CoV-2 infection(s), COVID-vaccination status and the

severity of the acute COVID-19 infection as defined by the World

Health Organization (WHO), was collected by a certified physician.

Severity of COVID-19 was categorized into five levels based on the

clinical manifestations and disease progression: uninfected (score

0), ambulatory mild disease (scores 1-3), hospitalized moderate

disease (scores 4-5), hospitalized severe disease (scores 6-9), and

deceased (score 10) (30). The mean WHO severity among long-

COVID participants (both groups) was 2.27 (range 1 to 5, SD 0.89).

Patients were enrolled and assessed in the study on average 9.9

months after infection (range 1 to 24.5 months, SD 4).

Long-COVID individuals were stratified based on their

cognitive performance assessed using the MoCA score (31): those

with a MoCA score ≥ 26 were assigned to the cognitively

unimpaired long-COVID group (PCn; n=36; mean age 41.8; SD

11.4), while participants with a MoCA score < 26 were assigned to

the cognitively impaired long-COVID group (PCcog; n= 28; mean

age 50.04; SD 15). A healthy control group (HC n= 30; mean age yrs

42.0; SD 10.8) was included for comparison. All participants self-

identified as either male or female, and subsequent analyses were

stratified accordingly by sex. To enable sex-specific analysis, each

group was further subdivided by sex. Female and male participants

were labeled f-PCn/m-PCn, f-PCcog/m-PCcog and f-HC/m-HC,

respectively. Group distributions were as follows: the cognitively

unimpaired long-COVID group (PCn) included 23 female (f-PCn)

and 13 male participants (m-PCn); the cognitively impaired long-
Frontiers in Psychiatry 03
TABLE 1 Demographic data of the HC, PCn and PCcog groups.

Measures
HC
(n=30)

PCn
(n=36)

PCcog
(n=28)

Demographics

Age, mean ± SD (years) 42.0 ± 10.8 41.8 ± 11.4 50.04 ± 15

Education, mean ± SD (years) 11.1 ± 1.1 11.2 ± 1 11.07 ± 1.1

Female 13 23 15

Male 17 13 13

Clinical characteristics

WHO Severity of COVID, mean
± SD

— 2.13 ± 0.67 2.48 ± 1.12

Time since COVID (months),
mean ± SD

— 9.9 ± 3.7 9.96 ± 4.39

MoCA mean ± SD 27.97 ± 1.9 27.4 ± 1.5 23.64 ± 1.57

Number of COVID-vaccinations,
mean ± SD

1.9 ± 1.24 1.7 ± 0.63 1.8 ± 0.75

Number of long-COVID
symptoms, mean (range)

— 5.14 (11) 6.9 (11)

Duration of symptoms (months),
mean ± SD

— 10.0 ± 4.3 9.4 ± 5.3

Subjective Symptoms (%)

Fatigue 75 96.2

Cognitive impairment 61.1 73.1

Shortness of breath 52.8 73.1

Muscle/Joint pain 50 80.8

Sleep disturbance 44.4 61.5

Cough 44.4 69.2

Loss of smell/taste 33.3 30.8

Depressed mood 19.4 46.2

Anxiety 16.7 23.1

Attentional deficits 13.9 7.7

Headache 5.6 80.8

Word retrieval difficulties 5.6 3.8

Palpitations 5.6 0

Neuropathy 2.8 26.9

Hair loss 2.8 3.8

Paresthesia 2.8 0

Emotional stress 2.8 0

Sore throat 2.8 0

Sinusitis 2.8 0

Perceived ocular pressure 2.8 0

Sweating 2.8 0

Cold intolerance 2.8 0

(Continued)
fr
ontiersin.org

https://doi.org/10.3389/fpsyt.2025.1653295
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Toepffer et al. 10.3389/fpsyt.2025.1653295
COVID group (PCcog) comprised 15 female (f-PCcog) and 13 male

participants (m-PCcog); and the healthy control group (HC)

consisted of 13 female (f-HC) and 17 male participants (m-HC)

The HC group was recruited via announcements of the study in

the local newspaper and on social media accounts of the clinic. To

ensure that participants in the HC group had not previously been

infected with SARS-CoV-2 at the time of assessment, the absence of

SARS-CoV-2–specific antibodies was confirmed by serological

testing. Serology results were further validated using a Western

blot to distinguish between antibodies arising from natural infection

and those induced by vaccination.

All participants were screened via telephone to exclude those with

past or current psychiatric disorders and current addiction. Additional

exclusion criteria included contraindications for magnetic resonance

imaging (MRI), diseases of the nervous system, a history of traumatic

brain injury or loss of consciousness, unmedicated internal medical

conditions and severe cognitive impairment (IQ < 80). To exclude the

latter, IQ was estimated using the German Multiple Choice

Vocabulary Test B (MWT-B) (32).

The study protocol was approved by the local ethics committee of

the Jena University Hospital. All participants gave written informed

consent. Tables 1, 2 summarize the demographic and psychometric data.
2.2 Magnetic resonance imaging

Each participant underwent high-resolution T1-weighted MRI

scans using a standard quadrature head coil and an axial 3-
Frontiers in Psychiatry 04
dimensional magnetization-prepared rapid gradient echo (MP-

RAGE) sequence (TR 2400 ms, TE 2.22 ms, a 8°, 208 contiguous

sagittal slices, FoV 256 mm, voxel resolution 0.8 x 0.8 x 0.8 mm,

acquisition time 6:38 min) on a 3 Tesla Siemens Prisma fit (Siemens,

Erlangen, Germany). All scans were checked for imaging artefacts.
2.3 Voxel-based morphometry

VBM analysis was performed using the CAT12 (Computational

Anatomy Toolbox 12) developed by the Structural Brain Mapping

group at University Hospital Jena, Germany, and implemented in

SPM12 (Statistical Parametric Mapping, Institute of Neurology,

London, UK). The T1-weighted images underwent bias-field

correction to account for field homogeneity, followed by spatial

normalization using the DARTEL algorithm (33). The images were

segmented into white matter, gray matter and cerebrospinal fluid (34).

To improve the accuracy of the segmentation process, it was extended

to account for partial volume effects (35). Adaptive maximum a

posteriori estimation was applied, and a hidden Markov random

field model was used. To exclude artefacts at the grey-white matter

boundary, an internal grey matter threshold of 0.1 was applied. After

pre-processing, all scans were subjected to an automated quality

control protocol. As CAT12 does not apply a fixed motion-exclusion

threshold; instead, we used its image quality ratings and visual

inspection to identify and exclude scans affected by motion artifacts.

2 participants from the long- COVID patient group had to be excluded

from further analysis due to poor image quality at that point. The

remaining images were smoothed with an 8 mm FWHM Gaussian

kernel, which represents a widely used compromise between sensitivity

and anatomical specificity, satisfies assumptions of Gaussian random

field theory for voxel-based inference, and facilitates comparability with

prior morphometry studies (36, 37).
2.4 Statistics

The statistical analysis was performed using the general linear

model approach, implemented in SPM12. Groups were compared

using two-sample t-tests. To account for associated variance, we

included total intracranial volume (TIV), age and sex as

confounding variables in the VBM analysis. As a non-parametric

statistic, we applied threshold-free cluster enhancement (TFCE) with

5000 permutations (38) to all analyses and corrected for multiple
TABLE 2 Sex-stratified clinical and cognitive measures across cohorts.

Measures

Male Female

m-HC
M (SD)

m-PCn
M (SD)

m-PCcog
M (SD)

f-HC
M (SD)

f-PCn
M (SD)

f-PCcog
M (SD)

Time since infection (months) — 11.1 (2.7) 9.33 (3.8) — 9.2 (4) 10.47 (4.9)

MoCA 28.24 (1.8) 27.2 (1.4) 23.54 (1.7) 27.6 (2.1) 27.5 (1.5) 23.73 (1.5)

WHO-Severity — 2.33 (1) 2.2 (1) — 2.05 (0.5) 2.73 (1.2)
M, mean; SD, standard deviation; HC, healthy control group, PCn, long-COVID group with MoCA≥26; PCcog, long-COVID group with MoCA<26.
TABLE 1 Continued

Measures
HC
(n=30)

PCn
(n=36)

PCcog
(n=28)

Subjective Symptoms (%)

Dizziness 2.8 0

Decreased appetite 2.8 0

Visual impairment 2.8 0

Food intolerance 0 3.8

Tinnitus 0 3.8

Brain fog 0 3.8
HC, healthy control group; PCn, long-COVID group with MoCA≥26; PCcog, long-COVID
group with MoCA<26; SD, standard deviation; WHO, World Health Organization; MoCA,
Montreal Cognitive Assessment.
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comparisons via the family wise error method (FWE) at p<0.05. For

atlas labelling of significant clusters we used the Neuromorphometrics

Atlas (http://www.neuromorphometrics.com). We first performed

this analysis for the overall groups of healthy controls (HC), long-

COVID patients without cognitive symptoms according to MoCA

(PCn) and long-COVID patients with cognitive impairment

(PCcog). In a second step we performed these analyses separately

for female and male participants, adding TIV and age as

confounding variables. Complementary statistical analysis of

clinical and demographic data was conducted in IBM SPSS

Statistics (version 29 0.2.0.). A significance level of p≤ 0.05 was

applied. The chi-square test assessed sex distribution among groups.

Kruskal-Wallis tests were used to compare age, years of education

and TIV. Mann-Whitney U tests examined differences in WHO

severity of acute COVID-19 infection and time since infection

between PCn, f-PCn, m-PCn and PCcog. f-PCcog, m-PCcog.

ANCOVA was performed to assess the influence of covariates on

MoCA scores.
3 Results

3.1 Clinical and demographic results

3.1.1 Overall analysis
No significant difference in sex distribution was observed

between the HC, PCn and PCcog groups (c2 (2)=2.793, p=0.247;

Chi-square test). Similarly, there were no significant differences in

years of education (H (2)=0.153, p=0.926) or TIV (n=92, H (2)

=0,266, p=0.875; Kruskal-Wallis test). A significant group difference

in age was found (H (2)=7.061, p=0.029; Kruskal-Wallis test), with

PCcog participants being significantly older than those in the HC

(U = 280.0, Z=-2.180, p=0.029) and PCn groups (U = 323.0, Z=-
Frontiers in Psychiatry 05
2.451, p=0.014; Mann-Whitney U test). No significant differences

between the PCn and PCcog groups in WHO severity scores (U =

276.0, Z=-1.401, p=0.161) and time since infection (U = 455,5, Z=-

0.242, p=0.809; Mann-Whitney U test) were found.

As expected, due to group definitions based on cognitive status,

MoCA scores differed significantly between the PCcog group and

the HC (U = 41.500, Z=-5.963, p=<0.001), and the PCn groups (U =

0.000, Z=-6.900, p=<0.001), while the HC and PCn groups did not

differ significantly (U = 406.000, Z=-1.759, p= 0.079; Mann-

Whitney U test). ANCOVA results showed that TIV, age, years of

education, time since infection, and WHO severity were not

significantly associated with MoCA performance. Only group

affiliation, used to define cognitive status, had a significant effect

on MoCA score (see Table 3).

3.1.2 Sex-stratified analysis
In both female and male subgroups, no significant differences

were observed between f-PCn and f-PCcog and m-PCn and m-

PCcog in terms of WHO severity (females: U = 79.0, Z=-2.385,

p=0.114, males: U = 40.5, Z=-0.579, p=0.720) or time since infection

(females: U = 158.5, Z=-0.419, p=0.680, males: U = 58.5 Z=-0.781,

p=0.443; Mann-Whitney U test).

Among women, no significant group differences in years of

education (H (2)=0.353, p=0,838), TIV (n=92, H (2)=0,459,

p=0,795) or age (H (2)=2,004, p=0,367; Kruskal-Wallis test) were

found. Similarly, no significant differences were found among men

for education (H (2)=0,192, p=0,908), TIV (n=92, H (2)=0,610,

p=0,737) or age (H (2)=5,421, p=0,066; Kruskal-Wallis test).

Separate ANCOVAs for women and men confirmed that none of

the potential confounding variables significantly influenced MoCA

performance (see Table 4). As expected, group classification

significantly affected MoCA scores in both subgroups, consistent

with the criteria used for defining cognitive status.
TABLE 3 overall ANCOVA.

ANCOVA- overall

Cohorts Measures F Partial eta squared P-value

HC (n=30), PCn (n=34), PCcog (n=25)

TIV .071 .001 .791

Age 2.168 .026 .145

Education .139 .002 .711

Subgroup 41.695 .510 <.001

Sex .000 .000 .995

Sex*subgroup .1.172 .028 .315

PCn (n=31), PCcog (n=21)

WHO severity .279 ,027 .890

Time since infection 0.752 .018 .391

Subgroup 14.081 .260 <.001

Sex 1.374 .033 .248

Subgroup*sex .364 .009 .550
n = number of participants included in the analysis for each dependent variable; for TIV, two participants were excluded due to insufficient MRI image quality.
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3.2 Imaging results

Overall analyses and sex-separated analyses of the HC, PCn and

PCcog groups revealed several significant clusters (p<0.05, FWE-

corrected) showing GMV alterations between the HC and both

PC groups.

3.2.1 Overall comparison
Significant clusters exceeding a size threshold of kE>100 were

identified for each comparison and are displayed in Supplementary

Table 1 and Supplementary Figure 1.

3.2.2 Sex-stratified analysis
In women, no significant clusters of significant GMV

differences were found for the comparisons f-PCn<f-PCcog and f-

PCn>f-PCcog, whereas the remaining comparisons revealed

significant clusters. In men, no significant clusters emerged for

the contrasts m-HC<m-PCcog, m-HC>m-PCn, m-PCn<m-PCcog;

all other comparisons yielded significant results.

An overview of all significant clusters (kE>100) is provided in

Table 5, with their spatial distribution illustrated in Figure 1

(women) and Figure 2 (men).
4 Discussion

Our analyses revealed significant GMV alterations across multiple

brain regions, comprising both shared and sex-specific patterns.
Frontiers in Psychiatry 06
4.1 Common GMV alterations in male and
female participants

In the HC>PCcog comparison, several brain regions showed

overlapping GMV reductions in both sexes, indicating shared

structural alterations. Both m-PCcog and f-PCcog participants

exhibited GMV reductions in the left ventral diencephalon, thalamus,

hippocampus, and parahippocampal gyrus. Among these, the thalamus

and hippocampus are particularly critical for cognitive function (39, 40).

Men additionally showed alterations in right occipital areas. These

findings are consistent with previous findings on GMV alterations

associated with long-COVID. Diez-Cirarda et al. reported GMV

reductions in limbic areas, among others, associated with cognitive

dysfunction (41). Similarly, a UK Biobank study investigating brain

changes in 401 participants over a long-term follow-up period found

reductions in gray matter thickness and tissue contrast in the

parahippocampal gyrus and orbitofrontal cortex, along with an overall

greater progression of cognitive decline in COVID-19 patients (20).

The hippocampus has likewise emerged as a region of concern

in individuals recovering from SARS-CoV-2 infection. As a key

structure for cognition and particularly episodic memory (42), it is

critically implicated in the pathophysiology of neurodegenerative

disorders, such as Alzheimer`s disease, and psychiatric conditions

including major depressive disorder (43–45). In the context of long-

COVID, hippocampal structural and functional alterations,

potentially affecting adult neurogenesis, have been linked to

memory loss and an accelerated progression of neurodegenerative

processes (46, 47).
TABLE 4 Sex-stratified ANCOVA.

ANCOVA (women)

Cohorts Measures F Partial eta squared P-value

f-HC (n=13), f-PCn (n=23), f-PCcog (n=14)

TIV .353 .008 .555

Age 3.263 .069 .078

Education .438 .010 .512

Subgroup 20.413 .481 <.001

f-PCn (n=22), f-PCcog (n=11)

WHO severity .634 .089 .643

Time since infection .441 .017 .512

Subgroup 27.903 .518 <0.001

ANCOVA (Men)

m-HC (n=17), m-PCn (n=11), m-PCcog (n=11)

TIV .080 .002 .779

Age .037 .001 .849

Education .000 .000 .996

Subgroup 22.728 .579 <0.001

m-PCn (n=9), m-PCcog (n=10)

WHO severity .046 .007 .955

Time since infection .426 .032 .525

Subgroup 7.164 .355 .019
HC, healthy control group; f-PCn, female long-COVID group with MoCA≥26; f-Ccog, female long-COVID group with MoCA<26; m-PCn, male long-COVID group with MoCA≥26; m-Pcog,
male long-COVID group with MoCA<26; TIV, total intracranial volume.
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TABLE 5 Sex-stratified GMV differences between long-COVID cohorts and controls.

Contrast H K Overlap region P-value TFCE Peak cluster (x,y,z)

f-HC<f-PCcog L 106
Thalamus
Caudate

.031 976 -10,-12,20

m-HC<m-PCcog

f-HC>f-PCcog L
345

Ventral Diencephalon
Thalamus

<.001 4118 -2,-10,-10
R

L 374

Ventral Diencephalon
Thalamus
Hippocampus
Parahippocampal gyrus

.007 1823 -20,-24,-8

m-HC>m-PCcog

L 366

Ventral Diencephalon
Hippocampus
Thalamus
Parahippocampal gyrus

.006 1240 -20,-22,-9

R 14454
Superior occipital gyrus
Cuneus
Occipital pole

.007 1208 16,-88,21

f-HC<f-PCn
L 7006

Thalamus
Caudate

<.001 2550 -9,-10,15

L 1891
Superior frontal gyrus
Supplementary Motor Cortex

.03 603 -14,8,72

R 277
Medial Orbital gyrus
Posterior orbital gyrus

.031 599 21,32,-27

L

856

Superior frontal gyrus medial segment
Anterior cingulate gyrus
Medial Frontal cortex .033 585 -3,54,6

R
Superior frontal gyrus medial segment
Anterior cingulate gyrus

m-HC<m-PCn

L 15320

Putamen
Caudate
Accumbens Area
Medial orbital gyrus
Subcallosal area
Gyrus rectus

.003 2716 -16,18,-10

R 675
Superior frontal gyrus
Superior frontal gyrus medial segment

.027 1654 9,51,42

L 742
Superior frontal gyrus
Superior frontal gyrus medial segment

.031 1591 -10,36,48

f-HC>f-PCn L
336

Ventral Diencephalon
Thalamus

<.001 4023 -2,-10,-10
R

L 612

Ventral Diencephalon
Thalamus
Hippocampus
Parahippocampal gyrus

<.001 2451 -20,-24,-8

m-HC>m-PCn

f-PCn>f-PCcog

m-PCn>m-PCcog

L 26978

Putamen
Medial orbital gyrus
Accumbens Area
Caudate
Subcallosal area
Gyrus rectus

.008 1889 -16,16,-12

(Continued)
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In the present study, long-COVID patients exhibited

consistently reduced hippocampal GMV compared to HC, in line

with findings from Capelli et al., Kamasak et al. and Invernizzi et al.

(48–50). However, contrasting results have been reported in two

large-scale studies that found increased hippocampal GMV (51),

with Lu et al. additionally describing a positive correlation with

memory impairment (Lu et al., 2020). These divergent findings

underscore the complexity of structural brain alterations associated

with long-COVID.

The coexistence of both increases and decreases in GMV of

different brain regions may reflect a dynamic interplay between

neurodegenerative processes and compensatory mechanisms, such

as neuroplasticity (52, 53). Neuroinflammation, a key focus of long-

COVID research, is thought to contribute to structural brain

changes through cytokine-mediated disruption of the blood-brain

barrier, neurovascular damage, and impaired neurogenesis (54–62).

Evidence from previous coronavirus outbreaks (SARS, MERS)

supports this mechanism (63, 64). These pro-inflammatory

responses resemble those implicated in cancer therapy-related

cognitive impairment, suggesting shared pathophysiological

pathways (65, 66). Under certain conditions, however, microglial

activation may promote neurogenesis, depending on cytokine

profiles and concentrations (67). This dual role could help explain

the heterogeneous pattern of GMV alterations observed in

long-COVID.
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Beyond hippocampal and cortical regions, the amygdala has

been implicated in COVID-19 related neurocognitive changes (50,

68). Invernizzi et al. reported structural and functional alterations

not only in the hippocampus but also the left amygdala, where

reduced connectivity was shown to specifically mediate spatial

working memory deficits (50). A cross-sectional study involving

75 individuals, including COVID-19 survivors with and without

brain fog and healthy controls, found that both COVID-19 groups

showed reduced gray matter concentrations in the left inferior

temporal gyrus, left fusiform gyrus, and right orbital gyri

compared to healthy controls. In addition, participants with brain

fog exhibited further reductions in the bilateral caudate nuclei, right

putamen/pallidum, and amygdala (68).

This highlights the role of limbic circuitry in cognitive sequalae

following SARS-CoV-2 infection. Complementary longitudinal

work in healthy individuals without prior SARS-CoV-2 infection

linked transient volumetric increases in the amygdalae to stress-

and anxiety-related processes following the COVID-19 outbreak

and lockdown, with GMV gradually decreasing over time after

lockdown relief (69). In our study, however, the amygdala did not

emerge as a region of interest. Nevertheless, other limbic structures

showed relevant alterations.

Although the overall analysis was secondary to the sex-stratified

results, it revealed several regions of interest relevant to cognitive

functioning, including the hippocampus, entorhinal area, posterior
TABLE 5 Continued

Contrast H K Overlap region P-value TFCE Peak cluster (x,y,z)

m-HC>m-PCn

Posterior orbital gyrus
Anterior insula

R 13113
Superior occipital gyrus
Occipital pole
Cuneus

.009 1791 18,-90,26

L 228
Superior frontal gyrus
Supplementary Motor Cortex
Superior frontal gyrus medial segment

.043 1050 -12,26,64

L 315
Supramarginal gyrus
Postcentral gyrus
Parietal operculum

.043 1049 -56,-28,32

L 359
Superior frontal gyrus
Superior frontal gyrus medial segment
Supplementary Motor Cortex

.043 1041 -12,33,51

R 329
Superior frontal gyrus medial segment
Superior frontal gyrus

.045 1025 10,40,42

L 371 Middle frontal gyrus .046 1019 -42,33,30

L 117
Superior parietal lobule
Precuneus

.046 1013 -16,-60,62

L 183
Precentral gyrus
Opercular part of the inferior frontal

.047 1004 -58,9,21
H, hemisphere; k, cluster size; TFCE, Threshold-free Cluster Enhancement.
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cingulate gyrus, angular gyrus, and planum temporale (see

Supplementary Table 1 and Supplementary Figure 1).
4.2 Sex-specific GMV alterations

4.2.1 GMV alterations observed in female
participants

The distribution of clusters with altered GMV in female

participants compared to males in our analysis was more

restricted, predominantly involving anterior frontal areas as well

as limbic and diencephalic regions, including the ventral

diencephalon, hippocampus and thalamus. No significant

differences were found between the f-PCn and f-PCcog groups.

Notably, the left thalamus consistently demonstrated GMV

alterations across all statistically significant female subgroup

comparisons, with both increases and decreases observed. Given

its heterogenous structure and its central role in cognitive processes

(70), thalamic involvement may be particularly relevant to
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neuropsychiatric manifestations of long-COVID. Supporting this,

VBM in patients with mild cognitive impairment, unrelated to

COVID-19, similarly revealed volumetric reductions in the left

thalamus, along with alterations in the hippocampus and

amygdala (39). This convergence underscores the thalamus as a

central node whose vulnerability may extend across different

conditions associated with cognitive decline.

GMV alterations specific to female participants were also

detected in the anterior cingulate gyrus and medial frontal cortex.

4.2.2 GMV alterations observed in male
participants

In men, the distribution of statistically significant GMV clusters

was broader than in women, extending into parietal, occipital and

motor areas. Additionally, the number of clusters was greater

compared to women. A consistent pattern of reduced GMV

emerged in the m-PCcog group, with the occipital pole, cuneus,

and superior occipital gyrus repeatedly showing GMV reductions.

While the occipital pole and superior occipital gyrus are not
FIGURE 1

Statistically significant GMV differences between the female groups (p<0.05, FWE-corrected). (A) Increases in GMV in f-PCn relative to f-HC (f-HC<f-
PCn) are shown in yellow/red; decreases (f-HC>f-PCn) in blue. (B) Significant clusters of reduced GMV in f-PCcog compared to f-HC are displayed
in blue.
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FIGURE 2

Statistically significant GMV differences between the male groups (p < 0.05, FWE-corrected). (A) Increased GMV in the m-PCn group compared to
m-HC (m-HC < m-PCn) is displayed in blue/green. (B) Reduced GMV in m-PCcog compared to m-HC is displayed in blue. (C) Increased GMV in the
m-PCn group compared to the m-PCcog group (m-PCn > m-PCcog) is displayed in blue.
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primarily associated with cognitive functions, the cuneus plays a

role in working memory, which is crucial for performance in

complex cognitive tasks (71, 72) and is often implicated in early

stages of neurodegenerative and psychiatric conditions (73, 74). In

addition to the previously mentioned regions, the putamen

exhibited notable GMV increases in the m-PCn group compared

to both the m-HC and the m-PCcog groups, reinforcing the notion

of sex-specific structural alterations in long-COVID. The putamen,

a key component of the basal ganglia along with the caudate nucleus

and pallidum (75), plays a central role in motor control, learning,

behavior regulation, and emotional processing (76) and has

increasingly been implicated in the context of long-COVID. A

systematic review highlighted the frontal, temporal, and parietal

lobes, as well as the cerebellum, hippocampus, amygdala, and basal

ganglia as key regions affected in post-COVID conditions (77). In

line with this, Vakani et al. found that persistent COVID-19

symptoms were significantly associated with smaller putamen

volume, impaired cognitive performance and poorer mental

health and sleep quality (78). Heine et al. reported shape

deformations and decreased GMV in the left thalamus, putamen

and pallidum in post-COVID fatigue patients (79). These findings

converge with our results and underscore the relevance of basal

ganglia alterations in long-COVID. Moreover, recent work from

our group linked changes in corticostriatal connectivity to cognitive

impairment in long-COVID patients (24), potentially mediated by

ACE2 receptor expression in the basal ganglia, which facilitates

SARS-CoV-2 entry (24).

The broader distribution of GMV alterations observed in

cognitively impaired men compared to women may be linked to

sex-specific immune response patterns. Men are more prone to

excessive inflammatory responses, including cytokine storms, which

are associated with poor COVID-19 outcomes and may contribute

to neural damage (8). However, since our cohort primarily included

individuals with mild disease courses, this mechanism alone is

unlikely to fully account for the observed sex-differences,

particularly considering the absence of significant GMV alterations

between m-HC and m-PCn participants. Instead, the findings likely

reflect underlying biological factors such as hormonal influences and

immune regulatory differences. Females generally exhibit stronger

innate immune responses, greater resistance to viral infections, and

lower levels of inflammatory mediators (8, 16, 80, 81), potentially

mitigating neuroinflammation and limiting GMV changes in long-

COVID. Importantly, the differing spatial distribution of GMV

alterations between sexes was not accompanied by measurable

differences in cognitive performance, as indicated by comparable

MoCA scores across male and female participants.

Direct comparisons with prior work are limited, as few studies

have examined sex-specific structural brain changes in long-

COVID. One VBM study in men reported right hippocampal

volume reductions shortly after Omicron infection, but was

limited by the absence of a control group, small sample size, and

the fact that cognitive impairment was not addressed in the

study (82).
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In summary, our findings demonstrate sex-specific GMV

alterations in individuals with long-COVID, with men showing a

broader distribution of affected regions despite the higher reported

prevalence of long-COVID in women. Both sexes exhibited changes

in brain areas relevant to cognition, with notable overlap between

groups. However, given the cross-sectional design and limited

sample size, the generalizability and temporal stability of these

findings remain uncertain. Furthermore, the MoCA may have

limited sensitivity in younger participants, potentially affecting the

accuracy of cognitive assessment (83). Longitudinal, sex-stratified

studies are needed to clarify the long-term neuropsychiatric effects

of SARS-CoV-2. Also, our future work will focus on extending our

analyses to larger and more heterogeneous samples through

national and international collaborations, thereby improving the

generalizability and robustness of our findings.
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31. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I,
et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild
cognitive impairment. J Am Geriatr Soc. (2005) 53:695–9. doi: 10.1111/j.1532-
5415.2005.53221.x

32. Lehrl S. Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B. (Balingen: Spitta)
(2005).

33. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage.
(2007) 38:95–113. doi: 10.1016/j.neuroimage.2007.07.007

34. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. (2005) 26:839–51.
doi: 10.1016/j.neuroimage.2005.02.018

35. Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for
statistical partial volume models in brain MRI. Neuroimage. (2004) 23:84–97.
doi: 10.1016/j.neuroimage.2004.05.007

36. Shen S, Sterr A. Is DARTEL-based voxel-based morphometry affected by width
of smoothing kernel and group size? A study using simulated atrophy. J Magn Reson
Imaging. (2013) 37:1468–75. doi: 10.1002/jmri.23927

37. Michael AM, Evans E, Moore GJ. Influence of group on individual subject maps
in SPM voxel based morphometry. Front Neurosci. (2016) 10:522. doi: 10.3389/
fnins.2016.00522

38. Spisak T, Spisak Z, Zunhammer M, Bingel U, Smith S, Nichols T, et al.
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to
increase statistical power. Neuroimage. (2019) 185:12–26. doi: 10.1016/
j.neuroimage.2018.09.078

39. Wang J, Liang X, Lu J, Zhang W, Chen Q, Li X, et al. Cortical and subcortical
gray matter abnormalities in mild cognitive impairment. Neuroscience. (2024) 557:81–
8. doi: 10.1016/j.neuroscience.2024.07.036

40. Zhang J, Liu Y, Lan K, Huang X, He Y, Yang F, et al. Gray matter atrophy in
amnestic mild cognitive impairment: A voxel-based meta-analysis. Front Aging
Neurosci. (2021) 13:627919. doi: 10.3389/fnagi.2021.627919

41. Diez-Cirarda M, Yus M, Gomez-Ruiz N, Polidura C, Gil-Martinez L, Delgado-
Alonso C, et al. Multimodal neuroimaging in post-COVID syndrome and correlation
with cognition. Brain. (2022) 146(5):2142–52. doi: 10.1093/brain/awac384
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