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ADHD diagnostic tools
across ages: traditional
and digital approaches
Marina Knyazhansky* and Tammar Shrot*

Department of Software Engineering, Shamoon College of Engineering, Ashdod, Israel
This article presents a narrative review of current approaches to the diagnosis of

Attention-Deficit/Hyperactivity Disorder (ADHD) in children and adults. We place

particular attention on recent technological advancements. ADHD diagnosis

traditionally relies on a combination of subjective rating scales, clinician

interviews, and observational data. In recent years, objective tools have

emerged, including computerized neuropsychological tests and biometric

measures. Examples include electroencephalography and eye tracking. Their

clinical utility remains under investigation. This review explores these

developments, including the integration of virtual reality environments and

machine learning algorithms into diagnostic processes. We synthesize findings

from diverse sources. The review highlights both established and emerging tools

and the age-group differences in diagnostic challenges. We also note the

potential of immersive and data-driven technologies to improve accuracy.

Rather than applying a systematic methodology, this narrative review aims to

capture current directions and preliminary insights that can inform future

research hand practice. We reviewed recent research on ADHD diagnosis

across age groups, with a focus on virtual reality and machine learning. We

found that these tools showed modest accuracy improvements and better

reflection of real-world setting, though studies were generally small and

diverse. These findings suggest that VR-ML systems could develop into

practical and explainable decision-support tools for everyday ADHD diagnosis.
KEYWORDS

ADHD diagnosis, virtual real ity, machine learning, ecological val idity,
lifespan assessment
1 Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) affects approximately 5 – 7% of

school-aged children and 2:5% of adults worldwide. It significantly impacts education,

work, and relationships. It also affects mental and physical health across the lifespan (8).

The disorder is defined clinically by the Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition (DSM-5), which outlines nine symptoms of inattention and nine

symptoms of hyperactivity-impulsivity.
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However, accurate diagnosis requires more than checklist

adherence; it depends on expert clinical judgment regarding symptom

chronicity, developmental appropriateness, and cross-situational

functional impairment. This interpretative element, compounded by

variability across sex, age, and sociocultural context, contributes to the

heterogeneity of presentation and diagnostic complexity.

Despite widespread use in clinical and educational settings,

conventional assessment tools have notable limitations. Behavioral

rating scales, such as the Child Behavior Checklist (CBCL),

Vanderbilt ADHD Diagnostic Rating Scale, and SNAP-IV,

remain the cornerstone of ADHD screening and triage in primary

care. Parent-report scales can achieve high diagnostic accuracy

(pooled area under the curve (AUC) ≈ 0.85). However, validity is

limited by inter-informant discrepancies and susceptibility to

subjective bias (1). To introduce more objectivity, computerized

Continuous Performance Tests (CPTs) were developed to quantify

attentional lapses through omission errors, commission errors, and

reaction–time variability. Meta-analyses consistently reveal only

moderate sensitivity and specificity. These measures often fail to

differentiate ADHD from disorders with overlapping symptoms

such as anxiety or specific learning disabilities (2, 4, 29). Some

commercially available systems, such as QbTest, attempt to enhance

CPT paradigms by incorporating infra-red motion tracking to

capture motor activity. This expansion increases the range of

measurable symptoms. Although, these additions modestly

improve ecological validity, diagnostic performance remains

constrained, with AUC metrics hovering around 0.72 and

showing inconsistent sensitivity across subdomains (2).

Parallel interest has emerged in identifying physiological and

neurobiological biomarkers that could support or enhance behavioral

assessments. Approaches such as electroencephalographic (EEG)

monitoring of theta/beta power ratios, near-infrared spectroscopy

(NIRS), and serum catecholamine profiling have shown theoretical

promise. These biomarkers remain largely investigational. They are

not yet reliable or practical for routine clinical use. Causes include

variability in protocols, cost, and interpretability (5). Consequently,

current diagnostic practices remain anchored in subjective

observation and simplified laboratory tasks, which often fail to

reflect the complexity of real-world attention demands.

This gap is especially problematic given the dynamic nature of

ADHD symptomatology throughout life. In children, hyperactivity is

typically overt, manifesting itself as motor restlessness and

externalized behaviors. By contrast, in adults, hyperactivity maybe

internalized and expressed through executive dysfunction, inner

agitation, or impulsive decision making. In older adults, diagnostic

clarity is further challenged by symptom overlap with age-associated

cognitive decline and comorbid conditions such as vascular and

metabolic disease. Geriatric ADHD remains markedly under-

recognized. Clinicians often hesitate to prescribe stimulants due to

cardiovascular concerns. With careful monitoring, pharmacologic

treatment may be safe and effective in this population (7).

In response to these diagnostic challenges, recent technological

advancements offer promising avenues. The convergence of virtual

reality (VR) environments and machine learning (ML) techniques

presents an opportunity to enhance both the ecological validity and
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objectivity of ADHD assessments. VR allows the simulation of

everyday settings, such as noisy classrooms or busy office

environments, within which CPT-like tasks can be embedded.

These immersive scenarios are capable of eliciting more

naturalistic attentional behaviors, while allowing researchers to

systematically control environmental variables. Head-mounted

displays (HMDs), when equipped with eye tracking modules,

inertial measurement units (IMUs), and EEG interfaces, create

data rich settings that support multi–modal behavioral capture.

Early validation studies of VR-based platforms, such as Aula VR

and Nesplora Aula, show convergence validity with standard CPTs.

They also show modest improvements insensitivity and specificity

(15, 17, 27). Importantly, these tools expand the scope of the

evaluation to include not only attentional lapses, but also gaze

patterns, postural control, and neuro-physiological reactivity.

The integration of ML pipelines into these environments further

enhances their potential diagnostic utility. Algorithms such as

support vector machines (SVMs), random forests, and neural

networks, including convolutional (CNN) and recurrent (RNN)

architectures, are capable of modeling complex interactions among

behavioral, kinematic, and physiological features. Several recent

studies have reported classification precisions that exceed 0.85 (n

between 21 and 437) for ADHD diagnosis and subtype

discrimination using fused EEG, eye tracking, and motion capture

data streams (19–21, 30, 34). These findings suggest that multi–

modal signal integration may offer a path toward more precise and

personalized diagnostic tools, with the potential to surpass the

limitations of traditional single-modality assessments.

Despite the growing interest in applying VR and ML to the

diagnosis of ADHD, current literature remains fragmented. The

heterogeneity justifies a narrative review. This framework allows

flexible synthesis of diverse study designs, outcome types, and

conceptual approaches that are not suited to meta-analysis. Most

studies focus either on a narrow subset of features (e.g., behavioral

or physiological alone) or explore these technologies without

systematically addressing their clinical validity, generalizability, or

interpretability. Moreover, there is limited synthesis of findings

across age groups and modalities.

This narrative review aims to fill this gap by providing a

structured analysis of empirical studies that apply VR and/or ML

to ADHD diagnosis in children and adults. Specifically, we identify

methodological patterns, examine the reported diagnostic

performance, and propose an integrative framework that highlights

current capabilities, clinical potential, and future research directions.

Although the review includes structured search and screening

methods, it is framed as a narrative review due to the wide variability

in study designs, outcomes, and emerging nature of the technologies

involved. This approach enables a flexible synthesis of findings and

conceptual trends not suited to quantitative meta-analysis.
2 Methods

This review adopts a narrative synthesis methodology, selected

to accommodate heterogeneous study designs, diverse diagnostic
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technologies, and varied outcome metrics. A narrative approach

allows thematic analysis of conceptual trends and methodological

developments, rather than estimation of effect size.
2.1 Search strategy and study selection

We mitigated selection bias by predefining inclusion/exclusion

criteria, searching multiple databases (PubMed, Scopus, and

PsycINFO; last search: 5 Aug 2025), and screening records in

duplicate (two independent reviewers). We removed duplicates,

recorded reasons for exclusion at full-text stage, and summarized

the flow in a PRISMA diagram (Figure 1). We restricted to English

language, peer-reviewed studies and did not perform a formal

publication-bias analysis because no meta-analysis was conducted.
2.2 Data sources

We searched PubMed, Scopus, and PsycINFO for studies

published 1 Jan 2014–15 May 2025 using: (ADHD OR “attention

deficit hyperactivity”) AND (diagnos* OR assess* OR screen*)
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AND (“Continuous Performance Test” OR CPT OR “virtual

reality” OR VR OR “machine learning” OR EEG OR eye tracking).
2.3 Eligibility

Design: Empirical evaluation of an ADHD diagnostic or

screening tool

Sample: n 20 (technology development pilots excluded)

Outcomes: Quantitative diagnostic metrics (e.g., accuracy,

sensitivity, specificity, AUC, F-score)

Population: Pediatric (17 y), adult (18–59 y), or older-adult (60

y) cohorts

Exclusions: case reports; non-English; non-peer-reviewed

abstracts without full text; treatment only studies; plus manual

snowballing of references.
2.4 Measures/devices

Data extracted included participant characteristics, index tests

(rating scales; computerized CPTs such as QbTest/CPT-3; VR
FIGURE 1

Flow diagram of the study selection process for the narrative review, adapted from PRISMA guidelines.
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classroom/task systems with eye-tracking/EEG), feature sets,

analytic models, reference standards, and psychometric indices.
2.5 Procedure

Titles/abstracts were screened and full texts assessed; the selection

process is summarized in a PRISMA-style flow figure. Risk of bias

was appraised across four QUADAS-2–adapted domains (sample

selection, index test, reference standard, flow/timing).
2.6 Analysis

Narrative, thematic synthesis (no meta-analysis) given design/

outcome heterogeneity; 57 articles met criteria, with 45

methodologically strongest or most cited emphasized. This

narrative review integrates diverse evidence streams to provide

preliminary insights.

Figure 1 summarizes the search process.
3 Results

3.1 Traditional multi-informant
assessments

Across nine rating-scale validation studies (n ≈ 3800), parent

ratings, such as the CBCL, are widely used and show good diagnostic

accuracy, achieved pooled AUC=0.85, while teacher ratings often lack

consistency with parent reports, AUC=0.74 (1). Youth self-reports

remained poorest (AUC ≈ 0.68). All questionnaire- and observation-

based diagnostic methods have high ecological validity— because the

person is assessed in their natural environment — but they are

subjective (observer-dependent).

Risk of bias across studies was qualitatively assessed. Most

studies showed moderate methodological quality, with common

limitations related to small sample sizes and lack of blinding, and

heterogeneity in missions and devices used.

Although computerized neuropsychological tests, such as CPTs,

are popular, they are not superior to rating scales in terms of

diagnostic accuracy, despite their higher cost. Executive function

tests can support clinical evaluation but cannot replace traditional

diagnostic methods. Objective measures, including EEG,

neuroimaging, and biospecimen analysis, have shown promise in

some cases but lack independent validation for clinical use. Robust

time–frequency pipelines (e.g., Fourier synchrosqueezed transform

combined with ICA) have been shown to improve EEG feature

stability under noise and nonstationarity (40). The FDA has

approved one EEG-based tool, yet its reliability remains limited,

and these methods are not yet ready for widespread implementation.

Research on combining rating scales through ML suggests potential

improvements, with studies reporting AUC scores up to 0.98.

However, comparisons between combined and single-informant

assessments remain scarce, requiring further investigation.
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Ultimately, ADHD diagnosis depends on clinician expertise,

incorporating multiple informants and standardized assessments to

improve accuracy and address differential diagnoses, such as

distinguishing ADHD from other mental health conditions.
3.2 Conventional computerized CPTs

QbTest: a CPT with motion tracking. Five studies (children

n=682; adults n=514) reported moderate pooled sensitivity=0.78,

specificity=0.70, AUC=0.72 (2). Sub-scales (inattention,

impulsivity, activity) varied widely by age and comorbidity.

QbTest is most effective when used alongside clinical assessments,

as it struggles to differentiate ADHD from other clinical conditions.

The tool can enhance diagnostic efficiency by reducing time to

diagnosis and increasing confidence in clinician decisions, aligning

with its FDA-approved and NICE recommended use. However,

reliance on QbTest alone risks misdiagnosis, particularly when

interpreting its subscales. Further research is needed to define its

role within ADHD diagnostic pathways and validate its use across

different populations.

Sendero Gris test: results indicate that the tablet-based version

performs comparably to the original paper test (p=0.49),

confirming its validity (3). The digital format offers advantages

such as automated scoring, reduced bias, and improved

accessibility. However, challenges such as data errors and small

sample sizes (n=24) limit its generalizability. Despite these

challenges, the study supports the digitalization of ADHD

screening tools, suggesting they could improve efficiency in school

based assessments. Further enhancements, including integrating

additional tests and refining analysis techniques, could improve the

tool’s discriminatory ability and usability.

CPT-3: evaluates attention, impulsivity, and vigilance. Studies

assessing its diagnostic accuracy report moderate results, with

considerable variability across subscales and study designs (4).

While it effectively identifies attentional deficits and impulsivity,

its sensitivity and specificity remain inconsistent, making it

unreliable as a standalone diagnostic tool. CPT3 is most useful

when incorporated into a broader diagnostic framework, including

interviews, rating scales, and behavioral observations. Its objective

data can complement clinician judgment but cannot replace

traditional diagnostic methods. Standardizing cutoff scores and

further research into its performance across diverse populations

are necessary to refine its clinical utility. Meta-review of 11 cohorts

indicated global accuracy about 0.72 but specificity dropped to 0.57

in clinical comparison groups.

da-CPT: designed to assess attention and impulsivity under

realistic conditions. Compared to other ADHD diagnostic tools,

such as MOXO dCPT and IVA2, it uniquely integrates auditory

distractions, enhancing its ecological validity (5). The MOXOd CPT

uses both visual and auditory distractors, but its emphasis on visual

stimuli may not fully capture the auditory challenges ADHD

individuals face, such as in noisy classrooms. In contrast, daCPT

focuses exclusively on auditory distractors, making it particularly

useful in assessing real-world attentional control. Compared to the
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IVA2, which evaluates sustained attention and impulse control

through dual modality stimuli, the daCPT’s embedded auditory

distractions offer a more practical simulation of everyday

distractions. Studies indicate that daCPT achieves high diagnostic

accuracy, particularly in detecting impulsivity and attentional lapses

in distracting environments. Its ability to distinguish ADHD from

non-ADHD individuals is statistically robust, making it a strong

complementary tool for ADHD assessment. However, like other

CPTs, it should not be used in isolation. Clinical interviews, rating

scales such as Conners or Vanderbilt, and observational data

remain essential for comprehensive diagnosis. Future research

should explore daCPT’s role in iverse populations and its

integration into multidisciplinary diagnostic frameworks. Two

empirical papers embedded auditory distractors, boosting

ecological validity; preliminary accuracy 0.77-0.82.
3.3 VR-based CPTs

Twelve studies evaluated VR paradigms. In recent

developments addressing the limitations of traditional ADHD

diagnostic methods, an innovative system has been introduced

(16) that integrates VR, eye tracking, and EEG technologies. This

new system employs VR to generate a 3D virtual classroom

environment that closely mirrors real-life settings, complete with

a variety of distraction factors. Within this immersive setting,

subjects are evaluated using visual and auditory CPT alongside

the Wisconsin Card Sorting Test (WCST), providing assessments of

selective and sustained attention, abstract reasoning, and cognitive

transfer abilities. The inclusion of distraction factors enables a more

nuanced understanding of how external stimuli impact

cognitive performance.

Aula Nesplora (HMD classroom): another VR-based CPT

designed to evaluate attentional processes in children aged 6 to 16

(n=338). By immersing examinees in a simulated classroom

environment through a VR headset, the test measures both visual

and auditory attention, providing a more ecologically valid

assessment than traditional computerized two-dimensional tests.

This system outperformed TOVA on key attentional variables:

omissions OR=3.9, commissions OR=3.1; overall AUC=0.81 (18).

Head-movement variability and ocular fixation dispersion enriched

predictive models (DAUC +0.04-0.07). Aula VR demonstrated

convergent validity with Conners CPT (r=0.44-0.62) and

identified latent ADHD clusters–impulsive vs. hyperactive–missed

by two-dimensional indices (17). Data quality was generally high,

though small sample sizes (median n=48) limited confidence

intervals. Only three studies attempted machine learning fusion

(e.g., gradient-boosted decision-trees) of multi-informant scales,

achieving AUC up to 0.98 but lacking external validation (24).
3.4 Machine learning augmentation

The integration of ML techniques within VR systems has

catalysed rapid advances across multiple domains, from
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enhancing user experience to solving practical challenges such as

cybersickness and motion tracking. Recent advances in ML have

been pivotal in pushing the boundaries of VR technology.

Researchers have leveraged ML to enhance user experiences,

detect cybersickness, predict motion intentions, and even

personalize therapeutic interventions. For EEG-based pipelines,

unifying temporal alignment (DTW) with low-dimensional

visualization (t-SNE) has been used to interpret alpha-band EEG

structures across conditions, providing interpretable embeddings of

physiological features (41).

One notable contribution by Kundu et al. (9), is the development

of the VR-LENS framework, which employs a super learning-based

ensemble model and explainable AI (XAI) techniques to detect and

classify cybersickness in VR environments. Identifying dominant

features, such as eye tracking, player position, and physiological

signals, the approach reduces computational complexity while

maintaining high accuracy.

In the Fan et al. (10) study, a hybrid model was proposed that

combines an improved AdaBoost algorithm with a long-short-term

memory network (LSTM) to predict the VR user experience. This

method demonstrated robust performance in classifying user

experience metrics, thereby offering insight to optimize a VR

system design.

Complementing these approaches, Ravva et al. (11) research on

predicting upper limb motion intentions in VR-based rehabilitation

has shown that multi-modal data, including eye tracking and

wearable sensor input, can be effectively used to segment tasks

and forecast movement directions with accuracies above 0.97.

Similarly, machine learning methods have been applied to

recognize user movement patterns on treadmill-like platforms,

enabling more intuitive navigation within immersive VR

settings (12).

An innovative study by Tang et al. (13) optimized traditional

random forest classifiers through the integration of an iterative local

search - sparrow search algorithm, achieving perfect classification

accuracy in both the training and test sets for VR user

experience prediction.

Additional research has further expanded the application of ML

in VR across various domains. For instance, Wong et al. (14)

conducted an open study investigating VR interventions aimed at

reducing pain and anxiety in pediatric patients by tailoring

immersive experiences with ML-driven personalization. This

resulted in significant improvements in reported outcomes. In

parallel, the study demonstrated that ML algorithms can

dynamically adapt VR interfaces to enhance user engagement,

suggesting that real-time personalization significantly improves

interaction quality.

Eight studies harnessed ML on VR or multi-modal features

(see Table 1).
3.5 Using VR with ML for ADHD

Over the past years, researchers have combined immersive VR

with ML methods to build more realistic and objective tests for
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ADHD, moving beyond flat computer tasks into life like

simulations that better reflect everyday demands (26, 27). In these

VR scenarios — virtual classrooms, homes, or game worlds,

participants perform typical CPTs while the system logs classic

metrics (omissions, commissions, reaction-time variability)

alongside new signals such as head–movement angles and eye–

tracking measures (28, 29). VR allows controlled distractions (e.g., a

teacher avatar or ambient noise). It exposes attentional lapses in

life-like ways. Ecological validity improves compared with standard

computerized 2D tests (22, 25).

ML models then learn patterns in these rich data streams. SVM

trained on behavioral and motion features have distinguished adults

with ADHD from controls with about 0.81 accuracy (19). Decision-

tree algorithms (CART) applied to VR classroom games have

accurately classified ADHD subtypes (inattentive vs. hyperactive)

with over 08.83 correctness (21). Random–forest regressors using

eye–movement biomarkers in a VR “treasure-hunt” game predicted

standard attention and impulsivity scale scores with moderate-to-

strong correlations (r ≈ 0.43 and r ≈ 0.38 (23). CNNs processing raw

VR action sequences–mapping game events directly onto DSM-5
Frontiers in Psychiatry 06
symptom criteria– have achieved above 0.90 accuracy in children

(30, 31).

Combining data types further boosts performance. Deep–

neural–network fusion of EEG, head kinematics, and behavioural

VR features reached almost 0.89 classification accuracy,

outperforming any single data stream alone (20). These multi–

modal models not only improve detection but also highlight which

features matter most: omission errors and head–movement

variability consistently rank at the top for predicting inattention

and hyperactivity (29), and gaze-dwell patterns shift noticeably

when social cues are added to the VR scene (22).

Beyond pure classification, VR and ML methods can estimate

symptom severity and executive function profiles in ways that

mirror clinical scales. Everyday task simulations (e.g., brushing

teeth, packing a backpack) yield continuous measures of

prospective memory and planning. These measures align closely

with parent and clinician ratings (25, 33). Survey chapters underline

that these rich, multi-dimensional VR datasets are especially well

suited for deep-learning, while calling for standardized VR test

designs and transparent ML explainability methods (e.g. SHAP,

LIME) to facilitate real-world adoption (24).

Despite these advances, studies often use small samples (many

under 50 participants), and VR scenarios and feature–extraction

pipelines vary widely, limiting direct comparisons (21). To move

toward clinical deployment, larger multisite trials, common data

sharing standards, and integrated interpretability frameworks are

needed (20). After these challenges are addressed, VR-ML platforms

could screen and diagnose ADHD with high accuracy. They could

also personalize interventions and monitor treatment responses in

naturalistic settings.

Table 2 summarizes the diagnostic methods reviewed in

this paper.
3.6 Age-specific findings

Assessment requirements differ by developmental stage. In

children, primary practice is multi-informant and cross-situational

— integrating parent and teacher ratings with clinical interview/

observation to document impairment at home and school (35, 36).
TABLE 1 Overview of ML-enhanced VR applications: modalities, algorithms, and performance (across the papers datasets 35–146 participants, ages
6–62 years old, AUC 0.81-0.97).

Study Modality Algorithm Sample (ADHD/CTL)
Accuracy/
AUC

Top predictors

Wiebe et al. (19) VR + EEG + eye SVM 82/64 adults 0.81/0.86
omission error, theta/beta ratio, microsaccade
rate

Wiguna et al.
(21)

Pediatric VR
game

CART 63/60 children 0.83 head-turn frequency, response-time SD

Wiguna et al.
(30)

VR deep learning CNN 40/38 children 0.91 Learnable spatiotemporal kernels

Oh et al. (20)
Multimodal
fusion

Deep NN 70/65 mixed 0.89 gaze-dwell variance, EEG alpha power

Ravva et al. (11) Motion intention RF 36 rehab pts 0.97 (movement) Kinematic trajectory vectors
TABLE 2 Summary of the diagnostic methods reviewed in the paper:
ecological validity, objectivity and accuracy (across the papers datasets
35–3800 participants, ages 6–62 years old, AUC 0.68-0.90).

Assessment
method

Ecological
validity

Objectivity
Accuracy/
AUC (up
to)

Parent Ratings High Low 0.84

Teacher Ratings High Low 0.74

Youth Self-Reports High Low 0.68

Combined Reporting
(Parents, Teachers and
Self-Reports)

High Middle 0.86

Conventional
Computerized CPTs

Low High 0.82

VR-Based CPTs High High 0.81

VR-Based CPTs with
ML

High High 0.90
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However, parent–teacher agreement is typically low to modest, which

complicates threshold decisions and underscores the need for

clinician synthesis (38). In adults, evaluation relies more on self-

report plus collateral and evidence of functional impact at work/

relationships, but confirming childhood onset is challenging because

retrospective recall is often inaccurate (32).

Regarding tools, computerized/CPT-style measures and digital

adjuncts can add objective data but should not replace clinical

assessment. In children, adding QbTest can accelerate diagnostic

decision-making without loss of accuracy (AQUA RCT) and is now

recommended by NICE as an adjunct for ages 6–17; evidence is

insufficient for adults (37, 39). VR-based tasks increase ecological

validity by controlling distractors and capturing behavior in

classroom-like contexts; studies show convergent validity and

improved discrimination versus some 2D CPTs in pediatric

samples (18, 27). Adult work combining VR with multimodal

signals (eye-tracking/EEG/actigraphy) shows preliminary

classification promise but remains early-stage and requires further

validation before routine use (19).

Adults demonstrated reduced hypermotor activity but

amplified executive function and emotional dysregulation

signatures, discernible through VR-derived planning error metrics

(6, 25). Comorbidities such as selective mutism and learning

disorders further complicate developmental trajectories,

underscoring the need for multimodal diagnostic strategies (43).

Older adult cohorts (n=97 in two studies) showed slower head

rotation recovery times and longer fixation durations, distinct from

mild cognitive impairment patterns, suggesting that VR tasks can

help differential diagnosis in geriatric settings (7).

Table 3 summarizes the advantages and limitations

of diagnostic methods reviewed in this paper for children

and adults.
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4 Discussion

Our synthesis highlights the incremental yet meaningful

contributions of VR and ML to ADHD diagnostics across the

lifespan. While traditional CPTs offer objective metrics, they operate

in low distraction, artificial environments that overlook real-world

sensory-motor dynamics. In contrast, VR-based assessments place

individuals in immersive, ecologically valid settings while preserving

experimental control. Given the wide variability in study designs,

outcomes, and technologies, a narrative synthesis was most

appropriate for this review. Although structured search and appraisal

methods were employed to enhance transparency, the integration of

diverse findings is better suited to a narrative framework than to

systematic aggregation.

Understanding why VR matters requires considering that

cognitive-behavioral neuroscience posits attentional control as an

embodied process intertwined with oculomotor, vestibular, and

proprioceptive feedback. Head-mounted displays equipped with

inertial-measurement units can quantify these subtle indices. In

our review, head-movement variability consistently ranked among

the top three predictors in ML models (mean SHAP value=0.19),

aligning with neuroimaging reports of aberrant cerebellar-fronto-

striatal connectivity in ADHD.

While ML acts as a catalyst in ADHD diagnostics, it is not a

panacea. High-accuracy figures (≥ 0.90) in small-sample studies risk

optimistic bias. When cross-validated across sites or devices,

accuracies often decline by 0.05 – 0.1. Moreover, many pipelines

lacked pre-registration, feature selection transparency and external

test sets, violating TRIPOD-AI guidelines. Yet the promise is

tangible: ensemble methods integrating parent ratings,

VR-behavior and EEG could theoretically achieve > 0.95 AUC,

approaching diagnostic gold standards in other medical specialties.
TABLE 3 Summary of the diagnostic methods reviewed in the paper: advantages and limitations for children and adults.

Assessment method Children: advantages
Children:
limitations

Adults: advantages Adults: limitations

Traditional clinical methods
(clinical interview,
observation; parent/teacher
ratings; in adults: self-report
and collateral)

Multi-informant, cross-situational
view (home/school); aligns with
guideline-based assessment
pathways.

Low–modest parent–
teacher agreement →
discrepant classifications;
observer-dependence.

Validated self-report tools (e.g.,
ASRS) help screening/triage
when combined with expert
interview and collateral.

Hard to document childhood
onset; retrospective recall is often
inaccurate; symptom camouflage
and comorbidity complicate
interpretation.

Computerized tests/CPTs
(incl. motion-tracking
adjuncts)

Objective, standardized indices
(sustained attention and
impulsivity); useful adjunct to
history and ratings.

Insufficient standalone
diagnostic accuracy in
meta-analyses;
heterogeneous sensitivity
and specificity.

Quantifies deficits to support
differential diagnosis when
interpreted clinically.

As a single test, poor predictor of
ADHD; results influenced by
other disorders and meds — not a
replacement for clinical
assessment.

Digital adjuncts (e.g.,
QbTest)

Speeds time-to-diagnosis without
loss of accuracy in child services
(AQUA RCT); NICE DG60
recommends as adjunct (ages 6–17).

Not a standalone
diagnostic; service
benefits depend on
pathway design and
training.

Evidence base thinner; may
help as supportive data with
interview and impairment
assessment.

No routine endorsement for
adults; more trials needed in adult
pathways.

VR and multimodal
biometrics (VR-CPT, eye-
tracking, EEG, actigraphy)

Higher ecological validity
(controlled distractors, classroom-
like contexts); convergent validity
vs. 2D CPT; some studies show
better discrimination.

Small samples,
heterogeneous tasks,
hardware; norms, cut-
offs still developing.

Early studies show multimodal
VR+ML can classify adult
ADHD above chance using
eye-tracking, EEG, actigraphy,
behavior.

Evidence in adults is preliminary;
not guideline-endorsed for routine
diagnosis yet.
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Special populations warrant attention as the scant literature on

older adults underscores urgent research needs. Age-aligned

normative datasets are required, as visuomotor slowing and

comorbid cerebrovascular disease may confound raw metrics.

Emotion-dysregulation constructs, now recognized as a possible

fourth ADHD domain, should be operationalised in VR tasks by

measuring affective facial micro-expressions and autonomic

markers (galvanic skin response).

Several barriers to clinical adoption remain. Although the cost

of HMDs and motion-capture hardware is decreasing (< USD 600

per clinic), but cybersecurity, data-privacy and device maintenance

burdens persist. Implementation science frameworks (e.g., RE-

AIM) suggest pilot studies embedding VR-ML assessments into

pediatric and adult mental-health workflows, tracking acceptability,

feasibility and cost-utility.

While performance metrics from VR and ML studies are

promising, their real-world integration into clinical practice remains

limited. Current ADHD diagnosis depends on clinician interviews,

DSM-5 symptommapping, and multi-informant reports. VR tools can

serve as adjuncts in ambiguous cases or to enrich assessment depth.

Evidence from VR-based rehabilitation in neurodevelopmental

disorders supports the feasibility and ecological validity of immersive

interventions, suggesting translational potential for diagnostic settings

as well (44). For example, a VR classroom simulation can quantify gaze

stability, motor control, and omission errors in a life like context, with

ML classifiers highlighting atypical behaviour patterns. Such tools may

flag individuals for further assessment or clarify subtype presentations,

especially when traditional ratings conflict.

However, deploying VR + ML systems in practice presents

logistical and regulatory challenges. Clinical settings must consider

device availability, staff training, EHR integration, and cybersecurity.

In addition, physiological-signal pipelines increasingly incorporate

liveness verification steps (e.g., DTW-based checks) to curb spoofing

and artefactual matches, paralleling needs in clinical assessment

contexts (42). Moreover, diagnostic algorithms involving ML may

fall under medical device regulations, requiring transparent

validation pipelines. Embedding these tools into intake or triage

processes through pilot programs could help evaluate their utility,

cost-effectiveness, and clinician trust. For now, these systems should

be viewed as decision-support aids, not replacements for

comprehensive clinical judgment.

Beyond traditional ML approaches, deep learning (DL)

methods such as convolutional and recurrent neural networks

show strong potential to automatically extract complex temporal–

spatial patterns from VR, EEG, and eye-tracking data. These models

can capture subtle, non-linear signatures of ADHD that may be

missed by simpler algorithms. However, their “black-box” nature

raises barriers for clinical adoption. Embedding XAI frameworks,

such as SHAP or counterfactual visualizations, into DL pipelines

will be essential to bridge the gap between accuracy and

interpretability, ensuring that clinicians and patients understand

why a particular diagnostic suggestion was made.

An important limitation across the reviewed literature is the

predominance of small sample sizes, with many studies enrolling

fewer than 50 participants. Such sample constraints reduce statistical
Frontiers in Psychiatry 08
power, inflate the risk of overfitting in ML models, and limit the ability

to generalize findings across diverse populations. Small, homogenous

samples also make it difficult to assess performance across ADHD

subtypes, sex, age groups, or comorbid conditions. As a result, even

promising accuracy metrics should be interpreted cautiously until

validated in larger, more representative cohorts.
5 Limitations of the review

This review has several limitations. First, although we applied

structured search and screening procedures, the narrative synthesis

approach does not provide quantitative effect estimates and is more

vulnerable to selection bias than a systematic meta-analysis. Second,

the included studies were highly heterogeneous in design, sample

size, and diagnostic protocols, which limited the ability to make

direct comparisons or pooled inferences. Third, because our review

emphasizes recent technological innovations, earlier foundational

work and gray literature may have been underrepresented. Finally,

as a preliminary narrative review, our analysis should be considered

exploratory rather than definitive, intended to highlight emerging

directions rather than establish firm clinical recommendations.

To advance the field, we propose the following future

research directions:
• Standardised stimuli–A core VR “classroom & office”

protocol with adjustable distractor density, publicly

released under open license.

• Cross-site consortia–Multi-centre trials pooling ≥ 1000

participants to derive robust lifespan norms and to

benchmark across device manufacturers.

• XAI–Mandatory deployment of model-agnostic interpretation

to support clinician trust and regulatory approval.

• Deep Learning + XAI–Develop standardized pipelines where

deep neural networks process multi-modal VR/biometric data,

paired with model-agnostic XAI tools. This will balance

predictive accuracy with transparency, enabling clinicians to

validate and trust algorithmic insights.

• Hybrid decision support–Integrate VR-ML outputs with

electronic-health-record (EHR) structured questionnaires,

enabling automated pre-visit triage.

• Ethical governance–Frameworks addressing consent, data

sovereignty and algorithmic bias, particularly for

neurodiverse and minority populations.
6 Conclusion

Diagnostic science for ADHD is at a pivotal juncture. Rating scales

remain indispensable yet intrinsically subjective; conventional CPTs

quantify attention but undersample real-world complexity; and

biomarker research, while promising, is still maturing. Virtual-reality

assessment, especially when combined withmachine learning analytics,

helps bridge the gap between controlled laboratory tests and real-world
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conditions, capturing multisensory distraction management, motor

behavior, and neurophysiological signals in a single session.

Empirical evidence to date suggest preliminary, moderate-to-

large gains in diagnostic accuracy (absolute AUC improvement ≈

0.05-0.10), improved subtype differentiation, and greater potential

for personalized assessment. However, most studies remain proof-

of-concept with small, non-representative samples and variable

protocols. Integration into clinical work flows will require larger,

multi-site trials; regulatory pathways for ML-based diagnostics; and

clinician-facing explainability tools. Looking ahead, the integration

of DL with XAI could provide the most powerful diagnostic

augmentation, leveraging rich, multimodal VR datasets while

offering interpretable outputs that align with clinical reasoning.

Such approaches may ultimately allow ADHD diagnostics to

combine the scalability of automated systems with the

accountability required in medical contexts. VR + ML systems are

unlikely to replace structured interviews or multi-informant

evaluations in the near term, but they may serve as promising

decision-support tools, especially in complex or ambiguous cases.

Parallel advances in metacognition-oriented assessments, such as

the Metacognitive Wisconsin Card Sorting Test, illustrate the

translational potential of cognitive measures for developmental

neuropsychology and may complement VR-ML pipelines (45).

Moving forward, efforts should focus on standardizing VR

protocols, expanding normative datasets across the lifespan, and

embedding these technologies into routine clinical care. Attention

to older-adult populations and emotion-regulation markers will

further align assessment with the lived experience of ADHD.

In sum, early-stage evidence suggests that, when used thoughtfully

and ethically, VR and ML technologies have the potential to reshape

ADHD diagnostics. An integrative, multimodal pathway, combining

behavioral, sensorimotor and neurophysiological data within

immersive tasks, may offer a more ecologically valid and

personalized diagnostic process, pending larger-scale validation.
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