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Background: Stress exacerbates major depressive disorder (MDD) and panic

disorder (PD), highlighting the need for continuous stress quantification. Because

stress modulates autonomic function, heart rate variability (HRV) is commonly

studied for stress detection. However, conventional HRV pipelines require 5-min

recordings and handcrafted features, limiting real-time use. We evaluated

whether a one-dimensional (1D) residual network can identify acute cognitive

stress directly from ultra-short RR interval (RRI) signals in MDD, PD, and healthy

controls (HCs).

Methods: One hundred forty-seven adults (MDD = 41, PD = 47, HC = 59)

completed up to five lab visits over 12 weeks. At each visit, RRIs were recorded

during a 5-min resting baseline and a 5-min mental-arithmetic stressor. A 1D

ResNet34 classified baseline versus stress from raw RRIs using both 5-min

segments and 1-min epochs. Group-specific models were compared with a

combined model trained on pooled data. Generalized estimating equations

tested group and phase effects on RRIs.

Results: Stress shortened RRIs in every group, but less in patients with MDD and

PD than in HC. Combined training outperformed group-specific training: for 5-

min data, accuracies reached 0.866 (MDD), 0.865 (PD), and 0.897 (HC); 1-min

accuracies were 0.788, 0.815, and 0.797, respectively.

Conclusion: Deep learning on raw RRIs detects acute cognitive stress across

psychiatric and healthy cohorts without feature engineering. Five-minute

windows still yield the best performance, yet 1-min epochs still achieve

accuracies of approximately 0.80, demonstrating feasibility for integration into

real-time monitoring tools for relapse prevention and personalized care

in psychiatry.
KEYWORDS

RR intervals, major depressive disorder, panic disorder, stress detection, deep learning,
machine learning, autonomic nervous system, physiological signals
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1 Introduction

Major depressive disorder (MDD) and anxiety disorders,

including panic disorder (PD), affect more than 250 million and

300 million people worldwide, respectively, and are leading

contributors to disability and diminished quality of life (1, 2).

MDD is characterized by persistent low mood, anhedonia, and

somatic symptoms (3, 4), whereas PD involves recurrent panic

attacks and anticipatory anxiety that disrupt daily functioning (4,

5). Left untreated, both conditions can impair cognition and

increase suicide risk (6–8).

Stress is an important psychosocial factor of these illnesses.

Previous studies show that both chronic exposure to stressors and

acute stressful events increase the likelihood of onset, relapse, and a

more refractory disease course in MDD and PD (9–15).

Consequently, technologies capable of continuously quantifying

the severity and duration of stress at the individual level are

needed to enhance treatment and long−term management. In

response, research increasingly utilizes wearable sensors to detect

stress through physiological signals, demonstrating the feasibility of

unobtrusive stress monitoring in daily life (16).

Heart rate variability (HRV)—the variability in successive RR

intervals (RRIs)—is a widely used proxy for autonomic nervous

system (ANS) responses to stress (17–19). Conventional pipelines

typically compute time, frequency, and non-linear features from 5-

min ECG segments (20) and, in healthy samples, machine-learning

models using these features often exceed 0.80 accuracy (21, 22). Shorter

windows (1 min) can retain acceptable signals for classification,

although longer windows may still be preferred when greater

robustness is required (23, 24). Nonetheless, feature-based HRV

pipelines depend on parameter choices and their reliance on 5-min

segments limits high−resolution, real−time use.

Despite extensive work in healthy cohorts, automated stress

detection in psychiatric populations remains limited. These

disorders show autonomic dysregulation—reduced baseline vagal

tone and altered sympathetic reactivity (25–30)—which can

complicate classification. In our previous study, classical classifiers

using 20 HRV features from 5-min windows during a stress-

relaxation protocol achieved overall accuracies of 0.94–0.96, with

lower performance in patients with MDD and PD than in healthy

controls (HCs) (31). Yet this approach required uninterrupted 5-

min windows and handcrafted features, motivating a raw-signal

strategy with shorter inputs.

Deep neural networks for one-dimensional (1D) time series can

learn discriminative representations directly from RRIs, removing

the need for feature engineering. Prior work in healthy participants

reported successful performance using 10–30 s RRI windows (32) or

convolutional representations (33), but clinically diagnosed MDD

or PD populations have been underrepresented.

We address this gap by evaluating end-to-end stress detection

from raw RRIs in a clinically characterized cohort comprising

MDD, PD, and HCs. We adapted ResNet34 to a 1D architecture

and examined two window lengths: a conventional 5-min segment

and an ultra-short 1-min epoch. The 1-min window balances

feedback latency with performance and aligns with evidence that
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ultra-short HRV becomes more reliable at ≥ 60 s (34). We

hypothesized that deep learning models trained on 1-min RRI

segments would achieve accurate stress detection in both patient

cohorts and HCs.

In summary, we proposed a deep-learning framework that (i)

eliminates reliance on handcrafted HRV features, (ii) operates on

ultra-short RRIs suitable for continuous wearable monitoring, and

(iii) is validated across MDD, PD, and HC groups, thereby

clarifying the utility of raw-RRI, end-to-end models in

psychiatric populations.
2 Methods

2.1 Participants and study design

This study was part of a larger investigation examining changes

in clinical symptoms and inflammatory biomarkers over 12 weeks

to capture treatment effects (35). As these methods have been

described in detail in our previous publication, we only briefly

introduce them here (35). A total of 147 participants were included

in the study: 41 patients with MDD, 47 patients with PD, and 59

HCs. All patients were recruited at the Samsung Medical Center in

Seoul, Korea, between December 2015 and January 2017. The

diagnosis of MDD and PD followed the Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition (DSM-5) criteria (4), and

was conducted by a senior psychiatrist. Exclusion criteria were

pregnancy, history of substance or alcohol abuse, head injury, high

suicide risk, personality disorders, severe physical illnesses, and use

of long-acting medications. Throughout the 12-week experiment,

all patients received standard pharmacotherapy. Participants’ acute-

episode or stable-treatment status was not prospectively labeled at

enrollment. HCs with no history of psychiatric issues or family

history of mood disorders were recruited via general

advertisements. The study protocol was approved by the Ethics

Committee of the Samsung Medical Center (No. 2015-07-151), and

all participants provided written informed consent. Each

participant received $50 as compensation.

Each participant underwent a 12-week study with five

scheduled lab visits at baseline and 2, 4, 8, and 12 weeks. At the

initial and final visits, demographic information (e.g., age and sex)

was collected and clinical evaluations, including Hamilton

Depression (HAMD), Hamilton Anxiety (HAMA), and Panic

Disorder Severity (PDSS) scales, were performed (36–38). Body

mass index (BMI) was also measured given its known influence on

ANS response (39).
2.2 Experimental protocol

The original protocol comprised five phases. In this study we

analyzed only the 5-min resting baseline and the 5-min mental-

arithmetic stress (MAT) phases to detect stress-induced changes in

continuously measured RRIs (Figure 1A). During baseline,

participants rested quietly; during MAT, they performed serial-7
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subtraction from 500 with error correction, a validated cognitive

stressor known to modulate autonomic indices (40–44). The

remaining recovery, relaxation, and final rest phases are described

in the Supplementary Methods. Sessions were conducted by trained

investigators in the clinical laboratory.
2.3 RRI measurement

All measurements were conducted during working hours to

reduce variability associated with time of day, mood, and rest (45–

47). Electrocardiogram (ECG) signals were captured using the

ProComp Infiniti system (SA7500, Thought Technology,

Montreal, Canada) at a sampling rate of 256 Hz (20). RRIs were

then extracted and processed in Kubios HRV Premium (48, 49)

using an in-house developed QRS detection algorithm based on the

Pan-Tompkins method. Each RRI series was resampled to an

equidistant 4 Hz data using cubic-spline interpolation.

Supplementary Figure S1 presents an example of the RRI values

measured during the baseline and stress phases. Full measurement

details are provided in the Supplementary Methods.
2.4 Statistical analyses

All analyses were performed using SPSS version 25 (SPSS Inc.,

Chicago, IL, USA) and Python version 3.11.4 (Python Software

Foundation). One-way analysis of variance (ANOVA) was used for

demographic and clinical variables across the MDD, PD, and HC

groups, except for sex (chi-square test). For 5-min RRIs, we used

generalized estimating equations (GEE) to estimate population-average

phase and group effects after preliminary mixed-effects models

indicated substantial within-subject autocorrelation. GEE is
Frontiers in Psychiatry 03
appropriate for correlated repeated measures and yields robust

standard errors (50, 51). Fixed effects were phase (baseline, stress;

baseline = reference), group (MDD, PD, HC; HC = reference), phase ×

group, and visit (1–5, categorical). Participants were treated as clusters,

observations were ordered by visit and then phase, and an

exchangeable working correlation was adopted because an AR (1)

structure failed to converge when some clusters contained only two

observations. To test whether the change from baseline to stress

differed within each group, we computed phase-specific contrasts by

summing themain phase effect with its interaction term for each group,

and evaluated these contrasts usingWald z-statistics. Similarly, we then

fitted a GEE to the 1-min RRI epochs—the last two minutes of the

baseline (B4 and B5) and the first twominutes of the stress task (S1 and

S2). The fixed-effects design was as follows: epoch (B4, B5, S1, and S2;

S1 = reference) × group (MDD, PD, and HC; HC = reference) + visit

(1–5), with participants as clusters. For each group, we obtained epoch-

specific contrasts to determine whether the 1-min RRI during B4, B5,

or S2 differed significantly from that during S1. A P value of < 0.05 was

considered statistically significant.
2.5 Deep-learning architecture

We converted ResNet34 into a 1D architecture for raw RRI signals,

as shown in Figure 1B (52, 53). ResNet was selected because of its

strong time-series performance and prior success with RRI arrhythmia

classification (54, 55). The model began with a convolutional block

comprising a single 1D convolution, batch normalization, and max

pooling. Each residual block contained three 1D convolutional layers

and two batch-normalization layers, with an additional 1D convolution

(kernel size = 1) as the shortcut connection. Gaussian error linear units

(GELU) replaced ReLU activations throughout, and batch

normalization preceded each activation to capture subtler non-linear
FIGURE 1

(A) Experimental protocol. (B) Overall architecture of modified 1D ResNet34. (C) Overview of data processing.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1672260
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Lee et al. 10.3389/fpsyt.2025.1672260
patterns. The network processed fixed-length inputs of 1200 points for

a 5-min RRI segment and 240 points for a 1-min RRI epoch, padding

shorter sequences with zeros. Supplementary Table S1 lists details of

the model architecture. Supplementary Figure S2 shows representative

training and validation loss curves produced by the modified 1D

ResNet34 classifier.
2.6 Performance evaluation and training
strategy

Model performance was evaluated using 10× repeated 10-fold

cross-validation (CV) (Figure 1C). To prevent cross-participant

contamination (data leakage), splits were made at the participant

level to ensure that no subject appeared in both the training and test

sets. In each split, eight folds were used for training, one for

validation, and one for testing. This process was repeated 10

times with different random seeds. We report accuracy, the area

under the receiver operating characteristic curve (AUROC),

sensitivity, and specificity as the mean ± standard deviation

across repetitions. For 5-min RRIs, the classifier distinguished

between baseline and stress (with stress being positive). For 1-min

RRIs, we evaluated three binary tasks: B4 vs. B5 (B4 = positive), B5

vs. S1 (S1 = positive), and S1 vs. S2 (S2 = positive).

The two training strategies were compared. Separate models

were trained and evaluated within each diagnostic cohort (MDD,

PD, and HC) using only that group’s data. The combined models

were trained on a pooled dataset comprising all the groups, after

which the performance metrics were computed separately for each

cohort in the test datasets. A full schedule (147 participants × 5

visits) would have produced 735 recordings, but missed visits left

650 baseline and 650 stress samples (181 MDD, 191 PD, and 278

HC) for a total of 1300 used in the analysis. Of the 147 participants,

110 completed five visits, 16 completed four, 4 completed three, 7

completed two, and 10 completed one. All attended visits included

both phases; therefore, no RRI datasets were missing, and no

imputation was required. Analyses used all available visit-level

observations. Classifications were executed using Python.
3 Results

3.1 Demographic and clinical
characteristics

Supplementary Table S2 presents the demographic and clinical

profiles of participants from the same cohort examined in our

previous study (31). No significant differences in age, sex, or BMI

were observed among the groups. As expected, participants with

MDD and PD scored higher on the HAMD and HAMA than the

controls, indicating more severe depressive and anxiety symptoms.

The PDSS was the highest in the PD group, followed by the MDD

group, and lowest in the HC group, consistent with

diagnostic expectations.
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3.2 RRI measurement results: stress-
induced changes and between-group
differences

Figure 2A and Supplementary Table S3 show the RRI values

measured for each group (MDD, PD, and HC) during the baseline

and stress phases. Additionally, we presented within-subject

changes in RRI (DRRI) from baseline to the stress task for each

participant as presented in Figure 2B and Supplementary Table S4.

The stress task elicited a significant decrease in mean RRI in every

group (all P < 0.001), reflecting sympathetic activation with vagal

(parasympathetic) withdrawal, which was observed as shorter RRI

under stress (Supplementary Table S5). However, the magnitude of

this reduction differed by group; it was significantly smaller in both

the MDD group (P = 0.031) and the PD group (P < 0.001) than in

HC, indicating that healthy participants exhibited the largest

change from baseline (Supplementary Table S5).
3.3 Stress detection using 5-min RRIs

Classification performance for distinguishing baseline from stress

is summarized in Figure 3 and Supplementary Table S6.When separate

models were trained and tested exclusively on each diagnostic group,

the highest accuracy was achieved by the HC group (0.866), followed

by the PD (0.795) and MDD (0.784) groups. Notably, training a single

“combined” model on data from all three groups improved

performance for each group: HC accuracy rose to 0.897, while MDD

and PD reached 0.866 and 0.865, respectively. Even within the

combined model, HC consistently outperformed the clinical groups.

Analysis of the performance metrics indicates that the combined

model generally outperformed the separate models for each group.

Notably, across all these metrics, the HC group tended to outperform

the other two clinical groups. The only exception was that, under the

combined model, the specificity of the PD group was slightly higher

than that of the HC group. In summary, despite being exposed to the

same stress stimulus, the HC group achieved more accurate stress

detection than the two clinical groups. Moreover, a model trained on

pooled data from all groups produced better overall performance,

underscoring the benefits of using a more diverse training set to

enhance classification accuracy across diagnostic categories.
3.4 Stress detection using 1-min RRIs

We conducted an additional analysis in which the continuous

RRI series was segmented into four non-overlapping 1-min epochs—

the last two minutes of baseline (B4 and B5) and the first two minutes

of the stress task (S1 and S2). Figure 4A and Supplementary Table S7

show the RRI changes across the four 1-min epochs for each group.

RRI during S1 was significantly lower than during either baseline

epoch (B4 or B5) across all groups (all P < 0.001) (Supplementary

Table S8). The B5-to-S1 decrease differed across groups; both patient

groups—MDD (P = 0.004) and PD (P < 0.001)—showed a smaller
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decrease than HCs, consistent with the 5-min phase analysis.

RRI rebounded from S1 to S2 in HC (P < 0.001) and PD (P =

0.001), but not in MDD, and this S1-to-S2 change did not differ

between HC and PD patients (Supplementary Table S8).

We evaluated three binary classification tasks: B4 vs. B5, B5 vs.

S1, and S1 vs. S2, within each group by applying the combined model

to 1-min RRI segments (Figure 4B, Supplementary Table S9).

Baseline minutes (B4 vs. B5) were indistinguishable (accuracy =

~0.50), whereas the baseline-to-stress change (B5 vs. S1) was detected

with high accuracy (0.79–0.82). Discriminating the two stress

minutes (S1 vs. S2) produced intermediate performance (accuracy

= 0.61–0.63), indicating additional but less pronounced autonomic

change beyond the initial stress response. Collectively, these findings

confirm that the transition from baseline to stress is readily detectable

within the first minute, whereas intra-baseline differences are

negligible, and also that stress-epoch differentiation is modest.

A closer inspection of the B5 vs. S1 classification revealed that

shortening the analysis window from 5-min segments to 1-min RRI

epochs lowered overall performance: accuracy dropped by 0.10 in

the HC, 0.08 in the MDD, and 0.05 in the PD groups, respectively.

In this 1-min analysis, accuracy was highest in the PD group,

followed by the HC and then MDD groups, whereas the 5-min

model had HC at the top. Notably, although HC showed the largest

mean 1-min RRI drop from baseline to stress, its accuracy still

trailed PD’s. The PD group also achieved the highest specificity,

indicating that baseline epochs were misclassified as stress less often

than in the other groups. The shift in accuracy between 5- and 1-

min inputs likely reflects group-specific temporal dynamics,

whereby window length interacts with each group’s reactivity

time course, explaining the change in ranking. For an overall

comparison of the 1-min and 5-min models, group-specific ROC

curves (MDD, PD, HC) from the combined model are shown in

Supplementary Figure S3.
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4 Discussion

This study investigated whether a 1D residual neural network

could directly identify acute cognitive stress from raw RRI sequences in

patients withMDD, PD, and HC.When the 5-min RRIs were analyzed

with a model trained on the pooled dataset, accuracies reached 0.866 in

MDD, 0.865 in PD, and 0.897 in HCs. Using 1-min windows lowered

performance, yet accuracy remained at 0.788, 0.815, and 0.797 in the

same groups. Taken together, these results demonstrate that raw signal

models can approach 80% accuracy for stress classification—even in

psychiatric cohorts—using recording periods as short as 1 min and

without reliance on handcrafted HRV features.

All three diagnostic groups demonstrated a significant

reduction in the RRI during the MAT, indicating that the

protocol effectively triggered sympathetic and vagal withdrawal

responses. Notably, the extent of RRI reduction during the stress

phase was less pronounced in individuals with MDD or PD than in

HCs. This finding aligns with existing literature suggesting altered

autonomic reactivity in psychiatric disorders (28–30, 56).

Importantly, this pattern of results was consistent across both the

5-min and 1-min windows, highlighting that significant clinical

group differences can be detected even in ultra-short recordings.

The model performance reflected these physiological trends.

For 5-min segments, the HC group—showing the largest RRI

change—achieved the highest accuracy; MDD and PD, which

displayed smaller DRRI, were classified less accurately. Pooling

data for training across the groups improved the accuracy in

every group, implying that a common representation of stress

exists in raw RRIs that can be exploited through multi-cohort

learning, even when absolute reactivity differs. In contrast,

shortening the analysis window reduced accuracy more steeply in

HCs than in patients: the HC reduction was roughly 0.10, compared

with 0.05–0.08 in MDD and PD. This inversion suggests that the
RE 2FIGU

(A) RRI among the MDD, PD, and HC groups measured during the baseline and stress phases. Stress shortened RRI in all groups, but the magnitude
of the reduction was smaller in patients. (B) Box plots display the DRRI. Red dotted lines indicate mean values.
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current ResNet model captures short-lived, patient-specific patterns

in the RRI signal that remain detectable at 1-min scales, whereas a

more pronounced but slower HC response is partially lost when

only 1-min data are available.
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We adopted a 1-min RRI window—the shortest duration

considered reliable in ultra-short HRV research (34)—because no

RRI-specific benchmark clearly defines how segment length affects

stress-classification performance (32). In our study, shortening the
FIGURE 3

Performance measures for classifying the baseline and stress phases based on 5-min RRIs. Separate data models were trained and tested, each
exclusively using the data from one specific patient group. For the combined data model, data from all groups were pooled for training, and the
metrics were calculated separately for each patient group in the test dataset. The combined model outperformed the separate models across all
groups, with HC generally achieving the highest accuracy.
FIGURE 4

(A) Mean and standard deviation of RRI for each group during four consecutive 1-min epochs: the last two minutes of baseline (B4, B5) and the first
two minutes of the stress task (S1, S2). RRI during S1 was lower than B4 and B5 in all groups; the decrease from B5 to S1 was smaller in MDD and PD
than in HC, and RRI rebounded from S1 to S2 in HC and PD, but not in MDD. (B) Performance metrics of the combined model when classifying 1-
min RRI epochs in three pairwise comparisons (B4 vs. B5, B5 vs. S1, S1 vs. S2) within each group.
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input from 5-min to 1-min lowered accuracy by up to 0.10, indicating a

length-performance trade-off. Windows shorter than 1-min will

probably decrease accuracy further, but this needs confirmation.

Future work should test sub-minute windows while also verifying

that the stress protocol remains sufficiently potent at such short

time scales.

Within the 5-min stress phase, RRI increased modestly between

the first and second minutes (S1 vs. S2) in HCs and patients with PD,

but not in patients with MDD. The lack of an RRI rebound from S1 to

S2 in MDD is compatible with the impaired autonomic adaptability

reported in depression and may reflect slower recovery. Although

accuracy for classifying S1 and S2 was only 0.61–0.63, these results

suggest that the network was able to detect physiologically meaningful

variation within the continuous stress period. Participants may have

experienced the greatest sympathetic activation during the initial

minute of the MAT, followed by partial autonomic adaptation as

subtraction continued. The resulting attenuation of arousal would

manifest as a rebound in RRI, which the deep-learning model

captured, despite the small change in RRI. As the current protocol

imposed a uniform 5-min stress block, the temporal evolution of stress-

related RRIs could not be examined in finer detail. Future studies

should employ stress paradigms that vary in duration or stimulus type

—potentially replacing the MAT—to characterize minute-by-minute

autonomic dynamics and evaluate whether sub-segments of the stress

phase can be distinguished with higher precision.

Compared to studies focused solely on healthy individuals, our

results provide a direct benchmark. Reviews in healthy volunteers

typically report an accuracy of 0.80–0.95 with HRV features (21, 22)

and approximately 0.85–0.90 with 10–30 s RRIs using deep learning

(32, 33). Here, an end-to-end model trained directly on raw RRIs

achieved 0.87–0.90 with 5-min inputs and 0.79–0.82 with 1-min

inputs, while extending validation to clinically diagnosed MDD and

PD. This highlights the novelty of raw signal stress detection in

psychiatric cohorts and the benefit of pooled training.

The ability to detect stress from 1-min data intervals enhances the

feasibility of real-world applications. Contemporary wearable devices

are capable of acquiring such ultra-short cardiac segments with

adequate signal fidelity (57), enabling the implementation of a sliding

window approach to compute stress probabilities in near-real time.

This is particularly beneficial for psychiatric patients, who often

experience exacerbations of stress-related symptoms. For example,

these tools could be integrated into practice to provide continuous

monitoring for patients at high risk of relapse, enabling timely

intervention. Furthermore, objective stress data could assist clinicians

in personalizing pharmacological therapy and tracking treatment

efficacy. However, continuous stress monitoring in psychiatric care

carries ethical and practical considerations. Issues such as patient

acceptability, the risk of over-medicalization from misinterpreting

data, and data privacy should be carefully addressed before these

tools can be responsibly integrated into clinical care.
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4.1 Limitations

All patients received pharmacotherapy, which may modulate

autonomic tone and partially alter stress responses, thereby

influencing classification. While antidepressants can affect HRV,

the evidence is mixed (58, 59). We also lacked prospective

stratification by acute vs. stable clinical status and by treatment

response, both of which could influence autonomic reactivity and

HRV-based stress responses. Future studies should incorporate

status- and response-based analyses. Sample size also limits

generalization, particularly for MDD. We did not stratify model

performance by sex or age; future larger cohorts should assess the

effects of subgroups.

The MAT is an artificial laboratory task; performance in

naturalistic settings, where stressors are diverse and confounded

by physical activity, remains to be tested. Only RRI signals were

analyzed. Fusion with electrodermal activity (EDA) or

accelerometry may improve robustness, particularly when motion

artifacts are present. Finally, although ResNet34 performed well,

alternative sequence models were not evaluated and could yield

further gains.

Future research should assess the model’s generalizability in

ambulatory settings that involve free-living stressors and physical

activity. Adaptive windowing strategies may further improve real-

time performance, whereas multimodal fusion—combining RRI

with EDA or other physiological signals—could enhance

classification accuracy (60–62). Clinically, longitudinal studies

that relate daily stress estimates to symptom trajectories and

treatment responses are needed to determine whether RRI-based

monitoring translates into better patient outcomes.
5 Conclusion

Deep learning applied to raw RRIs detects acute cognitive stress in

healthy individuals and patients with MDD or PD. The method

effectively obviates engineered HRV features and functions on 1-min

windows, a duration compatible with contemporary wearable devices.

Although 5-min segments still yield the highest accuracy, the modest

loss in performance observed with 1-min windows is outweighed by the

gains in temporal resolution and real-world applicability. These findings

support the integration of raw-signal, end-to-end models into mobile

psychiatry with the goal of delivering objective stress assessments.
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