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1Digital Mental Health Lab, Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen,
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Cologne, Germany
Background: Emotional resilience (traditionally defined as the capacity to

recover from adversity) and cognitive load (the mental effort for processing

information) are critical aspects of mental health functioning. Traditional

assessment methods, such as physiological sensors and post-task surveys,

often disrupt natural behavior and fail to provide real-time insights. Speech

prosody, encompassing pitch, intensity, loudness, and voice activity, offer a

non-intrusive alternative for evaluating these psychological constructs.

However, the relationship between speech prosody, emotional resilience, and

cognitive load remains underexplored, particularly in conversational contexts.

Objective: This study proposes proxy measures for these constructs based on self-

reported engagement, enjoyment, boredom, and cognitive effort during dyadic

conversation. By leveraging the SEWA (Automatic Sentiment Estimation in the Wild)

database, developed through a European research project on emotion recognition,

the research seeks to develop machine learning models that correlate speech

patterns with subjective self-reports of emotional and cognitive states.

Methods: Prosodic features, such as pitch variation, vocal intensity, and voice

activity, were extracted from the SEWA database recordings. These features are

then normalized to account for inter-speaker variability and used as predictors in

machine learning models. Regression and classification models are employed to

correlate speech features with subjective self-reports, which serve as ground truth

for Positive Affective Engagement (as a proxy for emotional resilience) and Perceived

Mental Strain (as a proxy for cognitive load). Data from English and German speakers

are analyzed separately to account for linguistic and cultural differences.

Outcomes: The study establishes a significant relationship between speech

prosody and psychological states, demonstrating that Positive Affective

Engagement (as a proxy for emotional resilience) and Perceived Mental Strain

(as a proxy for cognitive load) can be effectively predicted through prosodic

features. Higher emotional resilience is linked to more discernible prosodic

patterns in German speech, such as higher loudness and greater voice

probability consistency. In contrast, cognitive load prediction remains

consistent across English and German datasets.

Conclusion: This research introduces a novel approach for assessing Positive

Affective Engagement (as a proxy for emotional resilience) and Perceived Mental

Strain (as a proxy for cognitive load) through speech prosody, highlighting the

significant impact of language-specific variations. By combining prosodic

features with machine learning techniques, the study offers a promising
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alternative to traditional psychological assessments. The findings emphasize the

need for tailored, multilingual models to accurately estimate psychological

states, with potential applications in mental health monitoring, cognitive

workload analysis, and human-computer interaction. This work lays the

foundation for future innovations in speech-based psychological profiling,

advancing our understanding of human emotional and cognitive states in

diverse linguistic contexts.
KEYWORDS

speech prosody, positive affective engagement, perceived mental strain, machine
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1 Introduction

Emotional resilience is defined in the psychological literature as

the capacity to adapt to and recover from adversity and stress (1). It

influences significantly how individuals cope with challenges, regulate

emotions, and sustain psychological health in demanding

circumstances (2). Emotionally resilient individuals often exhibit

behaviors such as sustained engagement, emotional regulation, and

cognitive flexibility. These qualities have been studied through self-

reports, behavioral observations, and increasingly through

physiological or vocal markers (3). In the context of speech, certain

vocal characteristics may be indicative of resilient emotional states.

(4) demonstrated the possibility of estimating personal resilience

from speech and physiological signals. Thereby, the most resilience-

relevant features were spectral features, including ones related to the

fundamental frequency, auditory spectrum coefficients, Mel

Frequency Cepstral Coefficients, spectral slope, spectral flux and

spectral harmonicity. Further, (5) were able to demonstrate

physiological distress, as opposed to emotional resilience by

analyzing 24 vocal characteristics with a machine learning

approach. Similarly, one other group successfully used audio-based

markers from free speech responses one month post-trauma to

accurately classify major depressive disorder (MDD) and post-

traumatic stress disorder (PTSD), demonstrating the potential of

vocal biomarkers for early mental health diagnosis following

traumatic events (6). For instance, consistent vocal prosody,

adaptive modulation of pitch and intensity, and sustained voice

activity can reflect stable emotional engagement and regulation,

which are hallmarks of emotional resilience.

Similarly, cognitive load, traditionally refers to the mental effort

required to process and retain information, plays a fundamental

role in determining learning efficiency, productivity, and task

performance (7). High cognitive load can impair decision-

making, hinder performance, and induce stress, while balanced

cognitive load demands to promote engagement and effective

problem-solving (8). According to Cognitive Load Theory (CLT),

load can be intrinsic (task complexity), extraneous (task

presentation), or germane (learning effort). High cognitive load is
02
typically associated with slower speech rates, more hesitations, and

decreased prosodic variation (9). Cognitive load and resilience also

show complex interrelations. Positive association was demonstrated

between resilience and both, intrinsic and extraneous cognitive

load, (10)]. Also, people with high resilience exhibited better global

cognitive status and reduced risk of cognitive impairment, even

during stressful or demanding periods (11, 12) On the other side,

elevated cognitive load correlates with poor mental health (13).

Despite their significance, assessing emotional resilience and

cognitive load remains challenging. Traditional methods such as

physiological monitoring (e.g. heart rate variability, galvanic skin

response) and post-task self-reports are widely used but often

intrusive, expensive, and impractical in real-world settings (14,

15, 16). These techniques interfere with natural behavior and fail

to capture real-time fluctuations in emotional and cognitive states.

As a result, researchers are increasingly exploring non-intrusive

alternatives to measure these psychological constructs in

everyday interactions.

Speech is a fundamental mode of human communication and

an emerging source of psychological insight. It provides a rich, real-

time signal that reflects cognitive and emotional states without

disrupting natural interactions (17). Variations in speech prosody,

such as pitch, rhythm, intensity, and pause patterns, are directly

influenced by underlying psychological conditions (18, 19). For

example, individuals under high cognitive load tend to exhibit

slower speech rates, increased hesitation, and prolonged pauses

due to elevated mental effort (20, 21). Similarly, emotionally

resilient individuals may maintain stable pitch variation and

consistent speech intensity, reflecting better emotional regulation

and adaptability.

Research highlights the growing potential of speech as a non-

invasive biomarker for mental health conditions such as depression.

The acoustic and temporal characteristics of speech have been

shown to correlate strongly with depressive states, enabling

automated screening and monitoring in clinical and real world

settings (22). For example, (23) demonstrated that the prosodic and

spectral features extracted from the speech effectively distinguish

depressed individuals from controls, confirming the diagnostic
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value of the speech. Similarly, (24) and (25) employed speech

recognition technology to analyze timing-related features, such as

speech rate and pauses, finding significant associations with

depression severity. Furthermore, deep learning approaches have

recently improved detection accuracy by modeling complex vocal

patterns, as evidenced by (26), who developed neural architectures

capable of capturing subtle speech characteristics related to

depression. These advances support the integration of speech-

based assessments into scalable, real-time mental health

monitoring platforms.

Previous studies have explored speech-based emotion

recognition and cognitive load estimation (21, 27), and prosodic

features have been increasingly used to detect neurological and

psychological conditions such as depression and schizophrenia (28,

29, 30). Moreover, systematic reviews highlight the growing

potential of voice analysis for detecting neurological and mood

disorders, emphasizing how emerging artificial intelligence (AI)

techniques can uncover objective markers of mental health

conditions from speech signals (31, 32). These findings reinforce

the promise of non-invasive, speech-based approaches for

psychological assessment, particularly for mental health

monitoring in both clinical and everyday settings.

Moreover, recent advancements have incorporated semantic

information into speech emotion recognition frameworks. By

combining semantic and paralinguistic features, models can capture

both the content and the expressive nuances of speech, leading to

improved performance in emotion detection tasks (33). Multimodal

approaches that integrate textual, acoustic, and visual modalities have

demonstrated superior accuracy, particularly in capturing complex

affective states during natural interactions (34, 35). These frameworks

often employ deep learning architectures such as transformers or

recurrent networks to model temporal dependencies and contextual

cues, enhancing emotion inference over isolated prosodic features

alone (36).

Despite these advancements, the interplay between emotional

resilience, cognitive load, and prosody remains underexplored,

particularly in conversational settings. Understanding this

relationship could lead to the development of automated tools for

real-time psychological assessment, benefiting mental health

diagnostics, educational support systems, and human-

computer interaction.

Furthermore, prosodic markers are influenced by linguistic and

cultural factors, raising concerns about generalizing speech-based

models across different languages. Even though some machine

learning models for speech-based detection of neurological and/or

psychological disorders already include data from multiple

languages (29), the majority of studies focus on one language

only (28, 30). This highlights the importance of accounting for

language-specific prosodic patterns when developing speech-based

detection models, to ensure both reliability and fairness across

diverse populations.

These prosodic attributes are then used as predictors in

machine learning models to classify or predict subjective self-

reports. Techniques such as regression models (for continuous

prediction of psychological states) and classification models (for
Frontiers in Psychiatry 03
high vs. low resilience or cognitive load) are applied. Additionally,

to account for inter-speaker differences, features are normalized,

and models are trained separately for English and German speakers,

considering linguistic and cultural differences in prosody (28).

This research introduces a novel framework for non-intrusive

psychological assessment through voice analysis. The key

contributions include:
• Conversational context analysis, unlike traditional speech

emotion recognition, this study examines interpersonal

dynamics (e.g., agreement, engagement) and their impact

on resilience and cognitive load.

• Non-Intrusive psychological profiling, by eliminating the

need for physiological sensors or intrusive self-reports,

offering a real-time, speech-only approach.

• Cross-language considerations, by developing models that

account for linguistic and cultural differences in prosody,

providing broader applicability.
Potential applications range from mental health monitoring

(e.g., stress and resilience assessment) to real-time cognitive support

in education and workplace settings. Furthermore, human-

computer interaction systems, such as virtual assistants, could

benefit from adaptive responses based on users’ emotional and

cognitive states.

By integrating speech prosody with self-reported emotional

resilience and cognitive load measures, this research advances our

understanding of how voice reflects psychological states. The

proposed machine learning framework paves the way for

automated, real-time assessment tools that enhance mental health

monitoring, learning environments, and human-machine

interactions. Through a deeper exploration of prosody’s role in

emotional and cognitive processes, this study contributes to the

ongoing evolution of voice-based psychological profiling.
2 Methodology

2.1 Dataset and participants

This study utilizes the SEWA Sentiment and Emotion in the Wild

dataset, a rich collection of dyadic conversations where participants

discuss emotionally evocative advertisements (37). These interactions

inherently involve cognitive effort (processing the advertisements)

and emotional exchange (responding to a conversation partner),

making them an ideal context for examining speech-based indicators

of emotional resilience and cognitive load. The SEWA database also

provides subjective self-reports, in which participants rate their

engagement, emotional arousal, and conversational experience on a

scale of -5 to 5. These self-reports serve as ground truth labels for

machine learning models.

To facilitate individual-level speech analysis, the conversations

were separated into individual speaker recordings, ensuring that

each participant’s speech was analyzed independently. For

segmentation, the Hugging Face library was used, which provides
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tools to efficiently process and separate the individual speaker

recordings from the dyadic conversations (38). This allowed for

independent analysis of each participant’s speech recordings,

facilitating accurate emotional and cognitive state assessment.

After segmentation, the dataset consisted of 66 native English-

speaking and 64 native German speaking participants, totaling 130

individual recordings. Each participant provided self-reports on

their emotional and cognitive states, which served as the ground

truth for model training.

The average age of participants in both datasets is relatively

similar, with English speakers averaging approximately 34.94 years

and German speakers 31.08 years. The gender distribution is

balanced in the English dataset (50% male, 50% female) but

shows a slight male majority in the German dataset (60.94%

male, 39.06% female).

Although the SEWA is publicly available for academic use,

access was obtained through formal request to the dataset

organizers, and usage adhered to all stated terms and conditions.

All recordings are anonymized, and the dataset includes consent

from participants for secondary research, ensuring compliance with

ethical standards for human data use.
2.2 Feature extraction

To assess Positive Affective Engagement (emotional resilience)

and Perceived Mental Strain (cognitive load) through speech

prosody, multiple acoustic features were extracted from the

segmented speech data. Feature extraction was performed using

the openSMILE toolkit (17), a widely used, open-source toolkit

developed for the extraction of audio features from speech and

music signals, which provides robust prosodic feature analysis.

It is particularly renowned for its efficiency in processing large

datasets and its applicability in real-time systems. The toolkit

provides a comprehensive set of features, including prosodic

elements such as pitch, loudness, and voice quality, which are

essential for analyzing emotional states in speech (17, 39, 40). In

the context of emotion recognition, prosodic features extracted

using openSMILE have been instrumental in capturing the nuances
Frontiers in Psychiatry 04
of emotional expression. For instance, studies have utilized

openSMILE to extract features like fundamental frequency (F0),

intensity, and voice quality measures, which are then analyzed to

infer emotional states. These features are computed over short time

frames and can be aggregated to provide both local and global

perspectives on the speaker’s emotional state (27, 41, 42).

The prosodic features computed are listed in Table 1.

We selected a focused set of acoustic features (e.g., F0, intensity,

MFCCs, temporal and voice activity) based on prior literature

indicating their relevance to emotional and cognitive states (9, 46).

This approach balances interpretability and reduces the risk of

overfitting, particularly when working with moderate-sized datasets.

All extracted features were normalized to account for inter-

speaker variability, ensuring consistency across different voices and

linguistic backgrounds.
2.3 Annotation and ground truth labels

The SEWA dataset includes subjective self-reports from

participants, which were used as proxies, ground truth labels for

model training and evaluation of psychological states.

Participants rated their emotional and cognitive experiences on

a scale of -5 to 5 across dimensions.

While these do not match formal definitions in clinical

psychology, we operationalized, these self-reports to create two

target variables,:
• Positive Affective Engagement (as a proxy for Emotional

Resilience): As the aggregation of participant’s affective

positivity and engagement during the interaction

(engagement + enjoyment + positive feelings), reflecting

affective adaptability within the conversational context.

While not equivalent to clinical definitions of emotional

resilience — which require adaptation to adversity — this

score served as a proxy for momentary emotional

adaptability in a socially interactive context.

• Perceived Mental Strain (as a proxy for Cognitive Load): This

approach reflects the extent of mental strain or discomfort
TABLE 1 Speech feature categories and their descriptions (43, 44, 45).

Category Features (Abbreviations) Description

Fundamental Frequency (Pitch)
F0_sma_de_amean_mean,
F0_sma_de_skewness_mean

Reflects vocal fold vibration and is linked to emotional engagement.

Intensity & Loudness

Pcm_intensity_sma_amean_mean,
pcm_intensity_sma_de_amean_mean,
pcm_loudness_sma_amean_mean,
Pcm_loudness_sma_de_amean_mean

Measures vocal energy, associated with emotional arousal.

Spectral Features (MFCCs)
mfcc_sma_de[1]_skewness_mean, mfcc_sma_de[2]
_skewness_mean

Mel-frequency cepstral coefficients
(MFCCs) capture timbre and vocal tone, which vary with cognitive and
emotional states.

Temporal & Voice Activity
Pcm_zcr_sma_amean_mean,
voiceProb_sma_amean_mean

Zero-crossing rate (ZCR) measures the frequency of signal sign changes,
reflecting rhythm and articulation rate, while voice probability
(VoiceProb) estimates the likelihood of speech being voiced rather than
silent or unvoiced, offering insights into vocal activity and mental effort.
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reported during the conversation (negative feelings −

engagement − enjoyment). However, we acknowledge that

this proxy does not align directly with traditional definitions

of cognitive load, which emphasize task complexity and

working memory demands (47). Thus, our cognitive load

metric should be interpreted as a subjective impression of

effortful or aversive cognitive experience.
The processed labels were then integrated into the dataset

alongside the extracted prosodic features, forming the input for

machine learning models. By leveraging both binary and multi-class

categorization, the study ensured flexibility in predictive modeling,

allowing for both high-level classification and nuanced regression

analysis. This approach not only strengthened the interpretability of

the models but also facilitated a more comprehensive

understanding of how speech prosody correlates with cognitive

and emotional resilience in real-world conversations.
2.4 Machine learning model development

To assess Positive Affective Engagement (emotional resilience) and

Perceived Mental Strain (cognitive load) from speech prosody, we

implemented a machine learning pipeline using Support Vector

Machines (SVM) for classification and linear regression for

continuous score prediction. This approach aligns with established

methodologies in affective computing and speech-based psychological

assessment, where SVMs have been widely used due to their robustness

in high-dimensional feature spaces and ability to handle non-linear

patterns (27). The methodology consists of feature preprocessing,

dimensionality reduction, classification, and evaluation.

The models were developed with the following workflow:
1. Feature Preprocessing and Dimensionality Reduction: Speech

prosodic features extracted from the SEWA dataset were

standardized using the StandardScaler to mitigate inter-

speaker variability. Principal Component Analysis (PCA)

was then applied to reduce dimensionality while preserving

the most informative variance in the data. The top three

principal components were retained as feature representations

for subsequent modeling.

2. Data Merging and Categorization: Self-reported emotional

Positive Affective Engagement (emotional resilience) and

Perceived Mental Strain (cognitive load) scores were used

as ground truth. The self-reports were divided into high

and low categories based on quantile thresholds. Scores

above the 66th percentile were categorized as high, while

those below the 66th percentile were labeled as low. The

categorized data was merged with the PCA-transformed

features, creating a structured dataset for classification and

regression analysis. This approach was chosen to preserve a

larger portion of the dataset for analysis while still creating

distinguishable classes. Compared to stricter splits, which

reduce the dataset to 66% of its original size, the 66th

percentile method allows better data utilization and model
tiers in Psychiatry 05
generalization. Additionally, this strategy employs a

moderate threshold to strike a balance between ensuring

adequate class separation and retaining sufficient data for

reliable model training and evaluation (48, 49).

3. Classification and Regression Models: For classification

tasks, we trained SVM models to predict binary labels for

emotional resilience and cognitive load. The dataset was

split into training (80%) and testing (20%) sets, ensuring

stratification for balanced class representation. Feature

normalization was reapplied to maintain consistency

across training and testing data. Additionally, linear

regression models were trained to predict continuous self-

report scores, allowing for a more granular assessment of

psychological attributes.

4. Model Evaluation: Performance metrics, including

accuracy, precision, recall, and F1-score, were computed

for classification models, while regression performance was

assessed using standard error metrics. The models were

trained and validated separately for English and German

datasets to account for linguistic variations in prosody. To

account for variability in model performance due to limited

sample size, we applied bootstrapping with 1,000 iterations

for both regression and classification tasks. In each

iteration, the data were resampled with replacement,

followed by model training and evaluation on a stratified

test split. This allowed us to compute 95% confidence

intervals for key metrics (e.g., accuracy, precision, F1-

score), providing a more robust estimate of generalization

performance than a single train-test split. Bootstrapping

was particularly valuable for assessing the stability and

reliability of model predictions across language groups.

The results demonstrated the feasibility of using speech

features to infer emotional resilience and cognitive load,

highlighting the potential of non-intrusive psychological

assessment through voice analysis.
2.5 Cross-language analysis

Given the linguistic and cultural differences in prosody, separate

models were trained and validated for English and German

speakers. This ensured that variations in speech patterns due to

language differences did not bias the results. The comparative

analysis between the two language groups provided insights into

the universality of prosodic indicators for psychological assessment.

By isolating language groups, the models more accurately capture

prosodic markers relevant within each linguistic context, improving

prediction robustness.
2.6 Ethical considerations

The study adhered to ethical guidelines for working with human

speech data. The SEWA data set was used in accordance with its
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licensing agreements, ensuring participant anonymity and privacy.

Since the study involves secondary data analysis, no direct

interaction with participants was required. The dataset includes

participant consent for secondary research and is fully anonymized.

As no identifiable information was used and no new data were

collected, additional ethics approval was not required according to

standard practices for secondary anonymized data analysis.
3 Results

The primary aim of this study was to investigate the relationship

between speech prosody and psychological constructs like Positive

Affective Engagement and Perceived Mental Strain, using a

combination of subjective self-reports and prosodic features from

the SEWA database. The results presented in this section provide

empirical evidence of how speech characteristics such as pitch,

intensity, loudness, spectral features and voice activity can serve as

indicators of an individual’s emotional resilience and cognitive load.
3.1 Descriptive statistics of participant
demographics

The study utilizes a subset of the SEWA dataset, which includes

dyadic conversations in English and German. The dataset consists

of 66 participants in the English subset and 64 participants in the

German subset, as summarized in Table 2.

The histograms in Figures 1, 2 illustrate the distributions of Positive

Affective Engagement (emotional resilience) and Perceived Mental

Strain (cognitive load) scores for English and Germanspeaking

participants, respectively. These distributions provide insights into

how individuals from different linguistic backgrounds perceive and

report their psychological states.

Both groups display multimodal distributions, indicating

diverse experiences of Positive Affective Engagement (emotional
Frontiers in Psychiatry 06
resilience). English speakers tend to report slightly higher resilience

on average, with a more balanced spread between positive and

negative values. German speakers show a concentration of scores in

the negative range, potentially indicating a more critical self-

assessment or cultural differences in reporting resilience. German

participants report slightly higher Perceived Mental Strain

(cognitive load) on average, with fewer instances of extremely low

values. English participants show a more evenly distributed pattern,

including both high and low cognitive load responses. The stronger

peak around 5 in the German dataset suggests a potential cultural or

linguistic difference in task perception or self-reporting tendencies.

These differences might stem from cultural factors, language-

specific prosodic variations, or differing interpretations of the

rating scales.

This analysis provides a foundational understanding of how

participants self-assess emotional and cognitive states, setting the stage

for further statistical comparisons and machine learning modeling.
3.2 Feature extraction and visualization

To understand the relationship between speech prosody and

psychological states, various acoustic features were extracted (using

OpenSMILE) and analyzed for both English and German speakers.

Table 3 summarizes the mean and standard deviation of key

prosodic features, categorized into fundamental frequency,

intensity & loudness, spectral features, and temporal & voice

activity parameters.
TABLE 2 Comparison of English and German datasets.

Category English dataset German dataset

Number of Participants 66 64

Average Age 34.94 31.08

Gender Distribution 50% male, 50% female 60.94% male, 39.06% female
FIGURE 1

Distribution of ground truth scores for Positive Affective Engagement (left) and Perceived Mental Strain (right) in the English dataset. Histograms
show participant self-reports, with kernel density estimates overlaid to illustrate score distributions.
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1. Fundamental Frequency (Pitch Variability).

◦ The F0 mean derivative (F0 sma de amean mean) is
tiers in
slightly negative for English speakers (0.1895 Hz) but

positive for German speakers (0.0129 Hz), suggesting

that English speakers exhibit greater pitch

fluctuations, which may indicate more dynamic

intonation. (This feature represents how rapidly

pitch changes on average; larger absolute values

suggest greater pitch movement over time.).
Psychiatry 07
◦ The F0 skewness (F0 sma de skewness mean) is

positive for English speakers (0.0102) but negative

for German speakers (-0.0079), implying that

English speech may be more varied in tone, while

German speech has a more balanced pitch

distribution. (Skewness reflects asymmetry in the

pitch distribution—positive values indicate a longer

ta i l on the r ight , suggest ing more high-

pitched variations.).
FIGURE 2

Distribution of ground truth scores for Positive Affective Engagement (left) and Perceived Mental Strain (right) in the German dataset. Histograms
show participant self-reports, with kernel density estimates overlaid to illustrate score distributions.
TABLE 3 Mean and standard deviation of prosodic features.

Feature category Feature name English German

Fundamental frequency

F0 (Hz) F0_sma_de_amean_mean -0.1895 ± 0.1830 0.0129 ± 0.0076

F0_Skew F0_sma_de_skewness_mean 0.0102 ± 0.0038 -0.0079 ± 0.0084

Intensity, loudness

Intensity (mdB) pcm_intensity_sma_amean_mean 67.8 ± 195.5 73.6 ± 170.9

Intensity_D (mdB) pcm_intensity_sma_de_amean_mean 167.4 ± 262 55.6 ± 170.2

Loudness (dB) pcm_loudness_sma_amean_mean 0.8432 ± 0.0200 0.9238 ± 0.0596

Loudness _D (mdB) pcm_loudness_sma_de_amean_mean 19.54 ± 115.24 507.3 ± 1571.9

Spectral features

MFCC1_Skew mfcc_sma_de[1]_skewness_mean 0.1848 ± 0.0380 -0.0564 ± 0.0475

MFCC2_Skew mfcc_sma_de[2]_skewness_mean -0.3539 ± 0.0748 -0.2348 ± 0.0476

Temporal, voice activity

ZCR pcm_zcr_sma_amean_mean 0.0728 ± 0.0044 0.0583 ± 0.0107

VoiceProb voiceProb_sma_amean_mean 0.5653 ± 0.0136 0.6329 ± 0.0090
This table compares prosodic feature measurements (mean ± standard deviation) between English and German speech samples. Abbreviations: F0, Fundamental Frequency; F0 Skew, Skewness of
Fundamental Frequency; Intensity, Root Mean Square (RMS) Intensity; Intensity D, Derivative of Intensity; Loudness, Perceived Loudness in Decibels (dB); Loudness D, Derivative of Loudness;
MFCC1 Skew, Skewness of the 1st Mel-Frequency Cepstral Coefficient; MFCC2 Skew, Skewness of the 2nd Mel-Frequency Cepstral Coefficient; ZCR, Zero-Crossing Rate; VoiceProb, Probability
of Voice Activity. Intensity values are based on openSMILE feature extraction. The unit “mdB” is used for readability, values should be interpreted as relative intensity.
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Fron
2. Intensity & Loudness.

◦ The mean intensity (pcm intensity sma amean
tiers in
mean) is higher in German speakers (73.6 mdB)

than in English speakers (67.8 mdB), indicating

that German speech tends to be louder overall.

(Intensity corresponds to the energy or perceived

volume of the signal, measured in decibels.).

◦ The intensity derivative (pcm intensity sma de amean

mean) shows a larger fluctuation for English speakers

(167.4 mdB) compared to German speakers (55.6

mdB), suggesting that English conversations exhibit

more dynamic loudness variations. (The derivative

indicates how quickly loudness changes over time—

larger values reflect greater loudness modulation.).
3. Spectral Features (MFCC Analysis).

◦ The skewness of the first Mel-Frequency Cepstral
Coefficient (mfcc sma de[1] skewness mean) is

positive for English speakers (0.1848) but negative

for German speakers (-0.0564), indicating different

spectral energy distributions. (MFCC1 captures

coarse spectral shape; its skewness reveals whether

the energy distribution leans toward higher or lower

frequencies.) (50).

◦ The second MFCC skewness (mfcc sma de[2]

skewness mean) is lower in German speakers

(-0.2348) compared to English speakers (-0.3539).

(MFCC2 reflects finer spectral details; negative

skewness indicates more concentration of energy in

lower coefficients, possibly linked to vowel or

consonant articulation styles.) (50).
4. Temporal & Voice Activity Features.

◦ Zero-crossing rate (pcm zcr sma amean mean) is
higher in English speech (0.0728) than in German

speech (0.0583), indicating a more frequent

transition between voiced and unvoiced speech

sounds in English. (The zero-crossing rate reflects

how often the audio waveform crosses the zero

amplitude line, i.e., switches from positive to

negative or vice versa—and is typically higher in

unvoiced or noisy segments.).

◦ Voice probability (voiceProb sma amean mean) is

higher in German speakers (0.6329) than in English

speakers (0.5653), suggesting that German speakers

maintain continuous speech more consistently than

English speakers. (Voice probability estimates the

likelihood that speech (vs. silence or noise) is present

at each moment in the signal.).
Figures 3, 4 display the Pearson correlation heatmaps of extracted

prosodic features in the English and German datasets, respectively. The

color scale represents correlation coefficients (r) ranging from -1

(strong negative correlation) to 1 (strong positive correlation), with 0

indicating no correlation. Statistically significant correlations (p < 0.05)

are marked with highlighted boxes, marking feature relationships that

are unlikely to have occurred by chance.
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Overall, the German dataset exhibits stronger and more

numerous significant correlations between features, suggesting a

more tightly integrated prosodic structure. Notably, Loudness and

ZCR show a remarkably strong negative correlation in German (r =

−0.95, p < 0.001), but not in English, indicating substantial inter-

feature dependency in German speech. This strong inverse

relationship can be explained by their distinct acoustic roles:

Loudness reflects the perceived intensity of a sound, while ZCR

captures how noisy or erratic the signal is. For instance, vowel

sounds are often loud yet smooth, resulting in low ZCR, whereas

soft background noise may be quiet but chaotic, yielding high ZCR.

As such, the two features don’t necessarily increase together—

particularly in German, where clearer, vowel-rich articulation

may produce speech that is simultaneously louder and less noisy,

reinforcing this negative correlation.

Additional differences are observed in the relationships between

spectral features (MFCC1 Skew, MFCC2 Skew) and pitch-based

metrics (F0 Skew, Intensity). For example, MFCC1 Skew is

positively correlated with F0 Skew (r = 0.56, p < 0.05) and

Intensity D (r = 0.62, p < 0.05) in German but shows weaker and

inconsistent correlations in English. These differences underscore

language-specific acoustic patterns that likely influence

model performance.

Moreover, VoiceProb—representing voice activity—exhibited

moderate correlations with several features in English (e.g., F0, r

= 0.56, p < 0.05; Loudness r = 0.53, p < 0.05), while showing weaker

and more selective correlations in German, particularly with

spectral skew measures (for example, MFCC1 Skew r = 0.72, p <

0.05; MFCC2 Skew(r =−0.55, p < 0.05). This variation suggests that

voice activity may be cued differently across languages, influencing

how features are weighted during model training and learning.

Principal Component Analysis revealed that the top three

components captured a substantial portion of variability in

prosodic features: 65.74% for English (PC1: 33.93%, PC2: 18.16%,

PC3: 13.65%) and 72.93% for German (PC1: 35.67%, PC2: 25.57%,

PC3: 11.69%). The dominant features contributing to PC1 in the

English dataset were loudness (0.483), pitch skewness (0.440), zero-

crossing rate (0.403), and voice probability (0.392). In the German

dataset, PC1 was most influenced by spectral skewness (MFCC1:

0.444, MFCC2: 0.405), pitch skewness (0.435), and intensity

dynamics (0.368). These results suggest that PCA retained

components with clear links to voice expressivity and speech

rhythm, preserving psychological interpretability even after

dimensionality reduction.
3.3 Assessment of positive affective
engagement and perceived mental strain
from speech (machine learning)

This section presents the predictive performance of Linear

Regression for regression tasks and Support Vector Machine

(SVM) for classification. The results highlight differences between

the English and German datasets in terms of predicting Emotional

Resilience and Cognitive Load.
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Table 4 displays the Mean Squared Error (MSE) for Positive

Affective Engagement and Perceived Mental Strain across the

English and German datasets, using both standard regression

evaluation and bootstrapped confidence intervals. In the standard

evaluation, the German dataset yields a lower MSE for Positive

Affective Engagement (27.146) compared to the English dataset

(35.583), suggesting a better model fit for German speakers. For

Perceived Mental Strain, the MSE is slightly lower for the English

dataset (26.01) than for German (28.52), indicating relatively

similar predictive performance across languages.

The bootstrapped results further illustrate the uncertainty

around these estimates. For Positive Affective Engagement, the

German model achieves a bootstrapped MSE of 27.39 with a

narrower 95% confidence interval [10.54, 51.68], whereas the

English model shows a higher bootstrapped MSE of 41.76 and a

wider confidence interval [17.63, 92.90], reflecting greater

variability. Similarly, for Perceived Mental Strain, the

bootstrapped MSE is lower in the German dataset (23.74; 95% CI:

[6.85, 47.11]) compared to the English dataset (36.75; 95% CI:

[15.16, 74.23]). These findings reinforce that Positive Affective

Engagement is predicted more reliably in the German dataset,
Frontiers in Psychiatry 09
while Perceived Mental Strain shows greater uncertainty in the

English dataset. The tighter confidence intervals in the German data

may indicate more consistent prosodic cues or less variation in self-

reporting among German speakers.

Tables 5, 6 report the classification performance for Positive

Affective Engagement and Perceived Mental Strain across English

and German datasets. Both standard evaluation metrics (based on a

single train-test split) and bootstrapped results (with 95%

confidence intervals) are presented for a more robust and reliable

assessment of model generalization.

For Positive Affective Engagement Classification, the German

dataset consistently outperforms the English dataset across all

metrics, with notably higher Accuracy (0.615 vs. 0.428), Macro

Precision (0.608 vs. 0.378), and Macro F1-score (0.607 vs. 0.378).

These results suggest that the classifier was more effective in

distinguishing between high and low positive affective

engagement in the German speech data, possibly due to language-

dependent acoustic patterns or cultural response tendencies.

Bootstrapped results confirm this trend but reveal greater

uncertainty, particularly in the English dataset. For example, the

bootstrapped Accuracy for English is 0.622 with a wide confidence
FIGURE 3

Correlation heatmap of prosodic features in English speech, with Pearson coefficients (–1 to 1) shown by color and significant correlations (p < 0.05)
marked by boxes, highlighting strong associations.
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interval [0.357–0.857], compared to 0.621 [0.308–0.846] for

German. Despite similar means, the English model exhibits a

broader range, indicating less stable generalization. German

bootstrapped Macro F1-score (0.590 [0.291–0.845]) also edges out

the English value (0.579 [0.300–0.845]), reinforcing the model’s

slightly better reliability on German speech.

For Perceived Mental Strain, classification performance is more

balanced between languages. The English dataset achieves

marginally higher standard Accuracy (0.571 vs. 0.538), while the

German dataset outperforms in Macro Recall (0.55 vs. 0.521) and

Macro F1-score (0.535 vs. 0.475). Bootstrapped results echo this

pattern: English Accuracy averages 0.585 [0.286–0.857], whereas

German reaches 0.609 [0.308–0.846]. Notably, German

bootstrapped precision (0.607 [0.278–0.889]) and F1-score (0.569

[0.291–0.838]) again exceed those of English, suggesting better

balance between sensitivity and specificity.

In summary, the results indicate that language plays a crucial role

in speech-based psychological assessments, with machine learning

models demonstrating different levels of performance on English and

German datasets. Overall, the inclusion of bootstrapping highlights the

importance of evaluating model stability under data resampling,
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especially with modest sample sizes. Positive Affective Engagement

classification remains clearly stronger for German, supported by both

higher point estimates and tighter confidence intervals. Perceived

Mental Strain classification is more variable but shows comparable

performance across languages. These results emphasize that language-

specific acoustic and reporting factors influence both raw model

accuracy and its statistical reliability, underscoring the need for

culturally aware and multilingual modeling in speech-based

psychological assessment.
4 Discussion

In this study, we operationalized Positive Affective Engagement

(emotional resilience) and Perceived Mental Strain (cognitive load)

using self-report data from the SEWA dataset. Our measure of

emotional resilience was derived from participants’ self-reported

engagement, enjoyment, and positive affect in response to

emotionally evocative advertisements. This operationalization does

not aim to capture trait-level resilience, as defined in psychological

literature, but instead reflects momentary affective engagement within
FIGURE 4

Correlation heatmap of prosodic features in German speech, with Pearson coefficients (–1 to 1) shown by color and significant correlations (p <
0.05) marked by boxes, highlighting strong associations.
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conversational settings. The Perceived Mental Strain is calculated as a

composite of self-reported cognitive effort, boredom, and enjoyment.

These refinements improve theoretical coherence while acknowledging

the limitations of using self-reports as proxies for complex

psychological constructs.

The findings of this study highlight the role of speech prosody in

psychological assessments, emphasizing how language-specific

variations impact predictive modeling of Positive Affective

Engagement and Perceived Mental Strain. The observed differences

between English and German datasets suggest that prosodic features

contribute uniquely to psychological state estimation, necessitating

careful consideration in multilingual applications.

The results demonstrate that Positive Affective Engagement is

more accurately predicted in German speech using linear regression,

whereas PerceivedMental Strain prediction remains consistent across

languages. One possible explanation for this difference lies in the

prosodic variations between English and German speakers. German

speech exhibited higher loudness and greater consistency in voice

probability, potentially making Positive Affective Engagement more

discernible through acoustic features. The stronger correlations

among prosodic features in German further support this notion,

indicating a more tightly connected acoustic profile that facilitates

model learning. These observations align with findings by (51), who

showed that while German and English share similar prosodic

structures, native listeners perceive and weight prosodic cues

differently, German listeners being more sensitive to pitch rises and

English listeners more to pitch falls. This difference in perceptual

sensitivity suggests that prosodic cues are encoded and utilized

distinctly across languages, which may contribute to the varying

predictive performance seen in our models.

The classification results reinforce this observation, showing that

high Positive Affective Engagement is more accurately detected in the

German dataset, whereas English data better identifies low Perceived

Mental Strain. This suggests that linguistic and cultural factors
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influence speech patterns associated with psychological states. The

findings align with prior research that indicates variations in emotional

expression and self-reporting tendencies across languages (29),

affecting the reliability of cross-linguistic speech analysis.

The results underscore the importance of tailoring speech-based

assessments to account for linguistic and cultural differences. The

observed disparities suggest that speech processing models trained

on one language may not generalize well to another, necessitating

language-specific adaptations. This is particularly relevant for

multilingual clinical applications, where accurate psychological

state estimation is crucial. Future implementations should explore

adaptive modeling approaches that incorporate linguistic variations

into speech-based assessments.

Moreover, the study demonstrates that prosodic features such

as pitch variability, loudness, and voice activity provide meaningful

indicators of psychological states. These findings could inform the

development of more robust emotion recognition systems,

improving their reliability in real-world applications such as

mental health monitoring and human-computer interaction.

Despite the promising findings, this study has several limitations.

First, the dataset is relatively small, with only 130 participants across

both language groups. A larger and more diverse sample could

enhance the generalizability of the results. Additionally, cultural

and contextual factors influencing Positive Affective Engagement

and Perceived Mental Strain reporting were not explicitly

controlled for, which could have influenced the differences. And,

while the OpenSmile toolkit provides over thousands of features,

incorporating all of them without prior selection would necessitate

additional dimensionality reduction and introduce model complexity

that may hinder interpretability. Future work may explore automated

feature selection from the full feature set.

While the observed performance differences between English

and German participants were attributed to prosodic variation,

socio-cultural and attitudinal differences in self-reporting may also
TABLE 4 Linear regression results for Positive Affective Engagement and Perceived Mental Strain.

Model Metric English dataset German dataset

Positive Affective Engagement Mean Squared Error (MSE) 35.583 27.146

Bootstrapped MSE (95% CI) 41.76 [17.63, 92.90] 27.39 [10.54, 51.68]

Perceived Mental Strain Mean Squared Error (MSE) 26.01 28.52

Bootstrapped MSE (95% CI) 36.75 [15.16, 74.23] 23.74 [6.85, 47.11]
TABLE 5 Classification performance for Positive Affective Engagement in English and German datasets (standard and bootstrapped).

Metric English German

Standard Bootstrapped Standard Bootstrapped

Accuracy 0.429 0.622 [0.357–0.857] 0.615 0.621 [0.308–0.846]

Macro Precision 0.378 0.611 [0.275–0.909] 0.608 0.623 [0.292–0.900]

Macro Recall 0.377 0.597 [0.325–0.854] 0.613 0.616 [0.333–0.875]

Macro F1-score 0.378 0.579 [0.300–0.845] 0.607 0.590 [0.291–0.845]

Confusion Matrix [5, 4][4, 1] – [5, 3][2, 3] –
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contribute to these effects. Previous studies have documented cross-

cultural biases in self-assessment, with German participants often

exhibiting more conservative or critical self-evaluations compared

to English-speaking counterparts. Such biases could impact ground

truth labels and therefore model outcomes.

Limitation also lies in the interpretability of the feature space.

Although PCA reduced dimensionality effectively and preserved

key prosodic patterns, it introduces a layer of abstraction that can

obscure direct relationships with psychological constructs. While

we report loadings and variance explained to improve transparency,

future work should consider interpretable models such as LASSO or

random forest regressors that maintain a clear mapping between

original features and target variables.

Another limitation is the reliance on self-reported measures for

Positive Affective Engagement and Perceived Mental Strain. Subjective

assessments may introduce bias, as individuals perceive and report

their psychological states differently. Incorporating objective

physiological measures, such as heart rate variability or galvanic skin

response, could provide a more comprehensive evaluation. Although

SEWA ratings are subjective and lack psychometric standardization,

our composite scores were informed by theoretical frameworks linking

enjoyment and engagement to resilience, and cognitive effort to load.

To support construct validity, future studies will incorporate validated

scales such as the Brief Resilience Coping Scale (BRCS) and NASA-

TLX alongside SEWA ratings for triangulation.

Furthermore, while this study focuses on English and German,

the findings may not extend to other languages with distinct

prosodic characteristics. Future research should explore additional

languages to determine whether similar trends persist and refine

cross-linguistic models accordingly. While SVMs and linear

regression provide interpretable baselines, we acknowledge their

limitations in capturing non-linear and sequential dependencies

inherent in prosodic speech patterns. Preliminary work using

Random Forests and LSTM-based architectures is underway to

explore non-linear interactions and temporal modeling.

Building on the current findings, future research should address

several key areas. Expanding the dataset with more participants and

diverse demographic backgrounds would improve model robustness.

Investigating alternative machine learning approaches, such as deep

learning models, could enhance prediction accuracy by capturing

complex non-linear relationships between speech prosody and

psychological states (26). Moreover, Integration of global and local

prosodic features has been shown to enhance the accuracy of emotion
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recognition systems. Global features capture overarching statistics

like mean and standard deviation of prosodic contours, while local

features represent temporal dynamics at finer granularities, such as

syllables and words (52). The current study focuses on global

prosodic features. However, to capture within-conversation

variation in load and resilience, future work will incorporate

temporal modeling of prosodic contours (e.g., pitch trajectories,

pause timing) at the utterance level. Tools like Praat or Voice

Activity Detection (VAD) will enable segmentation aligned with

speech turns, allowing for dynamic load tracking across dialogue.

Additionally, exploring cross-linguistic transfer learning could

help mitigate performance gaps between languages. Training

models on a diverse set of languages and fine-tuning them for

specific linguistic contexts could improve generalizability. Future

studies should also consider incorporating multimodal data, such as

facial expressions and physiological signals, to create a more holistic

assessment framework. Finally, real-world validation of these

models in clinical or everyday settings would provide practical

insights into their effectiveness. Testing speech-based psychological

assessment tools in naturalistic environments could help refine their

application for mental health monitoring, cognitive workload

analysis, and human-computer interaction.

It is important to note that, in this study, the spoken content was

tied to an induced emotional state, as participants discussed advertising

videos rather than reflecting on their mood in a general sense. This

design enables greater experimental control over affective stimuli, but it

may not fully capture the natural variability and authenticity present in

spontaneous speech. In contrast, studies such as (53) focus on self-

initiated, spontaneous speech to detect mental health risks such as

depression and anxiety, offering richer insights into a person’s habitual

emotional tone. Induced states may elicit different prosodic patterns

compared to spontaneous self-disclosure, which should be considered

when interpreting the findings. Nonetheless, this approach further

highlights the potential of speech as a non-invasive biomarker for early

detection of mental health conditions. From a clinical perspective,

identifying reliable vocal indicators—even from neutral or task-

oriented speech—could offer valuable insights into an individual’s

psychological well-being without requiring explicit discussion of

sensitive topics. This would be especially relevant in addressing the

persistent stigma surrounding mental health issues, supporting

unobtrusive monitoring and timely intervention.

In summary, this study demonstrates the impact of language on

speech-based psychological assessments, with German data
TABLE 6 Classification performance for Perceived Mental Strain in English and German datasets (standard and bootstrapped).

Metric English German

Standard Bootstrapped Standard Bootstrapped

Accuracy 0.571 0.585 [0.286–0.857] 0.538 0.609 [0.308–0.846]

Macro Precision 0.542 0.581 [0.250–0.875] 0.548 0.607 [0.278–0.889]

Macro Recall 0.521 0.570 [0.312–0.833] 0.550 0.592 [0.325–0.845]

Macro F1-score 0.475 0.542 [0.271–0.825] 0.535 0.569 [0.291–0.838]

Confusion Matrix [7, 1][5, 1] – [4, 4][2, 3] –
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1656292
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yache et al. 10.3389/fpsyt.2025.1656292
showing stronger predictability for Positive Affective Engagement

(emotional resilience) while Perceived Mental Strain (cognitive

load) prediction remains similar across languages. The results

highlight the importance of language-specific speech features in

machine learning models and underscore the need for tailored

approaches in multilingual settings. Future research should address

dataset limitations, explore alternative modeling techniques, and

validate findings in real-world applications to enhance the

effectiveness of speech-based psychological assessments.
5 Conclusion

This study explored the relationship between speech prosody

and psychological constructs, specifically Positive Affective

Engagement (emotional resilience) and Perceived Mental Strain

(cognitive load), using English and German speech samples from

the SEWA dataset. Through statistical analysis and machine

learning models, we demonstrated that prosodic features — such

as pitch variability, intensity, and spectral characteristics— serve as

meaningful indicators of psychological states. Our results revealed

notable language-based differences in speech characteristics and

their correlation with emotional and cognitive attributes.

Machine learning models performed differently across the two

languages, with linear regression yielding lower errors for Positive

Affective Engagement (emotional resilience) in German, while

Perceived Mental Strain (cognitive load) prediction remained

relatively similar across datasets. Classification results from SVM

indicated that high Positive Affective Engagement was more

accurately detected in German, whereas low Perceived Mental

Strain was better identified in English. These findings suggest that

language-specific acoustic patterns influence the reliability of

psychological inferences, emphasizing the need for linguistic

adaptations in automated speech-based assessments.

While this study provides valuable insights, certain limitations

must be acknowledged. The size of the data set was relatively small,

and cultural differences in self-reporting may have influenced

ground-truth labels. Future research should explore larger and

more diverse datasets, apply deep learning techniques tailored to

Positive Affective Engagement and PerceivedMental Strain detection,

and investigate the generalization of findings across additional

languages. By addressing these challenges, speech-based

psychological assessment tools can be refined to enhance their

accuracy and applicability in multilingual and cross-cultural contexts.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: http://db.sewaproject.eu/.
Ethics statement

Ethical approval was not required for the study involving

humans in accordance with the local legislation and institutional
Frontiers in Psychiatry 13
requirements. Written informed consent to participate in this study

was not required from the participants or the participants’ legal

guardians/next of kin in accordance with the national legislation

and the institutional requirements.

Author contributions

VY: Writing – original draft, Visualization, Data curation,

Formal analysis, Conceptualization, Writing – review & editing,

Software, Methodology. LM: Visualization, Supervision, Writing –

review & editing, Conceptualization. IR: Writing – review & editing,

Methodology, Supervision, Investigation. TV: Conceptualization,

Supervision, Funding acquisition, Writing – review &

editing, Visualization.

Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was funded

by the German Federal Ministry of Research, Technology and Space

(BMFTR) (grant number 16SV9137) as a part of the FRIEND project.

Acknowledgments

We would like to express our gratitude to all those who have

supported and contributed to the completion of this research. Special

thanks to Prof. Dr. Thomas Frodl, director of the Department for

Psychiatry, Psychotherapy and Psychosomatics, for providing support

and resources that significantly contributed to the success of this study.

Additionally, we acknowledge the SEWA database for providing the

data that formed the foundation of our analysis. Their comprehensive

and well-maintained dataset was crucial to the development of this

research. This manuscript will be part of the doctoral thesis (Dr. rer.

medic.) of Vaishnavi Prakash Yache at the Faculty ofMedicine, RWTH

Aachen University and it is part of the work within the FRIEND

project, which is funded by the German Federal Ministry of Research,

Technology and Space (BMFTR) (grant number 16SV9137).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
frontiersin.org

http://db.sewaproject.eu/
https://doi.org/10.3389/fpsyt.2025.1656292
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yache et al. 10.3389/fpsyt.2025.1656292
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Psychiatry 14
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Bonanno GA. Loss, trauma, and human resilience: Have we underestimated the
human capacity to thrive after extremely aversive events? Am psychol Assoc. (2008) 59
(1):101–13. doi: 10.1037/1942-9681.S.1.101

2. Southwick SM, YehudaR. Resilience definitions, theory, and challenges: interdisciplinary
perspectives. Eur J Psychotraumatol. (2014) 5:25338. doi: 10.3402/ejpt.v5.25338

3. Kalisch R, Baker DG, Basten U, Boks MP, Bonanno GA, Brummelman E, et al.
The resilience framework as a strategy to combat stress-related disorders. Nat Hum
Behav. (2017) 1:784–90. doi: 10.1038/s41562-017-0200-8

4. Hsu S-M, Chen S-H, Huang T-R. Personal resilience can be well estimated from
heart rate variability and paralinguistic features during human–robot conversations.
Sensors. (2021) 21:5844. doi: 10.3390/s21175844

5. Iyer R, Nedeljkovic M, Meyer D. Using vocal characteristics to classify
psychological distress in adult helpline callers: retrospective observational study.
JMIR Formative Res. (2022) 6:e42249. doi: 10.2196/42249

6. Schultebraucks K, Yadav V, Shalev AY, Bonanno GA, Galatzer-Levy IR. Deep
learning-based classification of posttraumatic stress disorder and depression following
trauma utilizing visual and auditory markers of arousal and mood. psychol Med. (2022)
52:957–67. doi: 10.1017/S0033291720002718

7. John Sweller SK, Ayres P. Cognitive Load Theory. London, UK: Elsevier Academic
Press (2011).

8. Paas F, Tuovinen JE, Tabbers H, Van Gerven PW. Cognitive load measurement as
a means to advance cognitive load theory. In: Cognitive Load Theory. London, UK:
Routledge (2016). p. 63–71.

9. Yin B, Chen F, Ruiz N, Ambikairajah E. (2008). Speech-based cognitive load
monitoring system, in: 2008 IEEE International Conference on Acoustics, Speech and
Signal Processing (IEEE), IEEE. pp. 2041–4.

10. Al-Omari H, Aljawarneh YM, Al-Rawashdeh S. The relationship between
resilience and cognitive load among college level students: a cross-sectional study.
Crit Public Health. (2025) 35:2504074. doi: 10.1080/09581596.2025.2504074

11. Wang P, Li R, Chen Y. Longitudinal trajectories of psychological resilience and
cognitive impairment among older adults: evidence from a national cohort study.
medRxiv. (2024) 80(6). doi: 10.1101/2024.09.02.24312919

12. Jung SJ, Lee GB, Nishimi K, Chibnik L, Koenen KC, Kim HC. Association
between psychological resilience and cognitive function in older adults: effect
modification by inflammatory status. Geroscience. (2021) 43:2749–60. doi: 10.1007/
s11357-021-00406-1

13. Byrd-Bredbenner C, Eck KM. Relationships among executive function, cognitive
load, and weight-related behaviors in university students. Am J Health Behav. (2020)
44:691–703. doi: 10.5993/AJHB.44.5.12

14. Cain. A Review of the Mental Workload Literature. Technical report, Defence
Research and Development Canada Toronto (2007).

15. Ding Y, Cao Y, Duffy VG, Wang Y, Zhang X. Measurement and identification of
mental workload during simulated computer tasks with multimodal methods and
machine learning. Ergonomics. (2020) 63:896–908. doi: 10.1080/00140139.2020.1759699

16. Han H-J, Labbaf S, Borelli JL, Dutt N, Rahmani AM. Objective stress monitoring
based on wearable sensors in everyday settings. J Med Eng Technol. (2020) 44:177–89.
doi: 10.1080/03091902.2020.1759707

17. Eyben F, Wöllmer M, Schuller B. (2010). opensmile: The munich versatile and
fast open-source audio feature extractor, in: Proceedings of the 18th ACM International
Conference on Multimedia (ACM). New York, NY, USA: Association for Computing
Machinery. pp. 1459–62. doi: 10.1145/1873951.1874246

18. Scherer KR. Vocal communication of emotion: A review of research paradigms.
Speech Communication. (2003) 40:227–56. doi: 10.1016/S0167-6393(02)00084-5

19. Coutinho E, Dibben N. Psychoacoustic cues to emotion in speech prosody and
music. Cogn Emotion. (2013) 27:658–84. doi: 10.1080/02699931.2012.732559

20. Boyer S, Paubel P-V, Ruiz R, El Yagoubi R, Daurat A. Human voice as a measure
of mental load level. J Speech Language Hearing Res. (2018) 61:2722–34. doi: 10.1044/
2018JSLHR-S-18-0066

21. Ouyang A, Dang T, Sethu V, Ambikairajah E. Speech based emotion prediction:
Can a linear model work? In: Proceedings of INTERSPEECH (ISCA). Graz, Austria
(2019). p. 2813–7.

22. Gumus M, DeSouza DD, Xu M, Fidalgo C, Simpson W, Robin J. Evaluating the
utility of daily speech assessments for monitoring depression symptoms. Digital Health.
(2023) 9:20552076231180523. doi: 10.1177/20552076231180523
23. Chen Y, Xu C, Liang C, Tao Y, Shi C. Speech-based clinical depression screening:
An empirical study. arXiv preprint arXiv:2406.03510. (2024). doi: 10.48550/
arXiv.2406.03510

24. Yamamoto M, Takamiya A, Sawada K, Yoshimura M, Kitazawa M, Liang KC,
et al. Using speech recognition technology to investigate the association between
timing-related speech features and depression severity. PloS One. (2020) 15:e0238726.
doi: 10.1371/journal.pone.0238726

25. Trevino AC, Quatieri TF, Malyska N. Phonologically-based biomarkers for
major depressive disorder. EURASIP J Adv Signal Process. (2011) 2011:1–18.
doi: 10.1186/1687-6180-2011-42

26. Tian H, Zhu Z, Jing X. Deep learning for depression recognition from speech.
Mobile Networks Appl. (2023) 29:1212–27. doi: 10.1007/s11036-022-02086-3

27. Schuller BASS, B. and Seppi D. Recognizing realistic emotions and affect in
speech: State of the art and lessons learnt from the first challenge. Speech
Communication. (2011) 53:1062–87. doi: 10.1016/j.specom.2011.01.011

28. Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. A review of
depression and suicide risk assessment using speech analysis. Speech Communication.
(2015) 71:10–49. doi: 10.1016/j.specom.2015.03.004

29. Parola A, Simonsen A, Lin JM, Zhou Y, Wang H, Ubukata S, et al. Voice patterns
as markers of schizophrenia: building a cumulative generalizable approach via a cross-
linguistic and meta-analysis based investigation. Schizophr Bull. (2023) 49:S125–41.
doi: 10.1093/schbul/sbad046

30. Alpert M, Rosenberg SD, Pouget ER, Shaw RJ. Prosody and lexical accuracy in
flat affect schizophrenia. Psychiatry Res. (2000) 97:107–18. doi: 10.1016/S0165-1781
(00)00211-0

31. Hecker P, Steckhan N, Eyben F, Schuller BW, Arnrich B. Voice analysis for
neurological disorder recognition–a systematic review and perspective on emerging
trends. Front Digital Health. (2022) 4:842301. doi: 10.3389/fdgth.2022.842301

32. Cummins N, Matcham F, Klapper J, Schuller B. Chapter 10 - artificial
intelligence to aid the detection of mood disorders. In: Barh D, editor. Artificial
Intelligence in Precision Health. London, UK: Academic Press (2020). p. 231–55.
doi: 10.1016/B978-0-12-817133-2.00010-0

33. Tzirakis P, Nguyen A, Zafeiriou S, Schuller BW. ICASSP 2021–2021 IEEE
International Conference on Acoustics, Speech and Signal Processing, Toronto, ON,
Canada (2021). p. 6279–83. doi: 10.1109/ICASSP39728.2021.9414903

34. Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: From
unimodal analysis to multimodal fusion. Inf Fusion. (2017) 37:98–125. doi: 10.1016/
j.inffus.2017.02.003

35. Zadeh A, Liang PP, Poria S, Cambria E, Morency L-P. (2018). Multimodal
language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
graph, in: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Association for Computational Linguistics). pp. 2236–46.

36. Lian H, Lu C, Li S, Zhao Y, Tang C, Zong Y. A survey of deep learning-based
multimodal emotion recognition: Speech, text, and face. Entropy. (2023) 25:1440.
doi: 10.3390/e25101440

37. Kossaifi J, Tzimiropoulos G, Todorovic S, Pantic M. Sewa db: A rich database for
audio-visual emotion and sentiment research in the wild. IEEE Trans Pattern Anal
Mach Intell. (2019) 41:615–25. doi: 10.1109/TPAMI.2019.2944808

38. Jain S. Hugging face. In: Introduction to transformers for NLP: With the hugging
face library and models to solve problems. Apress, Berkeley, CA (2022). p. 51–67.

39. Eyben F, Weninger F, Gross F, Schuller B. (2013). Recent developments in
opensmile, the munich open-source multimedia feature extractor, in: Proceedings of the
21st ACM international conference on Multimedia (ACM). New York, NY, USA:
Association for Computing Machinery. pp. 835–8.

40. Kanwal S, Asghar S, Hussain A, Rafique A. Identifying the evidence of speech
emotional dialects using artificial intelligence: A cross-cultural study. PloS One. (2022)
17:e0265199. doi: 10.1371/journal.pone.0265199

41. Bitouk D, Verma R, Nenkova A. Class-level spectral features for emotion
recognition. Speech Communication . (2010) 52:613–25. doi : 10.1016/
j.specom.2010.02.010

42. Eyben F, Scherer KR, Schuller BW, Sundberg J, Andre E, Busso C, et al. The
geneva minimalistic acoustic parameter set (gemaps) for voice research and affective
computing. IEEE Trans Affect Computing. (2015) 7:190–202. doi: 10.1109/
TAFFC.2015.2457417
frontiersin.org

https://doi.org/10.1037/1942-9681.S.1.101
https://doi.org/10.3402/ejpt.v5.25338
https://doi.org/10.1038/s41562-017-0200-8
https://doi.org/10.3390/s21175844
https://doi.org/10.2196/42249
https://doi.org/10.1017/S0033291720002718
https://doi.org/10.1080/09581596.2025.2504074
https://doi.org/10.1101/2024.09.02.24312919
https://doi.org/10.1007/s11357-021-00406-1
https://doi.org/10.1007/s11357-021-00406-1
https://doi.org/10.5993/AJHB.44.5.12
https://doi.org/10.1080/00140139.2020.1759699
https://doi.org/10.1080/03091902.2020.1759707
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1016/S0167-6393(02)00084-5
https://doi.org/10.1080/02699931.2012.732559
https://doi.org/10.1044/2018JSLHR-S-18-0066
https://doi.org/10.1044/2018JSLHR-S-18-0066
https://doi.org/10.1177/20552076231180523
https://doi.org/10.48550/arXiv.2406.03510
https://doi.org/10.48550/arXiv.2406.03510
https://doi.org/10.1371/journal.pone.0238726
https://doi.org/10.1186/1687-6180-2011-42
https://doi.org/10.1007/s11036-022-02086-3
https://doi.org/10.1016/j.specom.2011.01.011
https://doi.org/10.1016/j.specom.2015.03.004
https://doi.org/10.1093/schbul/sbad046
https://doi.org/10.1016/S0165-1781(00)00211-0
https://doi.org/10.1016/S0165-1781(00)00211-0
https://doi.org/10.3389/fdgth.2022.842301
https://doi.org/10.1016/B978-0-12-817133-2.00010-0
https://doi.org/10.1109/ICASSP39728.2021.9414903
https://doi.org/10.1016/j.inffus.2017.02.003
https://doi.org/10.1016/j.inffus.2017.02.003
https://doi.org/10.3390/e25101440
https://doi.org/10.1109/TPAMI.2019.2944808
https://doi.org/10.1371/journal.pone.0265199
https://doi.org/10.1016/j.specom.2010.02.010
https://doi.org/10.1016/j.specom.2010.02.010
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.3389/fpsyt.2025.1656292
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yache et al. 10.3389/fpsyt.2025.1656292
43. Chan H. A method of prosodic assessment: Insights from a singing workshop.
Cogent Educ. (2018) 5. doi: 10.1080/2331186X.2018.1461047
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50. Ma Z, Fokoué E. A comparison of classifiers in performing speaker accent
recognition using mfccs. arXiv preprint arXiv:1501.07866. (2015). doi: 10.48550/
arXiv.1501.07866

51. Kember H, Grohe A-K, Zahner K, Braun B, Weber A, Cutler A. Similar prosodic
structure perceived differently in german and english. In: Interspeech, vol. 2017. (2017).
p. 1388–92.

52. Koolagudi SG, Rao KS. Emotion recognition from speech: a review. Int J Speech
Technol. (2012) 15:99–117. doi: 10.1007/s10772-011-9125-1

53. Riad R, Denais M, de Gennes M, Lesage A, Oustric V, Cao X, et al. Automated
speech analysis for risk detection of depression, anxiety, insomnia, and fatigue:
Algorithm development and validation study. J Med Internet Res. (2024) 26:e58572.
doi: 10.2196/58572
frontiersin.org

https://doi.org/10.1080/2331186X.2018.1461047
https://doi.org/10.1186/s13636-017-0100-x
https://doi.org/10.1080/0907676X.2021.1900305
https://doi.org/10.21437/Interspeech.2018-2522
https://doi.org/10.21437/Interspeech.2018-2522
https://doi.org/10.48550/arXiv.1501.07866
https://doi.org/10.48550/arXiv.1501.07866
https://doi.org/10.1007/s10772-011-9125-1
https://doi.org/10.2196/58572
https://doi.org/10.3389/fpsyt.2025.1656292
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Predicting affective engagement and mental strain from prosodic speech features
	1 Introduction
	2 Methodology
	2.1 Dataset and participants
	2.2 Feature extraction
	2.3 Annotation and ground truth labels
	2.4 Machine learning model development
	2.5 Cross-language analysis
	2.6 Ethical considerations

	3 Results
	3.1 Descriptive statistics of participant demographics
	3.2 Feature extraction and visualization
	3.3 Assessment of positive affective engagement and perceived mental strain from speech (machine learning)

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


