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Background: Stress exacerbates major depressive disorder (MDD) and panic
disorder (PD), highlighting the need for continuous stress quantification. Because
stress modulates autonomic function, heart rate variability (HRV) is commonly
studied for stress detection. However, conventional HRV pipelines require 5-min
recordings and handcrafted features, limiting real-time use. We evaluated
whether a one-dimensional (1D) residual network can identify acute cognitive
stress directly from ultra-short RR interval (RRI) signals in MDD, PD, and healthy
controls (HCs).

Methods: One hundred forty-seven adults (MDD = 41, PD = 47, HC = 59)
completed up to five lab visits over 12 weeks. At each visit, RRIs were recorded
during a 5-min resting baseline and a 5-min mental-arithmetic stressor. A 1D
ResNet34 classified baseline versus stress from raw RRIs using both 5-min
segments and 1-min epochs. Group-specific models were compared with a
combined model trained on pooled data. Generalized estimating equations
tested group and phase effects on RRIs.

Results: Stress shortened RRIs in every group, but less in patients with MDD and
PD than in HC. Combined training outperformed group-specific training: for 5-
min data, accuracies reached 0.866 (MDD), 0.865 (PD), and 0.897 (HC); 1-min
accuracies were 0.788, 0.815, and 0.797, respectively.

Conclusion: Deep learning on raw RRIs detects acute cognitive stress across
psychiatric and healthy cohorts without feature engineering. Five-minute
windows still yield the best performance, yet 1-min epochs still achieve
accuracies of approximately 0.80, demonstrating feasibility for integration into
real-time monitoring tools for relapse prevention and personalized care
in psychiatry.
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RR intervals, major depressive disorder, panic disorder, stress detection, deep learning,
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1 Introduction

Major depressive disorder (MDD) and anxiety disorders,
including panic disorder (PD), affect more than 250 million and
300 million people worldwide, respectively, and are leading
contributors to disability and diminished quality of life (1, 2).
MDD is characterized by persistent low mood, anhedonia, and
somatic symptoms (3, 4), whereas PD involves recurrent panic
attacks and anticipatory anxiety that disrupt daily functioning (4,
5). Left untreated, both conditions can impair cognition and
increase suicide risk (6-8).

Stress is an important psychosocial factor of these illnesses.
Previous studies show that both chronic exposure to stressors and
acute stressful events increase the likelihood of onset, relapse, and a
more refractory disease course in MDD and PD (9-15).
Consequently, technologies capable of continuously quantifying
the severity and duration of stress at the individual level are
needed to enhance treatment and long-term management. In
response, research increasingly utilizes wearable sensors to detect
stress through physiological signals, demonstrating the feasibility of
unobtrusive stress monitoring in daily life (16).

Heart rate variability (HRV)—the variability in successive RR
intervals (RRIs)—is a widely used proxy for autonomic nervous
system (ANS) responses to stress (17-19). Conventional pipelines
typically compute time, frequency, and non-linear features from 5-
min ECG segments (20) and, in healthy samples, machine-learning
models using these features often exceed 0.80 accuracy (21, 22). Shorter
windows (1 min) can retain acceptable signals for classification,
although longer windows may still be preferred when greater
robustness is required (23, 24). Nonetheless, feature-based HRV
pipelines depend on parameter choices and their reliance on 5-min
segments limits high—resolution, real-time use.

Despite extensive work in healthy cohorts, automated stress
detection in psychiatric populations remains limited. These
disorders show autonomic dysregulation—reduced baseline vagal
tone and altered sympathetic reactivity (25-30)—which can
complicate classification. In our previous study, classical classifiers
using 20 HRV features from 5-min windows during a stress-
relaxation protocol achieved overall accuracies of 0.94-0.96, with
lower performance in patients with MDD and PD than in healthy
controls (HCs) (31). Yet this approach required uninterrupted 5-
min windows and handcrafted features, motivating a raw-signal
strategy with shorter inputs.

Deep neural networks for one-dimensional (1D) time series can
learn discriminative representations directly from RRIs, removing
the need for feature engineering. Prior work in healthy participants
reported successful performance using 10-30 s RRI windows (32) or
convolutional representations (33), but clinically diagnosed MDD
or PD populations have been underrepresented.

We address this gap by evaluating end-to-end stress detection
from raw RRIs in a clinically characterized cohort comprising
MDD, PD, and HCs. We adapted ResNet34 to a 1D architecture
and examined two window lengths: a conventional 5-min segment
and an ultra-short 1-min epoch. The 1-min window balances
feedback latency with performance and aligns with evidence that
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ultra-short HRV becomes more reliable at > 60 s (34). We
hypothesized that deep learning models trained on 1-min RRI
segments would achieve accurate stress detection in both patient
cohorts and HCs.

In summary, we proposed a deep-learning framework that (i)
eliminates reliance on handcrafted HRV features, (ii) operates on
ultra-short RRIs suitable for continuous wearable monitoring, and
(iii) is validated across MDD, PD, and HC groups, thereby
clarifying the utility of raw-RRI, end-to-end models in
psychiatric populations.

2 Methods
2.1 Participants and study design

This study was part of a larger investigation examining changes
in clinical symptoms and inflammatory biomarkers over 12 weeks
to capture treatment effects (35). As these methods have been
described in detail in our previous publication, we only briefly
introduce them here (35). A total of 147 participants were included
in the study: 41 patients with MDD, 47 patients with PD, and 59
HCs. All patients were recruited at the Samsung Medical Center in
Seoul, Korea, between December 2015 and January 2017. The
diagnosis of MDD and PD followed the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) criteria (4), and
was conducted by a senior psychiatrist. Exclusion criteria were
pregnancy, history of substance or alcohol abuse, head injury, high
suicide risk, personality disorders, severe physical illnesses, and use
of long-acting medications. Throughout the 12-week experiment,
all patients received standard pharmacotherapy. Participants’ acute-
episode or stable-treatment status was not prospectively labeled at
enrollment. HCs with no history of psychiatric issues or family
history of mood disorders were recruited via general
advertisements. The study protocol was approved by the Ethics
Committee of the Samsung Medical Center (No. 2015-07-151), and
all participants provided written informed consent. Each
participant received $50 as compensation.

Each participant underwent a 12-week study with five
scheduled lab visits at baseline and 2, 4, 8, and 12 weeks. At the
initial and final visits, demographic information (e.g., age and sex)
was collected and clinical evaluations, including Hamilton
Depression (HAMD), Hamilton Anxiety (HAMA), and Panic
Disorder Severity (PDSS) scales, were performed (36-38). Body
mass index (BMI) was also measured given its known influence on
ANS response (39).

2.2 Experimental protocol

The original protocol comprised five phases. In this study we
analyzed only the 5-min resting baseline and the 5-min mental-
arithmetic stress (MAT) phases to detect stress-induced changes in
continuously measured RRIs (Figure 1A). During baseline,
participants rested quietly; during MAT, they performed serial-7
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(A) Experimental protocol. (B) Overall architecture of modified 1D ResNet34.

subtraction from 500 with error correction, a validated cognitive
stressor known to modulate autonomic indices (40-44). The
remaining recovery, relaxation, and final rest phases are described
in the Supplementary Methods. Sessions were conducted by trained
investigators in the clinical laboratory.

2.3 RRI measurement

All measurements were conducted during working hours to
reduce variability associated with time of day, mood, and rest (45-
47). Electrocardiogram (ECG) signals were captured using the
ProComp Infiniti system (SA7500, Thought Technology,
Montreal, Canada) at a sampling rate of 256 Hz (20). RRIs were
then extracted and processed in Kubios HRV Premium (48, 49)
using an in-house developed QRS detection algorithm based on the
Pan-Tompkins method. Each RRI series was resampled to an
equidistant 4 Hz data using cubic-spline interpolation.
Supplementary Figure S1 presents an example of the RRI values
measured during the baseline and stress phases. Full measurement
details are provided in the Supplementary Methods.

2.4 Statistical analyses

All analyses were performed using SPSS version 25 (SPSS Inc.,
Chicago, IL, USA) and Python version 3.11.4 (Python Software
Foundation). One-way analysis of variance (ANOVA) was used for
demographic and clinical variables across the MDD, PD, and HC
groups, except for sex (chi-square test). For 5-min RRIs, we used
generalized estimating equations (GEE) to estimate population-average
phase and group effects after preliminary mixed-effects models
indicated substantial within-subject autocorrelation. GEE is
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(C) Overview of data processing.

appropriate for correlated repeated measures and yields robust
standard errors (50, 51). Fixed effects were phase (baseline, stress;
baseline = reference), group (MDD, PD, HC; HC = reference), phase x
group, and visit (1-5, categorical). Participants were treated as clusters,
observations were ordered by visit and then phase, and an
exchangeable working correlation was adopted because an AR (1)
structure failed to converge when some clusters contained only two
observations. To test whether the change from baseline to stress
differed within each group, we computed phase-specific contrasts by
summing the main phase effect with its interaction term for each group,
and evaluated these contrasts using Wald z-statistics. Similarly, we then
fitted a GEE to the 1-min RRI epochs—the last two minutes of the
baseline (B4 and B5) and the first two minutes of the stress task (S1 and
S2). The fixed-effects design was as follows: epoch (B4, B5, S1, and S2;
S1 = reference) x group (MDD, PD, and HC; HC = reference) + visit
(1-5), with participants as clusters. For each group, we obtained epoch-
specific contrasts to determine whether the 1-min RRI during B4, B5,
or S2 differed significantly from that during S1. A P value of < 0.05 was
considered statistically significant.

2.5 Deep-learning architecture

We converted ResNet34 into a 1D architecture for raw RRI signals,
as shown in Figure 1B (52, 53). ResNet was selected because of its
strong time-series performance and prior success with RRI arrhythmia
classification (54, 55). The model began with a convolutional block
comprising a single 1D convolution, batch normalization, and max
pooling. Each residual block contained three 1D convolutional layers
and two batch-normalization layers, with an additional 1D convolution
(kernel size = 1) as the shortcut connection. Gaussian error linear units
(GELU) replaced ReLU activations throughout, and batch
normalization preceded each activation to capture subtler non-linear
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patterns. The network processed fixed-length inputs of 1200 points for
a 5-min RRI segment and 240 points for a 1-min RRI epoch, padding
shorter sequences with zeros. Supplementary Table S1 lists details of
the model architecture. Supplementary Figure S2 shows representative
training and validation loss curves produced by the modified 1D
ResNet34 classifier.

2.6 Performance evaluation and training
strategy

Model performance was evaluated using 10x repeated 10-fold
cross-validation (CV) (Figure 1C). To prevent cross-participant
contamination (data leakage), splits were made at the participant
level to ensure that no subject appeared in both the training and test
sets. In each split, eight folds were used for training, one for
validation, and one for testing. This process was repeated 10
times with different random seeds. We report accuracy, the area
under the receiver operating characteristic curve (AUROC),
sensitivity, and specificity as the mean + standard deviation
across repetitions. For 5-min RRIs, the classifier distinguished
between baseline and stress (with stress being positive). For 1-min
RRIs, we evaluated three binary tasks: B4 vs. B5 (B4 = positive), B5
vs. S1 (S1 = positive), and S1 vs. S2 (S2 = positive).

The two training strategies were compared. Separate models
were trained and evaluated within each diagnostic cohort (MDD,
PD, and HC) using only that group’s data. The combined models
were trained on a pooled dataset comprising all the groups, after
which the performance metrics were computed separately for each
cohort in the test datasets. A full schedule (147 participants x 5
visits) would have produced 735 recordings, but missed visits left
650 baseline and 650 stress samples (181 MDD, 191 PD, and 278
HC) for a total of 1300 used in the analysis. Of the 147 participants,
110 completed five visits, 16 completed four, 4 completed three, 7
completed two, and 10 completed one. All attended visits included
both phases; therefore, no RRI datasets were missing, and no
imputation was required. Analyses used all available visit-level
observations. Classifications were executed using Python.

3 Results

3.1 Demographic and clinical
characteristics

Supplementary Table S2 presents the demographic and clinical
profiles of participants from the same cohort examined in our
previous study (31). No significant differences in age, sex, or BMI
were observed among the groups. As expected, participants with
MDD and PD scored higher on the HAMD and HAMA than the
controls, indicating more severe depressive and anxiety symptoms.
The PDSS was the highest in the PD group, followed by the MDD
group, and lowest in the HC group, consistent with
diagnostic expectations.
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3.2 RRI measurement results: stress-
induced changes and between-group
differences

Figure 2A and Supplementary Table S3 show the RRI values
measured for each group (MDD, PD, and HC) during the baseline
and stress phases. Additionally, we presented within-subject
changes in RRI (ARRI) from baseline to the stress task for each
participant as presented in Figure 2B and Supplementary Table S4.
The stress task elicited a significant decrease in mean RRI in every
group (all P < 0.001), reflecting sympathetic activation with vagal
(parasympathetic) withdrawal, which was observed as shorter RRI
under stress (Supplementary Table S5). However, the magnitude of
this reduction differed by group; it was significantly smaller in both
the MDD group (P = 0.031) and the PD group (P < 0.001) than in
HC, indicating that healthy participants exhibited the largest
change from baseline (Supplementary Table S5).

3.3 Stress detection using 5-min RRIs

Classification performance for distinguishing baseline from stress
is summarized in Figure 3 and Supplementary Table S6. When separate
models were trained and tested exclusively on each diagnostic group,
the highest accuracy was achieved by the HC group (0.866), followed
by the PD (0.795) and MDD (0.784) groups. Notably, training a single
“combined” model on data from all three groups improved
performance for each group: HC accuracy rose to 0.897, while MDD
and PD reached 0.866 and 0.865, respectively. Even within the
combined model, HC consistently outperformed the clinical groups.

Analysis of the performance metrics indicates that the combined
model generally outperformed the separate models for each group.
Notably, across all these metrics, the HC group tended to outperform
the other two clinical groups. The only exception was that, under the
combined model, the specificity of the PD group was slightly higher
than that of the HC group. In summary, despite being exposed to the
same stress stimulus, the HC group achieved more accurate stress
detection than the two clinical groups. Moreover, a model trained on
pooled data from all groups produced better overall performance,
underscoring the benefits of using a more diverse training set to
enhance classification accuracy across diagnostic categories.

3.4 Stress detection using 1-min RRIs

We conducted an additional analysis in which the continuous
RRI series was segmented into four non-overlapping 1-min epochs—
the last two minutes of baseline (B4 and B5) and the first two minutes
of the stress task (S1 and S2). Figure 4A and Supplementary Table S7
show the RRI changes across the four 1-min epochs for each group.
RRI during S1 was significantly lower than during either baseline
epoch (B4 or B5) across all groups (all P < 0.001) (Supplementary
Table S8). The B5-to-S1 decrease differed across groups; both patient
groups—MDD (P = 0.004) and PD (P < 0.001)—showed a smaller
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(A) RRI among the MDD, PD, and HC groups measured during the baseline and stress phases. Stress shortened RRI in all groups, but the magnitude
of the reduction was smaller in patients. (B) Box plots display the ARRI. Red dotted lines indicate mean values.

decrease than HCs, consistent with the 5-min phase analysis.
RRI rebounded from S1 to S2 in HC (P < 0.001) and PD (P =
0.001), but not in MDD, and this S1-to-S2 change did not differ
between HC and PD patients (Supplementary Table S8).

We evaluated three binary classification tasks: B4 vs. B5, B5 vs.
S1, and S1 vs. S2, within each group by applying the combined model
to 1-min RRI segments (Figure 4B, Supplementary Table S9).
Baseline minutes (B4 vs. B5) were indistinguishable (accuracy =
~0.50), whereas the baseline-to-stress change (B5 vs. S1) was detected
with high accuracy (0.79-0.82). Discriminating the two stress
minutes (S1 vs. S2) produced intermediate performance (accuracy
= 0.61-0.63), indicating additional but less pronounced autonomic
change beyond the initial stress response. Collectively, these findings
confirm that the transition from baseline to stress is readily detectable
within the first minute, whereas intra-baseline differences are
negligible, and also that stress-epoch differentiation is modest.

A closer inspection of the B5 vs. S1 classification revealed that
shortening the analysis window from 5-min segments to 1-min RRI
epochs lowered overall performance: accuracy dropped by 0.10 in
the HC, 0.08 in the MDD, and 0.05 in the PD groups, respectively.
In this 1-min analysis, accuracy was highest in the PD group,
followed by the HC and then MDD groups, whereas the 5-min
model had HC at the top. Notably, although HC showed the largest
mean 1-min RRI drop from baseline to stress, its accuracy still
trailed PD’s. The PD group also achieved the highest specificity,
indicating that baseline epochs were misclassified as stress less often
than in the other groups. The shift in accuracy between 5- and 1-
min inputs likely reflects group-specific temporal dynamics,
whereby window length interacts with each group’s reactivity
time course, explaining the change in ranking. For an overall
comparison of the 1-min and 5-min models, group-specific ROC
curves (MDD, PD, HC) from the combined model are shown in
Supplementary Figure S3.
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4 Discussion

This study investigated whether a 1D residual neural network
could directly identify acute cognitive stress from raw RRI sequences in
patients with MDD, PD, and HC. When the 5-min RRIs were analyzed
with a model trained on the pooled dataset, accuracies reached 0.866 in
MDD, 0.865 in PD, and 0.897 in HCs. Using 1-min windows lowered
performance, yet accuracy remained at 0.788, 0.815, and 0.797 in the
same groups. Taken together, these results demonstrate that raw signal
models can approach 80% accuracy for stress classification—even in
psychiatric cohorts—using recording periods as short as 1 min and
without reliance on handcrafted HRV features.

All three diagnostic groups demonstrated a significant
reduction in the RRI during the MAT, indicating that the
protocol effectively triggered sympathetic and vagal withdrawal
responses. Notably, the extent of RRI reduction during the stress
phase was less pronounced in individuals with MDD or PD than in
HCs. This finding aligns with existing literature suggesting altered
autonomic reactivity in psychiatric disorders (28-30, 56).
Importantly, this pattern of results was consistent across both the
5-min and 1-min windows, highlighting that significant clinical
group differences can be detected even in ultra-short recordings.

The model performance reflected these physiological trends.
For 5-min segments, the HC group—showing the largest RRI
change—achieved the highest accuracy; MDD and PD, which
displayed smaller ARRI, were classified less accurately. Pooling
data for training across the groups improved the accuracy in
every group, implying that a common representation of stress
exists in raw RRIs that can be exploited through multi-cohort
learning, even when absolute reactivity differs. In contrast,
shortening the analysis window reduced accuracy more steeply in
HC:s than in patients: the HC reduction was roughly 0.10, compared
with 0.05-0.08 in MDD and PD. This inversion suggests that the
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(A) Mean and standard deviation of RRI for each group during four consecutive 1-min epochs: the last two minutes of baseline (B4, B5) and the first
two minutes of the stress task (S1, S2). RRI during S1 was lower than B4 and B5 in all groups; the decrease from B5 to S1 was smaller in MDD and PD
than in HC, and RRI rebounded from S1 to S2 in HC and PD, but not in MDD. (B) Performance metrics of the combined model when classifying 1-
min RRI epochs in three pairwise comparisons (B4 vs. B5, B5 vs. S1, S1 vs. S2) within each group.

current ResNet model captures short-lived, patient-specific patterns We adopted a 1-min RRI window—the shortest duration
in the RRI signal that remain detectable at 1-min scales, whereas a  considered reliable in ultra-short HRV research (34)—because no
more pronounced but slower HC response is partially lost when — RRI-specific benchmark clearly defines how segment length affects
only 1-min data are available. stress-classification performance (32). In our study, shortening the
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input from 5-min to 1-min lowered accuracy by up to 0.10, indicating a
length-performance trade-off. Windows shorter than 1-min will
probably decrease accuracy further, but this needs confirmation.
Future work should test sub-minute windows while also verifying
that the stress protocol remains sufficiently potent at such short
time scales.

Within the 5-min stress phase, RRI increased modestly between
the first and second minutes (S1 vs. S2) in HCs and patients with PD,
but not in patients with MDD. The lack of an RRI rebound from S1 to
S2 in MDD is compatible with the impaired autonomic adaptability
reported in depression and may reflect slower recovery. Although
accuracy for classifying S1 and S2 was only 0.61-0.63, these results
suggest that the network was able to detect physiologically meaningful
variation within the continuous stress period. Participants may have
experienced the greatest sympathetic activation during the initial
minute of the MAT, followed by partial autonomic adaptation as
subtraction continued. The resulting attenuation of arousal would
manifest as a rebound in RRI, which the deep-learning model
captured, despite the small change in RRI. As the current protocol
imposed a uniform 5-min stress block, the temporal evolution of stress-
related RRIs could not be examined in finer detail. Future studies
should employ stress paradigms that vary in duration or stimulus type
—potentially replacing the MAT—to characterize minute-by-minute
autonomic dynamics and evaluate whether sub-segments of the stress
phase can be distinguished with higher precision.

Compared to studies focused solely on healthy individuals, our
results provide a direct benchmark. Reviews in healthy volunteers
typically report an accuracy of 0.80-0.95 with HRV features (21, 22)
and approximately 0.85-0.90 with 10-30 s RRIs using deep learning
(32, 33). Here, an end-to-end model trained directly on raw RRIs
achieved 0.87-0.90 with 5-min inputs and 0.79-0.82 with 1-min
inputs, while extending validation to clinically diagnosed MDD and
PD. This highlights the novelty of raw signal stress detection in
psychiatric cohorts and the benefit of pooled training.

The ability to detect stress from 1-min data intervals enhances the
feasibility of real-world applications. Contemporary wearable devices
are capable of acquiring such ultra-short cardiac segments with
adequate signal fidelity (57), enabling the implementation of a sliding
window approach to compute stress probabilities in near-real time.
This is particularly beneficial for psychiatric patients, who often
experience exacerbations of stress-related symptoms. For example,
these tools could be integrated into practice to provide continuous
monitoring for patients at high risk of relapse, enabling timely
intervention. Furthermore, objective stress data could assist clinicians
in personalizing pharmacological therapy and tracking treatment
efficacy. However, continuous stress monitoring in psychiatric care
carries ethical and practical considerations. Issues such as patient
acceptability, the risk of over-medicalization from misinterpreting
data, and data privacy should be carefully addressed before these
tools can be responsibly integrated into clinical care.
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4.1 Limitations

All patients received pharmacotherapy, which may modulate
autonomic tone and partially alter stress responses, thereby
influencing classification. While antidepressants can affect HRV,
the evidence is mixed (58, 59). We also lacked prospective
stratification by acute vs. stable clinical status and by treatment
response, both of which could influence autonomic reactivity and
HRV-based stress responses. Future studies should incorporate
status- and response-based analyses. Sample size also limits
generalization, particularly for MDD. We did not stratify model
performance by sex or age; future larger cohorts should assess the
effects of subgroups.

The MAT is an artificial laboratory task; performance in
naturalistic settings, where stressors are diverse and confounded
by physical activity, remains to be tested. Only RRI signals were
analyzed. Fusion with electrodermal activity (EDA) or
accelerometry may improve robustness, particularly when motion
artifacts are present. Finally, although ResNet34 performed well,
alternative sequence models were not evaluated and could yield
further gains.

Future research should assess the model’s generalizability in
ambulatory settings that involve free-living stressors and physical
activity. Adaptive windowing strategies may further improve real-
time performance, whereas multimodal fusion—combining RRI
with EDA or other physiological signals—could enhance
classification accuracy (60-62). Clinically, longitudinal studies
that relate daily stress estimates to symptom trajectories and
treatment responses are needed to determine whether RRI-based
monitoring translates into better patient outcomes.

5 Conclusion

Deep learning applied to raw RRIs detects acute cognitive stress in
healthy individuals and patients with MDD or PD. The method
effectively obviates engineered HRV features and functions on 1-min
windows, a duration compatible with contemporary wearable devices.
Although 5-min segments still yield the highest accuracy, the modest
loss in performance observed with 1-min windows is outweighed by the
gains in temporal resolution and real-world applicability. These findings
support the integration of raw-signal, end-to-end models into mobile
psychiatry with the goal of delivering objective stress assessments.
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