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The etiology of psychiatric disorders is complex, involving both genetic and

environmental factors with emerging evidence suggesting that epigenetic

modifications, including DNA methylation, histone modifications, and non-

coding RNA regulation, significantly contribute to mental health. The

epigenome influences the development of psychiatric disorders and human

behavior and may be considered in clinical observations. Epigenetic changes

have been well-established in BDNF, COMT, FKBP5, NR3C1, SLC6A4, and DRD2,

genes associated with psychiatric disorders, including schizophrenia, major

depressive disorder (MDD), bipolar disorder (BP), post-traumatic stress disorder

(PTSD), and autism spectrum disorder (ASD). Therefore, these epigenetic marks

have the potential to be suitable biomarkers for diagnostics, as predictors of

prognosis, and for the development of personalized treatments. By exploring the

role of clinically relevant epigenetic genes, we review the role of the epigenome

in the context of psychiatric disorders and human behavior; and we consider that

these changes may be observed in the context of precision psychiatry. This

review synthesizes findings from over 100 original research articles and reviews

spanning a range of clinical studies. Despite promising associations, challenges in

the onset of precision psychiatry, such as tissue heterogeneity, small sample

sizes, and lack of replication, are likely to limit translation into clinical practice.

Future research in precision psychiatry will help identify clinically actionable

epigenetic biomarkers, ushering in an era of genomic medicine in psychiatry.
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1 Introduction

Mental health is rooted in biological predispositions and

experiences with genetic factors contributing to psychiatric

disorders but not being able to fully explain differences in

symptom onset, severity, and treatment response (1). The concept

that external influences such as stress, trauma, in-utero exposures

(medications, substances of abuse, starvation, viral exposure,

toxoplasmosis), early-life adversity, social relationships, and

lifestyle can alter gene expression without changing the DNA

sequence and affects brain function and behavior is the basis for

epigenetics (2). These changes to the DNA sequence include

epigenetic mechanisms that are readily reversible spanning from

DNA methylation, histone modifications to non-coding RNAs and

chromatin remodeling (3, 4).

In psychiatry, epigenetics is not only useful for understanding

how life experiences can leave molecular marks on the genome that

shape behavior but has expanded in its use as biomarkers to being

able to predict risk, diagnose or characterize disease subtypes, aid in

treatment response, and predict prognosis and relapse risk (5). With

the advent of precision psychiatry and personalized medicine,

understanding an individual’s epigenetic profile is essential, and

when used in combination with genetic factors and their

environmental history can open the door to targeted

interventions and aid in better treatment response (6).

This review explores the major epigenetic mechanisms

including DNA methylation, histone modifications, non-coding

RNAs, and chromatin remodeling, and how each mechanism can

contribute to gene-environment interactions in the brain (7). By

examining well studied genes (including BDNF, COMT, FKBP5,

NR3C1, SLC6A4, and DRD2) implicated in psychiatry disorders,

including major depressive disorder (MDD), bipolar disorder (BP),

schizophrenia, post-traumatic stress disorder (PTSD), attention

deficit/hyperactivity disorder (ADHD), autism spectrum disorder

(ASD), obsessive compulsive disorder (OCD), alcohol use disorder

(AUD), and substance use disorder (SUD), and how their

expression is regulated epigenetically, we gain insight into the

molecular pathways linking lifetime experiences to lifelong mental

health outcomes. This review also considers how epigenetic

biomarkers and precision psychiatry are reshaping the future of

diagnosis, prognosis, and personalized treatment, as well as the

limitations hindering the onset of precision psychiatry.
2 Epigenetic mechanisms in psychiatry

Epigenetic modifications are readily reversible changes that

influence gene expression without altering the DNA sequence (3).

These mechanisms act as molecular switches or dimmers, turning

genes on or off in response to internal and external stimuli (7). In

psychiatry, epigenetic mechanisms play a crucial role in regulating

neural pathways that underlie emotion, cognition, stress response,

and behavior; and provide a compelling framework for

understanding how environmental factors such as early-life

adversity, trauma, social experiences, nutrition, disease, lifestyle
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(physical activity and quality of sleep), and therapeutic

interventions, can shape brain function and contribute to the

development of mental illness (5).
2.1 DNA methylation

DNA methyla t ion is the process by which DNA

methyltransferases (DNMTs) catalyze the addition of a methyl

group (-CH3) to cytosine residues on the 5-carbon of the cytosine

ring in CpG dinucleotides, cytosine-rich regions often near gene

promoters, between genes (referred to as intergenic regions), or in

gene bodies (8). When methylation occurs within promoter regions,

transcription factors are blocked from binding and gene expression

is reduced or silenced (9). In psychiatry, this dynamic process where

methylation is readily added or removed occurs in response to

developmental cues and environmental exposures such as stress,

trauma, and aging (10). Because methylation patterns are inherited

through cell divisions, DNA methylation is said to affect cellular

memory with gene expression states preserved across time and

development (11). In the context of the epigenome, DNA

methylation plays a central role in important biological processes

including embryonic development, X-chromosome inactivation,

imprinting, tissue-specific gene expression, and brain plasticity (12).

In MDD, hypermethylation of BDNF promoters, especially

exon IV, reduces BDNF expression and impairs neuroplasticity

whereas hypermethylation of the NR3C1 promoter impairs

hypothalamic-pituitary-adrenal (HPA)-axis regulation following

childhood trauma (13, 14). Studies in schizophrenia show that

RELN hypermethylation reduces reelin expression and disrupts

synaptic plasticity and neuronal migration; COMT methylation

alters dopamine metabolism; and BDNF methylation is associated

with cognitive impairment and negative symptoms (13, 15). In BD,

epigenetic signatures are often state-dependent, with methylation

differing in manic and depressive states compared to euthymic

states (16). Likewise, increased BDNF methylation is reported

during mood episodes, where it correlates with symptom severity

(17). In ASD, global methylation differences are observed in

neuronal development genes. In MECP2, both mutations and

methylation abnormalities interact to disrupt synaptic

development (18). In addiction and substance use disorders,

hypermethylation of the mu-opioid receptor (OPRM1) is linked

to heroin and alcohol dependence, and these epigenetic changes can

persist to influence relapse risk (19, 20). However, OPRM1 is not in

the discussion of this review.
2.2 Histone modifications

Histone modifications are chemical changes to histone proteins

that influence how DNA is packaged. DNA is wrapped around

histone (H) octamers (with the core units made of H2A, H2B, H3,

and H4) to form nucleosomes (21). Most histone modifications

occur on histone tails (mainly on H3 and H4) and by chemical

modifications including acetylation, methylation, phosphorylation,
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ubiquitination, and sumoylation. Histone acetyltransferases

(HATs) add acetyl groups to lysine residues on histone tails, a

modification referred to as acetylation (22). Acetylation activates

gene expression by loosening chromatin and is reversed by histone

deacetylases (HDACs) in a process known as deacetylation.

Histones methylation is catalyzed by histone methyltransferases,

which add methyl groups to lysine or arginine residues on histone

tails, and reversed by histone demethylases (23). In this context,

gene expression is activated or silenced depending on the specific

sites and number of methyl groups (24). Other forms of histone

modifications include phosphorylation, which is often associated

with DNA repair and chromatin remodeling, as well as

ubiquitination and sumoylation, which influence chromatin

compaction and can contribute to gene repression (25).

These epigenetic changes modulate the chromatin structure and

influence transcription factor accessibility and RNA polymerase

binding, often interacting with other epigenetic mechanisms like

DNA methylation to synergistically promote or repress gene

expression (for example, methylated DNA recruiting histone-

modifying enzymes) (26). In the context of psychiatry, abnormal

histone modifications have been linked to multiple psychiatric

disorders. Studies in depression show decreased H2K9ac at

BDNF, in schizophrenia where H3K27me3 is modified at GAD1,

in PTSD with repressive marks on FKBP5, and in addiction where

changes in H3 acetylation impact reward circuits (27). HDAC

inhibitors such as valproic acid and sodium butyrate can restore

normal gene expression in psychiatric conditions further validating

that histone marks may serve as biomarkers or targets for

personalized therapies in mood and anxiety disorders (28).
2.3 MicroRNA regulation

MicroRNAs (miRNAs) are small (~22 nucleotides), non-coding

RNA molecules that regulate gene expression post-transcriptionally

by binding to target messenger RNAs (mRNAs) and suppress

translation or promote mRNA degradation (29). miRNAs are

both targets and regulators of epigenetic processes since they exist

within a feedback loop with DNA methylation and histone

modifications (30). As epigenetic targets, miRNA genes can be

silenced or activated by DNA methylation or histone modifications,

and as epigenetic regulators, miRNAs can target enzymes like

DNMTs, HDACs, or histone methyltransferases for silencing,

thereby influencing epigenetic landscapes. miRNAs are context-

dependent, so their effect may vary by cell type, developmental

stage, and environment, and they are also dynamic, changing in

response to stress, drugs, experiences, and hormones (31). miRNAs

are abundant in the brain and have crucial roles in neuronal

development and differentiation, synaptic plasticity and learning,

stress responses, and emotional regulation.

Changes in miRNA expression are clinically relevant across

multiple psychiatric disorders. Genome-wide association studies

(GWAS) in schizophrenia have implicated miR-137 as one of the

most significant risk loci for schizophrenia (32). This miRNA

regulates neurodevelopment and synaptic signaling genes, such as
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CACNA1C and TCF4, and has been proposed as a biomarker, with

therapeutic modulation offering a potential means to stabilize

synaptic function (32, 33). In depression, miR-124 is abundant in

the brain and regulates neurogenesis and stress response;

dysregulated levels have been associated with hippocampal

neuroplasticity deficits (34). Other studies have reported that

plasma miR-124 levels increase after citalopram treatment relative

to untreated controls (35). In similar studies, miR-16-5p is reduced

in peripheral blood of individuals with MDD and BD (36). Despite

this findings, a major limitation is that miRNA expression is often

assessed in peripheral blood rather than the brain directly. In

schizophrenia, miR-132, miR-134, miR-1271, miR-664, miR-200c,

and miR-432 are significantly decreased; however, antipsychotic

treatment increases miR-132, miR-664, and miR-1271 compared

with pre-treatment levels (37). In other psychiatric disorders,

notable miRNAs include miR-34a and miR-181, which are

significantly altered in schizophrenia; miR-146a and miR-134,

which are altered in ASD, and miR-121 and miR-132, which are

associated with addiction (38).
2.4 Chromatin remodeling

Chromatin remodeling is the dynamic structural change in

chromatin which regulates access to DNA for transcription,

replication, and repair. Chromatin remodeling controls the

transition between euchromatin and heterochromatin thereby

allowing or blocking gene expression (39). This process is

mediated by ATP-dependent chromatin remodeling complexes,

which move, eject, or restructure nucleosomes to increase DNA

accessibility. Key ATP-dependent chromatin remodeling complexes

include: (1) SWI/SNF, which slides or ejects nucleosomes to open

chromatin (e.g., BRG1, BAF complex); (2) ISWI, which spaces

nucleosomes for transcriptional regulation (e.g., SNF2H); (3) CHD,

which contributes to nucleosome assembly and remodeling (e.g.,

CHD1, CHD8); and (4) INO80, which couples remodeling to DNA

repair and replication (e.g., INO80, SRCAP) (40). Chromatin

remodeling works with other epigenetic mechanisms by directly

interacting with histone modifiers, DNA methylation machinery,

and non-coding RNAs (41). In the context of psychiatric and

neurological disorders, mutations in chromatin complexes have

been observed in schizophrenia where synaptic gene regulation is

disrupted, and these mutations are also high-confidence genetic risk

factors for ASD (42). In depression, altered chromatin accessibility

have been observed at BDNF, GAD1, NR3C1 in response to

stress (43).

Currently, chromatin accessibility profiling (e.g., ATAC-seq) is

being explored as a biomarker tool in psychiatry (44). Because most

psychiatric GWAS findings lie in noncoding regions (i.e., enhancers

or promoters), ATAC-seq helps identify which of these regions are

open and accessible in brain cells. For example, ATAC-seq can

reveal which accessible regions are specific to particular cell types,

such as excitatory neurons, interneurons, or microglia. Therefore,

single-cell chromatin accessibility profiling (scATAC-seq), together

with gene expression assays, is used to identify disease-relevant fetal
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and adult brain cell types implicated in major depressive disorder,

body mass index (BMI), ADHD, and schizophrenia (45). This

approach has been applied to the identification of single

nucleotide polymorphisms (SNPs) with schizophrenia risk in

accessible enhancers of glutamatergic neurons, notably within

genes such as CACNA1C, which plays a key role in synaptic

function (46). Studies employing ATAC-seq have revealed

increased accessibility of glucocorticoid-responsive enhancers in

the brains of stressed individuals. These insights have driven the

development of FKBP5 inhibitors, which are now being explored in

clinical trials for PTSD and alcohol use disorder (47, 48).
2.5 Environmental influence on epigenetic
changes

Environmental epigenetics studies how external factors like

stress, diet, toxins, infections, relationships, and experiences, can

lead to long-lasting changes in gene expression by altering the

epigenome (49). For example, nutrition provides methyl donors

and cofactors for epigenetic enzymes such as folate, B12, and

choline which influence DNA methylation and for which

undernutrition affects IGF2 expression (50). Exercise promotes

histone acetylation and BDNF expression with aerobic activity

increasing BDNF (51). Toxins and pollutants can alter the

epigenome by inducing oxidative stress and disrupting

methylation machinery, and in the brain, bisphenol A (BPA),

lead, and air pollution alter methylation in brain development

genes (52–54). However, the evidence surrounding these external

factors is less robust than that for early-life stress and warrants

further investigation to become clinically actionable. In the case of

early-life stress, commonly experienced through childhood abuse,

DNA methylation of stress-regulating genes (i.e. NR3C1, FKBP5)

increases, hypermethylating the glucocorticoid receptor and

altering the HPA axis (10). This effect stems into social

environments that affect methylation of social, stress, and

emotion-related genes; and, in this context, studies demonstrate

that having a high-quality rearing lowers OXTR and NR3C1

methylation (55). Despite these modifications, maladaptive

epigenetic changes can be reversed or normalized by

psychological interventions such as cognitive behavioral therapy

(CBT) and mindfulness, and studies have examined the potential of

these interventions to reduce methylation of FKBP5 and SLC6A4

and for psychiatric medications like SSRIs, antipsychotics and the

HDAC inhibitor valproate to alter epigenetic landscapes (56, 57).
3 Clinically relevant epigenetically
regulated genes in psychiatry

3.1 Brain-derived neurotrophic factor

The brain-derived neurotrophic factor (BDNF) is an essential

protein in the brain and nervous system. BDNF is a growth factor

that supports neuroplasticity, neuronal survival, neurogenesis, and
Frontiers in Psychiatry 04
contributes to neural repair and recovery after brain injuries like

stroke or trauma (58). BDNF is highly expressed throughout the

brain including the hippocampus, prefrontal cortex, amygdala,

cortex, and basal forebrain (59). In the context of cognitive

function, higher BDNF levels are associated with improved

cognitive performance including memory, attention, and

problem-solving (60). In mood regulation, low BDNF levels are

linked to depression and anxiety. The BDNF gene has multiple

promoters which are prone to epigenetic regulation. For example,

exon IV of BDNF is highly sensitive to environmental signals and

hypermethylation of BDNF promoter regions, especially exon IV,

reduces BDNF expression (61).

Studies have reported reduced BDNF expression in people with

MDD, PTSD, schizophrenia, and after early-life stress or childhood

trauma (62). In depression, studies report low peripheral BDNF

levels and higher promoter methylation, while antidepressants and

electroconvulsive therapy (ECT) increase BDNF expression and

reverse methylation (63, 64). In BD, BDNF epigenetic changes are

state-dependent, with lower levels during manic and depressive

episodes compared with euthymia (65). Studies in PTSD and

suicidality demonstrate that early-life trauma is associated with

long-lasting BDNF promoter methylation, affecting stress reactivity

and fear extinction, and for suicide victims, BDNF promoter

hypermethylation is observed in the prefrontal cortex and

hippocampus (66–68).

BDNF is subject to other forms of epigenetic regulation,

including histone modifications, whereby acetylation enhances

gene expression and histone deacetylation represses expression

(69). Selective serotonin reuptake inhibitors (SSRIs) and HDAC

inhibitors can increase histone acetylation at the BDNF loci

therefore boosting expressions (70). In addition to DNA and

histone modifications, BDNF expression is epigenetically

regulated by miRNAs (including miR-132 and miR-206), which

can bind BDNF mRNA and suppress translation. Dysregulation of

these miRNAs is linked to mood disorder and schizophrenia (71)

Although important progress has been made, notable limitations

remain. The epigenetic regulation of BDNF varies by isoform and

promoter, but this distinction is often overlooked, and most studies

are further limited by the absence of rigorously controlled

longitudinal cohorts. A summary of these epigenetic alterations

has been captured in Table 1.
3.2 Catechol-O-methyltransferase

The catechol-O-methyltransferase (COMT) enzyme

metabolizes catecholamines including the neurotransmitters

dopamine, norepinephrine, and epinephrine by transferring a

methyl group from S-adenosylmethionine (SAM) to these

catecholamines thus facilitating catecholamine degradation and

regulating their levels in various tissues including the brain (72).

COMT exists in two primary forms: soluble COMT (S-COMT) and

membrane-bound COMT (MB-COMT) . S -COMT is

predominantly found in peripheral tissues like the liver, kidneys,

and blood and plays a critical role in metabolizing catecholamines
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circulating in the body. MB-COMT is mainly produced by nerve

cells in the brain and is integral to the degradation of

neurotransmitters within the central nervous system (73). In the

brain, COMT regulates dopamine levels in regions crucial for

cognitive functions like the prefrontal cortex. Based on the

concept that COMT regulates dopamine metabolism, epigenetic

regulation of COMT influences not only gene expression and

enzyme activity but neurotransmitter metabolism and alters

dopamine signaling, key features in schizophrenia and cognitive

dysfunction (74). In fact, methylation of the COMT promoter has

been associated with reduced gene expression in both brain and

peripheral tissues, leading to increased dopamine availability in the

prefrontal cortex (75).

Studies in schizophrenia support that hypomethylation of the

COMT promoter increases COMT activity and enhances dopamine

degradation in the prefrontal cortex. This dopamine deficit could

contribute to the cognitive impairment and negative symptoms

which are 2 of the three main sub-syndromes in individuals with

schizophrenia (76). In BD studies, dysregulation of dopamine

metabolism may contribute to the signature mood instability of

this disorder (77) . Studies in depress ion show that

hypermethylation of COMT is associated with MDD, and often

correlated with stress exposure and treatment response (78). In

PTSD, increased COMT methylation is associated with impaired

fear inhibition, which affects stress responsivity via dopamine

regulation (79). In the context of environmental interactions,

cigarette smoking is associated with hypermethylation of the MB-

COMT promoter, while cannabis use interacts with the COMT

Val158Met genotype/epigenotype to influence psychosis risk (80,

81). Although less well characterized, histone modifications also

affect COMT expression, and the general mechanisms such as

histone acetylation and methylation are known to influence gene

expression in neuropsychiatric contexts (82). Several limitations

remain in these studies, notably the requirement for larger cohorts,

independent study replication, and efforts to disentangle genotype-

epigenotype interactions, such as demonstrating how Val/Met allele

effects differ according to methylation status. A summary of these

epigenetic alterations has been captured in Table 1.
3.3 FK506 binding protein 5

The FK506 Binding Protein 5 (FKBP5) gene encodes FKBP51, a

co-chaperone protein that modulates the glucocorticoid receptor

(GR) complex and affects cortisol signaling (83). By altering GR

sensitivity, FKBP5 plays a critical role in stress hormone regulation,

influencing the HPA axis, and impacting various psychiatric

conditions (84). Stress exposure such as early-life stress decreases

methylation of FKBP5 and upregulates FKBP5 gene expression

which reduces GR sensitivity and may cause an exaggerated stress

response (85). In an interplay between the genome and epigenome,

polymorphisms in the FKBP5 gene (such as rs1360780) are linked

to differential methylation patterns in response to stress that

influence gene expression and stress reactivity (56).
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In individuals with PTSD, carriers of FKBP5 polymorphisms

who experience childhood trauma exhibit altered FKBP5

methylation, which increases their risk of developing the disorder

(86). Stress has also been shown to influence chromatin accessibility

at the FKBP5 locus, although this area remains less well

characterized than DNA methylation (87). Additionally,

microRNAs such as miR-15 and miR-511 have been proposed to

regulate FKBP5 expression, linking it to pathways of inflammation

and stress response (88). MDD studies show that FKBP5 expression

is epigenetically elevated and associated with structural and

functional alterations in brain regions involved in emotional

processing further contributing to MDD pathophysiology (89).

With BD, methylation variations in FKBP5 expression are

observed which suggests a role in mood regulation and stress

response mechanisms (90). In OCD, reduced DNA methylation

at the FKBP5 intron 7 CpG site has been reported in male patients

relative to controls. While these findings suggest a potential role for

FKBP5 methylation in the pathogenesis of OCD, additional studies

are required to confirm whether altered DNA methylation at intron

7 contributes to disease mechanisms in concert with HPA axis

dysregulation (91). Therapeutic strategies shown to normalize

FKBP5 methylation include antidepressants, cognitive behavioral

therapy (CBT), and mindfulness practices (92–94). Importantly,

FKBP5 alterations are not observed in all trauma survivors,

underscoring limitations in biomarker specificity and sensitivity

that warrant further investigation. A summary of these epigenetic

alterations has been captured in Table 1.
3.4 Glucocorticoid receptor

The NR3C1 gene encodes the glucocorticoid receptor (GR), the

main receptor for cortisol and a key regulator of the HPA axis (95).

As the body’s primary stress hormone, cortisol binds to GR

allowing GR to translocate to the nucleus and regulate the

expression of stress-responsive genes. GR signaling is critical for

regulating the HPA axis feedback loop and controls inflammation,

immune responses, and metabolism while modulating

neurodevelopment, mood, and cognitive function (96). Based on

the concept that NR3C1 is critical for glucocorticoid signaling and

stress regulation, hypermethylation of NR3C1 in individuals

exposed to childhood adversity correlates with increased

vulnerability to PTSD, depression, and suicide risk (2). Targeting

NR3C1 methylation patterns may provide therapeutic potential for

stress-related psychiatric disorders (97).

The NR3C1 gene is said to be environmentally programmed by

stress reactivity because early-life adversity such as childhood abuse,

neglect, and maternal stress are strongly associated with

hypermethylation of exon 1F. The NR3C1 exon 1F is a critical

promoter region that undergoes epigenetic regulation via DNA

methylation where hypermethylation of this region reduces NR3C1

expression, decreases GR availability, impairs cortisol feedback

sensitivity, and heightens or prolongs stress responses (97). In

MDD, hypermethylation of NR3C1 promoter regions in
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individuals with childhood trauma is associated with reduced GR

expression and dysregulation of the HPA axis, a hallmark of

depression (14). PTSD studies show NR3C1 hypermethylation

from early trauma leads to decreased GR function, sustained

stress reactivity, and fear memory consolidation (56). In studies

of post-mortem brain tissue from suicide completers with a history

of abuse, NR3C1 methylation is increased, suggesting a biological

embedding of trauma at the molecular level (43). Several studies on

anxiety disorders link epigenetic dysregulation of GR signaling with

generalized anxiety and panic disorder, likely through heightened

cortisol responsiveness (98). NR3C1 methylation patterns are also

altered in schizophrenia and BD, which may contribute to

neuroendocrine dysfunction in these disorders, although these

findings are more variable (99).
3.5 Serotonin transporter
(SLC6A4/5-HTTLPR)

The SLC6A4 gene encodes the serotonin transporter (SERT), a

membrane protein responsible for the reuptake of serotonin (5-HT)

from the synaptic cleft back into presynaptic neurons (100).

SLC6A4 regulates serotonin availability in the brain, impacts

mood, emotion, anxiety, and stress regulation, and is the main

target of SSRIs used in treating MDD and anxiety disorders (101).

The serotonin-transporter-linked polymorphic region (5-HTTLPR)

is a region in the SLC6A4 promoter with two main alleles: the short

(s) allele and the long (l) allele. The short allele has lower

transcriptional efficiency and reduced SERT expression and is

often associated with increased emotional reactivity and greater

susceptibility to stress whereas the long allele has higher

transcription and increased SERT expression (102). SLC6A4 is

epigenetically regulated by DNA methylation influencing SLC6A4

expression independently or interactively with 5-HTTLPR

genotype (103). Methylation of CpG sites in the SLC6A4

promoter, especially near exon 1, and the 5-HTTLPR region

reduces SLC6A4 expression lowering SERT expression, SERT

availability, and increasing extracellular serotonin. This effect is

often independent of genotype and can result from environmental

exposures such as early-life trauma or stress. S allele carriers that

experience early-life stress or trauma tend to show higher SLC6A4

promoter methylation suggesting that stress programs serotonin

signaling via epigenetic changes (104). Childhood adversity,

maternal depression, or prenatal stress increase SLC6A4

methylation and cause impaired stress resilience and altered

emotional regulation later in life (105).

SLC6A4 hypermethylation, together with the presence of the S

allele, is linked to an increased risk of depression because SERT

expression and serotonin uptake are reduced, especially in those

with childhood adversity (105). SSRIs may normalize some of these

methylation changes and are often examined within gene x

environment (GxE) models in psychiatric research, which also

suggests that SLC6A4 methylation can be used as an indicator of

treatment response to SSRIs or psychotherapy (106). Elevated

SLC6A4 methylation is also associated with generalized anxiety
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disorder (GAD) and panic disorder, correlates with increased

anxiety traits, social anxiety, and amygdala hyperreactivity, and

may explain how altered serotonin signaling affects fear processing

and threat detection (107). With PTSD, SLC6A4 methylation is

increased in S allele carriers with trauma exposure. Several studies

in veterans and trauma survivors show higher methylation at

SLC6A4 CpGs in patients with PTSD symptoms, demonstrating

that these epigenetic changes reflect persistent alterations in stress

reactivity pathways and can serve as biomarkers of stress

vulnerability (105). In suicide studies, individuals with a history

of suicide attempts or ideation that have been exposed to trauma

have increased SLC6A4 methylation (43). Some studies link

neurodevelopmental risk for attention deficit hyperactivity

disorder (ADHD) to differences in SLC6A4 methylation patterns

although these findings are mixed (108). A summary of these

epigenetic alterations has been captured in Table 1.
3.6 Dopamine Receptor D2

The DRD2 gene encodes the D2 subtype of the five dopamine

receptors. As a G-protein-coupled receptor (GPCR), DRD2 is

involved in modulating dopaminergic neurotransmission and

plays a role as an inhibitory receptor by reducing neuronal

excitability and dopamine synthesis via Gi/o protein coupling

(109, 110). DRD2 expression is observed at high levels in the

striatum, prefrontal cortex, and limbic regions to regulate reward

processing, motivation and reinforcement, cognitive control,

movement and motor coordination (111). There are two main D2

receptor isoforms that are synthesized by differential splicing of

introns and exons form the D2 gene. The short isoform (D2S) is a

presynaptic auto-receptor on dopamine neurons that regulates

dopamine release, and the long isoform (D2L) is a postsynaptic

receptor involved in postsynaptic signaling (112).

DRD2 is subject to epigenetic regulation and changes in DRD2

expression may impact dopamine signaling and contribute to

neuropsychiatric disorders (113). For example, DNA

hypermethylation of DRD2 promoter regions, such as in exon 1

or upstream CpG islands, downregulates receptor expression; on

the contrary, hypomethylation increases DRD2 levels thereby

altering dopamine sensitivity (114). Histone deacetylase inhibitors

(HDACi) can increase DRD2 expression in certain contexts,

suggesting chromatin remodeling as a DRD2 epigenetic regulator

(28). MicroRNAs, such as miR-9 and miR-326, are another example

of DRD2 epigenetic regulation since they target DRD2 mRNA and

reduce translation. Dysregulation of these miRNAs is linked to

changes in DRD2 signaling in psychiatric illness (115).

Postsynaptic D2 receptor overactivation, resulting from

increased presynaptic dopamine release in the nucleus accumbens

(located in the ventral striatum), is central to the dopamine

hypothesis of schizophrenia (116). Postmortem studies show

altered DRD2 methylation in the prefrontal cortex and striatum

of individuals with schizophrenia (117). Studies in substance use

disorders including cocaine, alcohol, and nicotine show that

substance use can alter DRD2 methylation in animal and human
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TABLE 1 Epigenetic alterations across psychiatric disorders.

Disease state Epigenetic change(s)

Major Depressive Disorder (MDD)

BDNF: reduced peripheral levels; promoter hypermethylation; reversed by antidepressants & electroconvulsive therapy

COMT: hypermethylation associated with stress & treatment response

FKBP5: elevated expression via demethylation; linked to altered brain structure/function

NR3C1: hypermethylation with childhood trauma decreases GR expression & HPA axis dysregulation

SLC6A4: promoter hypermethylation (especially S allele carriers) reduces SERT expression; altered treatment response to
SSRIs/psychotherapy

Bipolar Disorder (BD)

BDNF: state-dependent changes; lower levels during manic/depressive episodes vs. euthymia

COMT: dysregulated dopamine metabolism may drive mood instability

FKBP5: methylation variation suggests role in mood regulation/stress response

NR3C1: altered methylation patterns contribute to neuroendocrine dysfunction (variable findings)

Post-Traumatic Stress Disorder (PTSD)

BDNF: long-lasting promoter hypermethylation after trauma; decreased stress reactivity/fear extinction

FKBP5: trauma + risk allele carriers have altered methylation; increased risk of PTSD

NR3C1: hypermethylation from early trauma leads to decreased GR function, sustained stress reactivity/fear memory
consolidation

SLC6A4: hypermethylation in S allele carriers with trauma exposure have increased PTSD symptoms

Schizophrenia

BDNF: reduced expression linked to cognitive impairment & negative symptoms

COMT: hypomethylation increases COMT activity leading to excess dopamine degradation in prefrontal cortex and
cognitive/negative symptoms

NR3C1: altered methylation patterns contribute to neuroendocrine dysfunction (variable findings)

DRD2: altered promoter methylation in prefrontal cortex & striatum; dysregulated dopamine signaling

miRNAs: decreased miR-132, miR-134, miR-1271, miR-664, miR-200c, miR-432; some increase after antipsychotic
treatment

Suicidality

BDNF: promoter hypermethylation in prefrontal cortex & hippocampus of suicide victims

NR3C1: hypermethylation in postmortem brain tissue from abuse victims causes trauma embedding

SLC6A4: increased methylation in individuals with suicide attempts/ideation after trauma

Anxiety Disorders
NR3C1: epigenetic dysregulation of GR signaling increases cortisol responsiveness

SLC6A4: elevated methylation associated with GAD, panic disorder, social anxiety, amygdala hyperreactivity

Autism Spectrum Disorder (ASD)
Global methylation differences in neuronal development genes (e.g., MECP2)

Altered miRNAs (miR-146a, miR-134)

Obsessive-Compulsive Disorder (OCD) FKBP5: reduced methylation at intron 7 CpG site in men causes possible HPA axis dysfunction

Addiction & Substance Use Disorders

OPRM1: hypermethylation linked to heroin & alcohol dependence; persistent changes affect relapse risk

DRD2: hypermethylation decreases expression causing reward deficiency & addiction vulnerability

miRNAs: altered miR-121 and miR-132

Attention-Deficit/Hyperactivity Disorder
(ADHD)

SLC6A4: mixed findings linking methylation differences to neurodevelopmental risk

DRD2: polymorphisms and methylation status associated with impulsivity & dopamine dysfunction
F
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models. In this context, reduced DRD2 expression from DNA

hypermethylation is associated with reward deficiency and

addiction vulnerability (118). In ADHD, DRD2 polymorphisms

and methylation status are linked to impulsivity and dopaminergic

dysfunction (119). A summary of these epigenetic alterations has

been captured in Table 1.
4 Clinical implications of epigenetics
in psychiatry

4.1 Epigenetic-based therapies

Epigenetic-based therapies are designed to regulate gene

expression by targeting epigenomic processes while leaving DNA

sequence itself unchanged. An example of an epigenetic-based

therapy is HDAC inhibition, which increase histone acetylation

thereby relaxing the chromatic and increasing gene expression (27).

Valproic acid, sodium butyrate, and Vorinostat (SAHA) are

examples of HDAC inhibitors that are currently used to target

depression, schizophrenia, BD, PTSD and are being preclinically

explored for ASD (120). Several therapies are in experimental stages

including bromodomain and extra-terminal domain (BET)

inhibitors, which bind to BET proteins and prevent them from

interacting with acetylated histones modulating gene transcription.

JQ1 is an investigational BET inhibitor for addiction, mood

disorders, and preclinical neuroinflammation (121).

In addition to HDAC inhibitors, several experimental miRNA-

based therapies for psychiatric disorders like schizophrenia, MDD,

anxiety, and neurodevelopmental disorders are currently under

investigation (122). These miRNA-based therapies include miR-124,

miR-132, miR-135 and miR-146a (123). Other epigenetic-based

therapies include epigenetic editing approaches using CRISPR/dCas9

for targeted DNA methylation or demethylation, histone editing by

CRISPR-dCas9-TET1 for demethylation, and CRISPR-dCas9-HDAC

for repression. These therapies focus on reversing stress-induced gene

silencing, and studies demonstrate that such interventions can alleviate

symptoms of MDD, anxiety, PTSD, while enhancing cognitive

resilience (124). They are currently being evaluated in preclinical

models of PTSD, addiction, and MDD (125, 126).
4.2 Precision psychiatry and future
directions

In the era of precision psychiatry, understanding epigenetic

patterns can refine diagnosis and improve clinical subtyping. For

example, methylation of NR3C1, BDNF, and FKBP5 can

differentiate subtypes of MDD, PTSD, or schizophrenia, help to

identify stress-responsiveness compared with neurodevelopmental

forms of illness, and be used as predictors of risk and resilience (5).

Epigenetic markers like SLC6A4 or OXTR methylation can predict

risk for MDD or anxiety after trauma and individual resilience

profiles (127). This epigenetic information may be useful for

detecting at-risk individuals such as trauma-exposed youth and
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providing early intervention (128). In the context of pharmaco-

epigenetics, methylation of genes like BDNF, SLC6A4, and FKBP5

may predict response to SSRIs, psychotherapy, or electroconvulsive

therapy (129). For example, clinical studies suggest that low BDNF

methylation correlates with better SSRI response and high NR3C1

methylation predicts poorer CBT response in PTSD (56).

Additionally, epigenetic biomarkers could be used to guide novel

epigenetic therapies in patients with hypermethylated GAD1 or

RELN who may benefit from HDAC inhibitors or DNMT inhibitors

to restore expression of key neuroplasticity genes (130).
5 Limitations

Several limitations hinder the application of epigenetic findings

as biomarkers in psychiatry. First, access to brain tissue is limited,

and sampling relies on that from blood, saliva, or postmortem

samples, which may not reflect central nervous system changes. Cell

type specificity varies since epigenetic marks vary dramatically

between neurons, glia, and other brain cells (45). Therefore, bulk

tissue analyses can obscure important differences at the cellular

level. As discussed, epigenetic modifications are dynamic and can

change rapidly. Therefore, stress, diet, and/or medications allow for

temporal variability, which may not be reflected in the long-term

pattern. Different assays can yield inconsistent results. For example,

bisulfite sequencing vs. ChIP-seq (chromatin immunoprecipitation

followed by sequencing) can complicate reproducibility across

studies. Lastly, most large-scale genome and epigenome reference

datasets, including those used for methylation and chromatin

analyses, are derived predominantly from individuals of European

ancestry. Therefore, the current body of research lacks ancestral

diversity among study populations and may obscure ancestry-

specific epigenetic signatures or gene-environment interactions

that contribute to psychiatric risk. Future research efforts should

focus on expanding cohort diversity to improve the equity,

accuracy, and translational relevance of epigenetic discoveries.

In addition to these limitations, there are several confounding

effects, including lifestyle, socioeconomic factors, substance use, and

comorbid medical conditions, that need to be considered, as they can

shape the epigenome, making it difficult to isolate psychiatry-specific

signatures. It is important to emphasize that epigenetic findings have

not yet been validated for routine use in psychiatric practice. Lastly,

because psychiatric disorders are influenced by thousands of genetic

and environmental factors, an exclusive focus on epigenetics risks

oversimplifying the complexity of disease etiology.
6 Conclusion

In this review, we have outlined the epigenetic mechanisms

implicated in psychiatric disorders and their relation to mental

health conditions. Extensive studies demonstrate that epigenetic

modifications influence the development and progression of

psychiatric disorders as well as human behavior. With ongoing

research into the clinical applications of epigenetically informed
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interventions, it is plausible that such treatments will become part of

routine psychiatric care. As highlighted, the transition toward

precision psychiatry requires overcoming several limitations. Key

challenges include the need for standardization across cell type

specificity and assay protocols, rigorous control of confounding

factors that may bias epigenetic findings, and integration of

epigenetic data within the broader context of gene-environment

interactions and systems biology. Future research should include

large, longitudinal cohorts, tissue-specific analyses, and multi-omics

integration, considering not only genomics but transcriptomics and

proteomics as well. As investigation into epigenetic biomarkers

continues to progress, and the understanding of the role of the

epigenome alongside epigenome-targeting treatments develops, we

look forward to the advances made in genomic medicine and the

field of psychiatry.
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