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Background: Substantial interindividual variability exists in the response of
adolescents with major depressive disorder (MDD) to selective serotonin
reuptake inhibitors (SSRIs), and reliable early predictors of treatment response
are lacking.

Methods: Resting-state functional magnetic resonance imaging (fMRI) data and
clinical scale scores were collected from 69 adolescents with first-episode,
drug-naive MDD. Based on treatment response assessed after 8 weeks of
SSRIs therapy, participants were categorized into a responder group (n=37)
and a non-responder group (n=32). Graph-theoretical analysis was then
performed on the pre-treatment resting-state functional networks of
both groups.

Results: Significant group differences emerged in several global attribute metrics
and multiple brain region node attribute metrics (including the left middle frontal
gyrus, hippocampus, parahippocampal gyrus, amygdala, pallidum, as well as the
right anterior cingulate cortex and inferior parietal lobule). Partial correlation
analyses revealed negative correlations between nodal efficiency in the left
middle frontal gyrus, hippocampus, and parahippocampal gyrus, as well as
degree centrality in the right anterior cingulate gyrus, and the reduction rate in
Hamilton Depression Rating Scale-17 score. Furthermore, logistic regression
analysis identified lower nodal efficiency in the right inferior parietal lobule and
higher clustering coefficient in the left pallidum as significant predictors of SSRIs
treatment response.
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Conclusions: Pre-treatment functional network topological metrics
differentiating responders and non-responders demonstrate potential as
predictors for SSRIs treatment response in adolescents with MDD.

major depressive disorder, adolescents, selective serotonin reuptake inhibitors,
functional brain networks, graph theory

1 Introduction

Major depressive disorder (MDD) is a common psychiatric
disorder that severely impairs psychosocial functioning and reduces
quality of life in affected individuals (1). Typically emerging during
adolescence, MDD is characterized by core symptoms including
persistent depressed mood, loss of interest or pleasure (anhedonia),
and recurrent suicidal ideation (2). Epidemiologic studies indicate
that approximately 20% of children and adolescents globally
experience depressive symptoms or meet diagnostic criteria for
depression, with prevalence rates exhibiting a concerning upward
trend (3). Selective serotonin reuptake inhibitors (SSRIs) are
currently recommended as the first-line pharmacological
intervention for adolescents with MDD (4, 5). However, SSRIs
exhibit a delayed therapeutic onset, typically requiring 2 to 6 weeks
to become clinically apparent (6). Moreover, findings from multiple
clinical studies demonstrate that the overall treatment response rate
to SSRIs in adolescent MDD patients ranges only from 55% to 60%
(7-9). Critically, reliable predictive biomarkers for early treatment
response remain elusive.

Current longitudinal neuroimaging studies have not only
confirmed that SSRIs induce structural and functional alterations
in specific brain regions of MDD patients but also revealed
differential changes between treatment responders and non-
responders associated with symptomatic improvement (9, 10).
These studies further suggest that baseline brain structure and
function may serve as potential predictors of treatment outcome.
Previous research utilizing multimodal MRI and clinical data with
machine learning algorithms achieved a prediction accuracy of 63%
for sertraline treatment response in adults with MDD (11).
Similarly, another study successfully predicted the efficacy of
SSRIs at 2 weeks post-treatment in adolescent MDD patients
using baseline radiomic features extracted from structural MRI
within a machine learning framework, yielding an AUC of 0.954 for
treatment response prediction (12). However, significant limitations
persist in studies predicting SSRIs response specifically in drug-
naive, first-episode adolescent MDD patients. For instance, some
investigations focus solely on short-term efficacy assessment at 2
weeks (12), a time point when treatment outcomes remain unstable.
Additionally, most studies concentrate on imaging analyses of
single brain regions rather than whole-brain networks.
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Mounting evidence highlights the role of whole-brain networks
in the pathophysiology of MDD with antidepressant treatment
effects distributed across multiple functional brain networks (13-
15). Graph theory provides a robust framework for quantifying
complex topological properties within structural and functional
brain networks (16). Cross-sectional studies consistently reveal
significant topological abnormalities in brain networks of
adolescents with MDD (17-19), while longitudinal research
further demonstrates that these networks undergo topological
changes following 8 weeks of SSRIs treatment (20). Critically,
graph-theoretical analyses in adult MDD populations indicate
that reduced degree centrality in the dorsomedial prefrontal
cortex (dmPFC) post-SSRIs treatment significantly correlates with
clinical improvement (21). This evidence suggests that graph theory
can identify therapy-relevant topological features with potential
predictive utility for treatment response. Nevertheless, research
specifically characterizing brain network topology underlying
differential SSRIs responses in drug-naive, first-episode adolescent
MDD patients remains scarce.

Therefore, this study aims to employ whole-brain resting-state
functional magnetic resonance imaging (fMRI) data from drug-
naive, first-episode adolescent MDD patients and apply graph-
theoretic analysis to identify brain network topological features
predictive of SSRIs treatment response. These findings may inform
personalized treatment strategies to enhance clinical symptom
management in this population. We hypothesize that: (1) Pre-
treatment brain network topology significantly differs between
treatment responders and non-responders following 8 weeks of
SSRIs therapy; (2) Specific topological metrics correlate with clinical
symptom improvement and demonstrate predictive potential for
SSRIs response.

2 Materials and methods
2.1 Participants

Sixty-nine adolescent MDD were recruited through the
Department of Psychiatry at The First Affiliated Hospital of

Chongqing Medical University. The conduct of this study was
approved by the Ethics Committee of the First Affiliated Hospital
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of Chongqing Medical University (Ethical approval No. 2020-864).
All participants received a diagnosis of MDD based on the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5), confirmed through Structured Clinical
Interviews (SCID) conducted by two board-certified psychiatrists.
Demographic and clinical information was systematically collected
for all included patients. Participants met the following criteria: (1)
aged 13-18 years; (2) The 17-item Hamilton Depression Rating
Scale (HAMD-17) score >7; (3) first depressive episode and
psychotropic medication-naive; (4) right-handed; (5) absence of
severe medical/neurological conditions, psychiatric disorders other
than MDD, substance abuse/dependence, or head trauma with loss
of consciousness; and (6) no comorbid psychotic disorders—with
the exception that anxiety comorbidity was permitted if MDD was
the principal diagnosis and primary reason for clinical presentation;
(7) Individuals with MRI contraindications were excluded. Written
informed consent was obtained from all adolescent participants and
their legal guardians.

2.2 Symptom assessment and grouping

HAMD-17 and Hamilton Anxiety Scale (HAMA) were
administered to evaluate Severity of the patient’s depressive and
anxiety symptoms. All patients underwent 8 weeks of SSRIs
treatment and were subsequently stratified into responder (n=37)
and non-responder (n=32) groups based on HAMD-17 score
reduction rates (250% for responders; <50% for non-responders).
The HAMA score is primarily used to describe pre-treatment
clinical characteristics of the sample and to assess comparability
between responder and non-responder groups regarding baseline
anxiety levels in subsequent analyses.

2.3 MRI data acquisition

All participants underwent scanning using a 3.0-T MRI system
(Skyra, Siemens Healthcare, Erlangen, Germany) with a 32-channel
head coil, where foam pads and earplugs were utilized to minimize
head motion and attenuate scanner noise. Participants were
instructed to remain relaxed with closed eyes while maintaining
wakefulness; no subjects reported discomfort or sleep onset during
scanning. Conventional axial T2-weighted and fluid-attenuated
inversion recovery (FLAIR) images (5-mm slice thickness) were
acquired for lesion screening, followed by whole-brain resting-state
fMRI data acquisition via gradient-echo echo-planar imaging
(GRE-EPI) sequence with these parameters: 36 axial slices; 3-mm
slice thickness (no gap); repetition time (TR)=2,000 ms; echo time
(TE)=30 ms; flip angle=90°; matrix=64 X 64; voxel size=3.4 x 3.4 x 3
mm?; field of view (FOV)=220 x 220 mm?. This 8-minute fMRI
scan yielded 240 volumes per participant. High-resolution
structural images were then obtained using a magnetization-
prepared rapid gradient-echo (MPRAGE) T1-weighted sequence
with parameters: 192 sagittal slices; 1-mm slice thickness (no gap);
TR=2,000 ms; TE=2.56 ms; flip angle=9° matrix=256 x 256;
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isotropic voxel size=1 x 1 x 1 mm? FOV=256 x 256 mm’.
Finally, two radiologists performed visual quality control on all
images to exclude lesions and artifacts.

2.4 Data processing

DICOM raw images were converted to NIFTI format using
dem2nii software. Resting-state fMRI data preprocessing was
performed in MATLAB 2023a (MathWorks, Natick, MA, USA)
via DPABI V9.0 (http://rfmri.org/DPABI) (22), which operates on
the SPM12 platform. The preprocessing pipeline comprised: (1)
removal of the first 10 time points, (2) slice timing correction, (3)
three-dimensional rigid-body motion correction, and (4) spatial
normalization to echo-planar imaging (EPI) template space with 3
x 3 x 3 mm® resampling. Normalized images were smoothed with a
6-mm full-width-at-half-maximum (FWHM) Gaussian kernel
followed by linear detrending. Nuisance covariates—including
Friston-24 head motion parameters and white matter signals—
were regressed from the fMRI time series. Temporal bandpass
filtering (0.01-0.08 Hz) was subsequently applied. Volumetric
outliers were scrubbed using framewise displacement (FD)
thresholding (FD > 0.5 mm). Participants exhibiting excessive
motion (>2.5 mm translation, >2.5° rotation, or >50% scrubbed
volumes) were excluded from subsequent analyses. Functional
networks were then constructed in DPABI using preprocessed
fMRI data. The automated anatomical labeling (AAL) atlas
parcellated the brain into 90 regions of interest (ROIs), serving as
network nodes. For each subject, a 90 x 90 functional connectivity
matrix was generated by computing Pearson correlation coefficients
between regional time series.

Graph theoretical analysis was conducted using DPABINet 1.3
(http://rfmri.org/DPABI) to quantify topological properties of
functional brain networks. Global topological metrics included:
global efficiency (Eglob), local efficiency (Eloc), clustering
coefficient (Cp), characteristic path length (Lp), normalized
clustering coefficient (y), normalized characteristic path length
(1), small-worldness scalar (G), assortativity and modularity.
Nodal topological properties (degree centrality, nodal efficiency,
betweenness, and clustering coefficient) were additionally analyzed
across all parcellated regions. We also computed the degree and link
weight distribution for each patient group. The degree of a node was
defined as the number of connections it possessed within the binary
network. The degree distribution was extracted for each subject, and
scatter plots were generated to compare the distributions between
the two groups. The link weight distribution was defined as the
probability distribution composed of the strength values of all
existing functional connections. For each subject, all functional
connectivity strength values were extracted from the functional
connectivity matrix. Scatter plots were subsequently created to
visualize and compare the link weight distributions of the two
groups. Following established methodology (23), topological
metrics were computed across a sparsity threshold range of 0.10-
0.34 (incremental step=0.01) to ensure measurement robustness.
For each topological metric, the area under the curve (AUC) was

frontiersin.org


http://rfmri.org/DPABI
http://rfmri.org/DPABI
https://doi.org/10.3389/fpsyt.2025.1675719
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Mo et al.

calculated over this sparsity range to generate threshold-insensitive
integrated indices for network normalization.

2.5 Statistical analysis

Demographic and clinical characteristics between responders and
non-responders were compared employing: Mann-Whitney U tests
for non-normal continuous variables (age), chi-square tests for
categorical variables (gender), and independent t-tests for normally
distributed clinical scores (HAMD-17, HAMA). Group differences in
network properties were assessed using nonparametric permutation
tests on the AUC of each topological metric based on MATLAB. For
each metric, all values were randomly assigned to two groups, and the
inter-group mean difference was calculated. This randomization
procedure was iterated 10,000 times, and the 95th percentile of
each distribution was used as the critical value for a two-tailed test
of the null hypothesis with a type I error of 0.05. Statistical
significance for nodal measures was then corrected using false
discovery rate (FDR) method (0t=5%). We performed Kolmogorov-
Smirnov (K-S) tests and Mann-Whitney U tests to statistically
compare the degree and link weight distributions between the two
groups. Partial correlation analyses-controlling for age and gender-
examined relationships between network topology indices and
symptom measures (Pre-treatment HAMD-17, AHAMD-17), with
statistical significance defined as P<0.05. Significant global and nodal
attributes identified through univariate regression subsequently
underwent forward likelihood ratio (LR) binary logistic regression
to identify SSRIs treatment response predictors.

3 Results
3.1 Demographic characteristics

Pre-treatment MRI and clinical data were collected from 69
adolescent MDD patients. Following 8 weeks of SSRIs treatment,
37 patients were classified as responders and 32 as non-responders.
As presented in Table 1, the groups showed no statistically significant
differences (P > 0.05) in age, sex distribution, Body Mass Index (BMI)
or Pre-treatment scores on the HAMD-17 and HAMA scores.

3.2 Comparison of graph theory indicators

Compared to responders, non-responders exhibited
significantly increased values in global network metrics including
normalized Cp, Eloc, modularity, and ¢ (Figure 1, Table 2). At the
nodal level: Higher nodal efficiency was observed in non-responders
within the left middle frontal gyrus (MFG), left hippocampus, left
parahippocampal gyrus, right inferior parietal lobule (IPL), and
right angular gyrus. Elevated betweenness centrality occurred in the
left pallidum, left postcentral gyrus, left cuneus, and right
parahippocampal gyrus. Increased clustering coefficients were
found in the left hippocampus, left parahippocampal gyrus, right
IPL, and left amygdala but decreased in the bilateral putamen and
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TABLE 1 Demographic and clinical characteristics.

Non-
o Responders
Characteristics responders P-value
(n=37)
(n=32)
Age 15.57 + 1.80 1528 + 1.20 0.383"
Sex(male/female) 14/23 6/26 0.0817
BMI 20.64 + 3.14 21.43 + 3.84 0.181°
Pre-treatment 1832 + 474 18.47 + 6.26 0914°
HAMD-17 e B '
Pre-treatment 3
15.70 + 6.67 15.03 + 6.74 0.679
HAMA
After-treatment 3.68 + 3.50 17.14 * 6.60 <0.001
HAMD-17 o T ’
After-treatment 3.06 + 3.20 14.69 = 8.75 <0.001
HAMA e R '

HAMD-17, The 17-item Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Scale;
lMann—Whitney U test; 2chi—square tests; “t-tests.

left pallidum. Higher degree centrality was identified in the right
anterior cingulate cortex (ACC), whereas reduced degree centrality
was observed in both the right fusiform gyrus and the left
supramarginal gyrus (P <0.05) (Figure 2, Table 3). For degree and
link weight distribution, there was no statistically significant
difference in degree distribution between the two patient groups,
while the response group exhibited a higher link weight
distribution. (see Supplementary Figures 1, 2).

3.3 Correlation with clinical symptoms

Partial correlation analyses controlling for age and sex revealed
no significant associations between global network metrics and
AHAMD-17 scores (P > 0.05). However, nodal metrics
demonstrated significant correlations: betweenness centrality in the
left cuneus, left postcentral gyrus and left pallidum; nodal efficiency in
the left MFG, left hippocampus, left parahippocampal gyrus and right
angular gyrus; and degree centrality in the right ACC showed
negative correlations with AHAMD-17 (all P<0.05). Conversely,
positive correlations were observed for the clustering coefficient in
the left putamen and degree centrality in the right fusiform gyrus and
left supramarginal gyrus (all P<0.05). Critically, nodal efficiency in the
left MFG and degree centrality in the right ACC were negatively
correlated with absolute HAMD-17 scores (P<0.05)(Figure 3).
Subsequent binary logistic regression identified lower nodal
efficiency in the right IPL (sensitivity=0.459, specificity=0.906,
AUC=0.692) and higher clustering coefficient in the left pallidum
(sensitivity=0.703, specificity=0.594, AUC=0.655) as significant
predictors of 8-week SSRIs treatment response (Figure 4, Table 4).

4 Discussion

This resting-state fMRI study identified potential biomarkers
predictive of SSRIs treatment response by comparing Pre-treatment
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FIGURE 1

Group differences in global topological properties. Eloc: local efficiency; y: normalized clustering coefficient; ¢: small-worldness scalar. AUC, area

under the receiver operating characteristic curve.

TABLE 2 Group differences in global topological properties.

Global

. Non-
topological Responders P-value
a responders
properties
Clustering coefficient 0.1418 + 0.0065 0.1445 + 0.0048 | 0.058
Characteristic path length | 0.4632 + 0.0241 0.4606 + 0.0157 | 0.613
Normalized Clustering 1
Rk 0.4463 + 0.0640 0.4804 + 0.0672 | 0.035
coefficient
normalized Characteristic
0.2644 + 0.0079 0.2638 + 0.0061 0.767
path length
Small-worldness scalar 0.4029 + 0.0634 0.4332 £ 0.0617  0.049"
Local efficiency 0.1808 + 0.0055 0.1841 + 0.0047  0.010"
Global efficiency 0.1277 + 0.0058 0.1283 + 0.0037 | 0.597
Assortativity 0.0482 + 0.0173 0.0546 + 0.0241 0.209
Modularity 0.0830 + 0.0108 0.0889 + 0.0108  0.029"
'P<0.05.

functional brain network topology between treatment responders
and non-responders in first-episode, drug-naive adolescents with
MDD. We detected significant between-group differences in global
network properties and nodal metrics across key brain regions at
pre-treatment. Critically, lower nodal efficiency in the right IPL and
higher clustering coefficients in the left pallidum emerged as
predictors of treatment response. These findings demonstrate that
graph-theoretic analysis effectively captures treatment-predictive
topological features in brain networks.

This study reveals that non-responders to SSRIs exhibit
treatment significantly elevated global network segregation
metrics (y, Eloc, modularity) compared to responders.

Frontiers in Psychiatry

Furthermore, non-responders showed a pronounced rise in ¢ and
a notable reduction in link weight distribution. This decrease in link
weight distribution may reflect a relative loss of redundant
connections, which could potentially improve the efficiency of
information integration within brain networks. This finding
aligns with enhanced small-world characteristics in the non-
responders. These results point to a more severe segregation-
integration imbalance potentially underlying pharmacoresistance
in non-responders (24, 25). Supporting evidence links global
topology to SSRIs efficacy: Wang et al. demonstrated negative
correlations between pre-treatment Lp, A and HAMD-17
reduction after 8-week antidepressant treatment in adult MDD,
while Eglob showed a positive correlation (26). Similarly, Nakamura
et al. observed increased small-world efficiency and modularity
paralleling clinical improvement in escitalopram-treated obsessive-
compulsive disorder (OCD) patients after 16 weeks (27).
Collectively, these results-including ours-position global
topological metrics as transdiagnostic predictors of SSRIs
response. Nevertheless, significant heterogeneity across studies
necessitates large-sample longitudinal validation through graph-
theoretic approaches.

Our findings revealed that elevated nodal efficiency in the left
MEG of non-responders, indicating enhanced local information
integration, is associated with unfavorable treatment outcomes. The
MFG, a core component of the dorsolateral prefrontal cortex
(DLPFC), plays well-established roles in cognitive control, working
memory, and emotion regulation (28-30). Convergent longitudinal
evidence demonstrates that escitalopram responders exhibit reduced
resting-state functional connectivity (rsFC) between the right DLPFC
and left MFG after 8-week treatment, while non-responders show no
such change (10). Similarly, reduced left MFG activation during
verbal working memory (VWM) task-fMRI at baseline correlates
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FIGURE 2

Group differences in nodal property metrics. Spheres represent brain regions showing significant differences between non-responders and
responders. Red indicates higher values in non-responders; blue indicates lower values in non-responders relative to responders. (A) Degree
centrality; (B) Nodal efficiency; (C) Betweenness; (D) Clustering coefficient. SMG.L, Left supramarginal gyrus; ACG.R, Right anterior cingulate gyrus;
FFG.R, Right fusiform gyrus; MFG.L, Left middle frontal gyrus; HIP.L, Left hippocampus; PHG.L, Left parahippocampal gyrus; IPL.R, Right inferior
parietal lobule; PoCG.L, Left postcentral gyrus; PAL.L, Left pallidum; CUN.L, Left cuneus; PHG.R, Right parahippocampal gyrus; PUT.L, Left putamen;

AMYG.L, Left amygdala; PUT.R, Right putamen.

with better clinical outcomes (31), and structural MRI studies
associate greater left MFG grey matter density with favorable SSRIs
response (32). Additionally, we observed between-group differences
in the betweenness centrality of the left postcentral gyrus, nodal
efficiency and clustering coefficient of the right IPL- regions
comprising the frontoparietal control network (FPCN) with the left
MFG. The FPCN mediates executive control and coordinates goal-
directed behaviors (33, 34). Notably, pre-treatment thalamo-FPCN
functional connectivity predicts sertraline outcomes in adult MDD
with moderate accuracy (R*=0.63) (35), further supporting FPCN’s
predictive utility for SSRIs response. Collectively, these findings
highlight both the left MFG and its embedded FPCN circuitry as
critical neural substrates influencing SSRI response, warranting future
multicenter studies that integrate these multimodal features via
machine learning into robust, precision treatment prediction models.

Frontiers in Psychiatry

Our study reveals elevated degree centrality in the right anterior
cingulate cortex (ACC) of SSRI non-responders compared to
responders, indicating hyperintegration of information processing
in this key region for emotional regulation. The ACC mediates
emotional regulation through its coordination of cognitive and
affective processes within the prefrontal circuitry (36, 37). What
we found aligns with task-based fMRI evidence linking ACC
overactivation to poor antidepressant outcomes: symptom
improvement in SSRI-treated adolescent MDD correlates with
reduced activation in the rostral subgenual ACC during negative
emotion tasks (38). Convergent evidence demonstrates that lower
pre-treatment ACC responses during verbal working memory
(VWM) tasks predict better clinical outcomes (31), while
heightened pre-treatment ACC-amygdala connectivity during
negative emotional processing predicts treatment non-response

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1675719
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Mo et al.

TABLE 3 Group differences in nodal property metrics.

Nodal property

Brain regions  T-value P-value

metrics
D li igh i
egree centrality ng t anterior 240 0019
cingulate cortex
Right fusiform gyrus -2.26 0.027
Left supramarginal
-2.38 0.020
gyrus
Nodal efficiency Left middle frontal
2.23 0.029
gyrus
Left hippocampus 213 0.037
Left hi al
eft parahippocamp 274 0.008
gyrus
Right inferior parietal
2.07 0.042
lobule
Right angular gyrus 2.07 0.042
Betweenness Right
parahippocampal 211 0.039
gyrus
Left cuneus 2.03 0.046
Left postcentral gyrus 2.19 0.032
Left pallidum 2.38 0.020
Clustering coefficient Left hippocampus 2.40 0.019
L hi 1
eft parahippocampa 241 0,019
gyrus
Left amygdala 217 0.034
Right inferi .
ght inferior parietal 261 0011
lobule
Left putamen -2.45 0.017
Right putamen -2.17 0.034
Left pallidum -2.21 0.031

(39). Critically, ACC metrics show direct predictive utility: pre-
treatment subgenual ACC (sgACC) resting-state functional
connectivity achieves 72.64% accuracy in predicting 12-week
escitalopram response (40), and support vector machine (SVM)
models incorporating ACC features achieved 79.41% accuracy for
SSRIs response prediction (41). Collectively, these findings establish
pre-treatment ACC functional features—particularly its
hyperconnectivity—as a robust predictor of SSRI treatment
response, offering significant potential for guiding personalized
treatment selection.

Our findings reveal elevated clustering coefficients in the left
amygdala of SSRI non-responders compared to responders,
indicating altered local functional integration within this key
affective hub, which aligns with convergent evidence linking
aberrant left amygdala activity and connectivity to poor
antidepressant outcomes. The amygdala serves as a hub of the
affective network (AN), critically enabling higher-order emotional
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processing including emotion perception, emotional memory
formation, and affect regulation (42, 43). Evidence indicates left
amygdala dominance, with preferential activation during affective
challenges and unique responsiveness to top-down regulation (44,
45), suggesting heightened susceptibility to prefrontal modulation
in affective pathology. Our finding aligns with reports that reduced
left amygdala activation during masked emotional face tasks
predicts superior citalopram response at 8 weeks (46), while pre-
treatment hyperconnectivity between the amygdala and left
supplementary motor area (SMA) correlates with SSRI non-
response in adolescent MDD (47). Collectively, these differential
left amygdala alterations hold promise for predicting SSRI efficacy.
Future multicenter longitudinal studies should leverage multimodal
MRI (structural, functional, connectomic) and machine learning to
validate amygdala-based biomarkers for SSRI response prediction.

This study identifies elevated nodal efficiency and clustering
coefficient in the left hippocampus/parahippocampal gyrus of SSRI
non-responders compared to responders, suggesting aberrant local
functional integration and heightened network engagement within
these core limbic structures, which aligns with convergent evidence
implicating left hippocampal/parahippocampal alterations in poor
treatment outcomes. The hippocampus and parahippocampal gyrus
constitute core limbic structures essential for emotion regulation,
memory encoding and retrieval (36, 38, 48). We observed elevated
nodal efficiency and clustering coefficient in the left hippocampus/
parahippocampal gyrus of non-responders, suggesting aberrant
local functional integration and heightened network engagement.
This aligns with task-fMRI evidence linking reduced left
hippocampal activation during positive word-pair encoding to
poor treatment response (49). Structural MRI studies further
associate baseline gray matter density/volume in these regions
with SSRI outcomes (32, 50). However, divergent findings exist-
such as positive correlations between left hippocampal nodal
efficiency and early antidepressant symptom changes in adult
MDD (51) - potentially attributable to treatment duration, illness
chronicity, or sample size limitations. Additionally, non-responders
exhibited increased nodal efficiency in the right angular gyrus and
decreased degree centrality in the left supramarginal gyrus-regions
belonging to the default mode network (DMN) alongside the
hippocampal complex. The DMN supports self-referential
processing, autobiographical memory, and social cognition (52,
53), with its hyperactivity potentially reflecting pathological self-
focus in MDD. Crucially, DMN connectivity patterns (intra-
and inter-network) demonstrate predictive utility for SSRIs
treatment efficacy (54-57), solidifying its role as a key predictor.
Collectively, these findings highlight both the left hippocampal/
parahippocampal and their embedded DMN circuitry as potential
SSRI response predictors. Future large-scale longitudinal studies
integrating dynamic network analysis and machine learning should
establish robust biomarkers.

Critically, this study identifies distinct pre-treatment alterations
in the right inferior parietal lobule (IPL) and left pallidum as
potential predictors of SSRI treatment response, with lower nodal
efficiency in the right IPL and higher clustering coefficient in the left

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1675719
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Mo et al.

10.3389/fpsyt.2025.1675719

A B (¢
30.00 30.00 30.00
r=-0.282 ‘ r=-0.341 r=-0.359
r 200 p=0.025 20 p=0.006 1 20 p=0.004
a — =) =)
§ 10.00 B “ § 10.00 g 10.00 .
<4 0 9w ~ 3
10.00 10.00 10.00
41000 .00 1000 2000 3000  40.00 00 20.00 40.00 60.00 .00 20.00 40.00 60.00
CUN.L (Betweenness) PoCG.L (Betweenness) PAL.L (Betweenness)
D E F
30.00 30.00 30.00
r=-0.413 -
~ 2000 ~ 2000— L . i??0.00'I ~ 20.00 ~—
=] ol o . ~ . a
§ 10.00 E 10.00 § 10.00
< 00 . .. - dq 00 — d 00
-10.00 -10.00 10.00
10 12 14 16 18 20 22 00 05 10 15 20 25 00 05 10 15 20 25
MFG.L (NE) PHG.L (NE) AG.R (NE)
G H |
30.00 30.00 30.00
r=-0.386
~ 20,00 ~ 000 . . p.=0.'002 ~ 20.007
a — a a —
§ 10.00 § 10.00 g 10.00
4 S g RIS . .
ot 1]
-10.00 -10.00 10.00
-05 .00 .05 10 15 20 25 00 05 10 15 20 00 05 10 15 20 25
HIP.L (CC) PHG.L (CC) AMYG.L (CcC)
J K L
30.00 30.00 30.00
r=-0.370
~ 2000‘“17 o .p=0003 ~ 20.00 ~ 20.00
o — p fa} o
% 10.00 . § 10.00 g 10.00
4 — 9w < 4
-10.00 -10.00 10.00
.00 200 400 600 800  10.00 09 12 15 18 21 2.00 4.00 6.00 8.00 10.00
ACC.R (DC) PUT.L (CC) FFG.R (DC)
M
30.00
~ 20,00
a
§ 10.00
< 00 .
-* .
-10.00
00 200 400 600 800 10.00 1200
SMG.R (DC)
FIGURE 3

Association between nodal properties and AHAMD-17 scores. AHAMD-17: Pre-treatment HAMD-17 score minus Post-treatment HAMD-17 score;
(A) CUN.L (Betweeness), Betweeness in the left cuneus; (B) POCG.L (Betweeness), Betweeness in the left postcentral gyrus; (C) PAL.L (Betweeness),
Betweeness in the left postcentral gyrus; (D) MFG.L (NE), Nodal efficiency in the left middle frontal gyrus; (E) PHG.L (NE), Nodal efficiency in the left
parahippocampal gyrus; (F) AG.R (NE), Nodal efficiency in the right angular gyrus; (G) HIP.L (CC), Clustering coefficient in the left hippocampus;

(H) PHG.L (CC), Clustering coefficient in the left parahippocampal gyrus;
Degree centrality in the right anterior cingulate cortex; (K) PUT.L (CC), C

(I) AMYG.L (CQ), Clustering coefficient in the left amygdala; (J) ACC.R (DC),
lustering coefficient in the left putamen; (L) FFG.R (DC), Degree centrality in

the right fusiform gyrus; (M) SMG.R (DC), Degree centrality in the left supramarginal gyrus.

pallidum specifically associated with favorable outcomes. Non-
responders exhibited elevated nodal efficiency in the right IPL but
reduced clustering coefficient in the left pallidum compared to
responders. The IPL mediates fundamental attention, language, and
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social cognition (58). Relevant evidence demonstrates IPL’s
predictive relevance: structural MRI reveals significantly greater
post-treatment cortical thickness increases in the right IPL of
remitters after 8-week antidepressant therapy (59), while task-
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TABLE 4 Binary logistic regression analysis of nodal property metrics.

Nodal property metric OR(95%ClI) P-value
Right inferior parietal lobule
R 0.002(0.000~0.258) 0.012
nodal efficiency
Left palli 4.944
eft pallidum 54.9 0.026

clustering coefficient (1.626~1857.049)

OR (95%CI): Odds ratios (OR) and 95% confidence intervals (95% CI) for predicting
treatment response compared to the non-responders group.

fMRI shows greater pre-treatment right IPL activation during Go/
No Go tasks in eventual SSRIs remitters (60). Similarly, the
pallidum contributes to emotional processing and antidepressant
neuromodulation (61). Strikingly analogous to our results,
fluoxetine responders exhibit a transient metabolic increase
followed by a decrease in the left pallidum (62), with pre-
treatment temporal variability in this region predicting 2-week
HAMD reduction (r=0.62, P<0.01) (63). These converging lines
of evidence establish both right IPL and left pallidum as robust
predictors of SSRIs efficacy.

This study has several limitations. First, although all
participants received SSRIs as primary treatment, potential
confounding effects from concomitant medications
(e.g.mirtazapine, buspirone) cannot be fully excluded in real-
world clinical settings. Future studies should implement stricter
enrollment criteria, medication stratification, or subgroup analyses
to address this limitation. Second, the moderate sample size (n=69)
constrains generalizability; multicenter collaborations with
expanded cohorts are essential. Third, it should be noted that
spatial smoothing was applied during preprocessing. This process

Frontiers in Psychiatry

may influence the estimation of the functional connectivity matrix
and consequently bias the subsequent calculation of network
metrics (64). To further demonstrate the robustness of our
results, we repeated the analyses using unsmoothed data. The
statistical results were similar to those obtained with smoothed
data, suggesting that smoothing did not unduly affect our
conclusions (see Supplementary Table 1). Fourth, the use of the
AAL atlas for parcellation represents another potential limitation,
as the choice of atlas can influence estimates of network topology
(65). Future studies should therefore compare graph-theoretic
results across multiple parcellation schemes. Fifth, the exclusive
reliance on baseline MRI data precludes longitudinal assessment;
future work should incorporate serial neuroimaging to
establish causal relationships between network dynamics and
treatment outcomes.

5 Conclusion

This study pioneers graph-theoretical analysis of pre-treatment
functional brain networks to predict SSRI response in first-episode,
drug-naive adolescent MDD, revealing significant topological
differences between responders and non-responders. Critically,
reduced nodal efficiency in the right IPL and elevated clustering
coefficient in the left pallidum emerged as key predictors of
treatment response. These topology-based features offer potential
neuroimaging indicators for precision medicine. Future
multicenter longitudinal studies should validate these predictors
using multimodal MRI, while machine learning frameworks
integrating neuroimaging, genomics, and metabolomics could
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elucidate biological mechanisms and advance precision psychiatry
for MDD.
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