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Jie Wang1, Haiqing Deng1, Fajin Lv1, Xinyu Zhou2, Yun Mao1*

and Yang Huang1*

1Department of Radiology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical
University, Chongqing, China
Background: Substantial interindividual variability exists in the response of

adolescents with major depressive disorder (MDD) to selective serotonin

reuptake inhibitors (SSRIs), and reliable early predictors of treatment response

are lacking.

Methods: Resting-state functional magnetic resonance imaging (fMRI) data and

clinical scale scores were collected from 69 adolescents with first-episode,

drug-naïve MDD. Based on treatment response assessed after 8 weeks of

SSRIs therapy, participants were categorized into a responder group (n=37)

and a non-responder group (n=32). Graph-theoretical analysis was then

performed on the pre-treatment resting-state functional networks of

both groups.

Results: Significant group differences emerged in several global attribute metrics

and multiple brain region node attribute metrics (including the left middle frontal

gyrus, hippocampus, parahippocampal gyrus, amygdala, pallidum, as well as the

right anterior cingulate cortex and inferior parietal lobule). Partial correlation

analyses revealed negative correlations between nodal efficiency in the left

middle frontal gyrus, hippocampus, and parahippocampal gyrus, as well as

degree centrality in the right anterior cingulate gyrus, and the reduction rate in

Hamilton Depression Rating Scale-17 score. Furthermore, logistic regression

analysis identified lower nodal efficiency in the right inferior parietal lobule and

higher clustering coefficient in the left pallidum as significant predictors of SSRIs

treatment response.
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Conclusions: Pre-treatment functional network topological metrics

differentiating responders and non-responders demonstrate potential as

predictors for SSRIs treatment response in adolescents with MDD.
KEYWORDS

major depressive disorder, adolescents, selective serotonin reuptake inhibitors,
functional brain networks, graph theory
1 Introduction

Major depressive disorder (MDD) is a common psychiatric

disorder that severely impairs psychosocial functioning and reduces

quality of life in affected individuals (1). Typically emerging during

adolescence, MDD is characterized by core symptoms including

persistent depressed mood, loss of interest or pleasure (anhedonia),

and recurrent suicidal ideation (2). Epidemiologic studies indicate

that approximately 20% of children and adolescents globally

experience depressive symptoms or meet diagnostic criteria for

depression, with prevalence rates exhibiting a concerning upward

trend (3). Selective serotonin reuptake inhibitors (SSRIs) are

currently recommended as the first-line pharmacological

intervention for adolescents with MDD (4, 5). However, SSRIs

exhibit a delayed therapeutic onset, typically requiring 2 to 6 weeks

to become clinically apparent (6). Moreover, findings from multiple

clinical studies demonstrate that the overall treatment response rate

to SSRIs in adolescent MDD patients ranges only from 55% to 60%

(7–9). Critically, reliable predictive biomarkers for early treatment

response remain elusive.

Current longitudinal neuroimaging studies have not only

confirmed that SSRIs induce structural and functional alterations

in specific brain regions of MDD patients but also revealed

differential changes between treatment responders and non-

responders associated with symptomatic improvement (9, 10).

These studies further suggest that baseline brain structure and

function may serve as potential predictors of treatment outcome.

Previous research utilizing multimodal MRI and clinical data with

machine learning algorithms achieved a prediction accuracy of 63%

for sertraline treatment response in adults with MDD (11).

Similarly, another study successfully predicted the efficacy of

SSRIs at 2 weeks post-treatment in adolescent MDD patients

using baseline radiomic features extracted from structural MRI

within a machine learning framework, yielding an AUC of 0.954 for

treatment response prediction (12). However, significant limitations

persist in studies predicting SSRIs response specifically in drug-

naïve, first-episode adolescent MDD patients. For instance, some

investigations focus solely on short-term efficacy assessment at 2

weeks (12), a time point when treatment outcomes remain unstable.

Additionally, most studies concentrate on imaging analyses of

single brain regions rather than whole-brain networks.
02
Mounting evidence highlights the role of whole-brain networks

in the pathophysiology of MDD with antidepressant treatment

effects distributed across multiple functional brain networks (13–

15). Graph theory provides a robust framework for quantifying

complex topological properties within structural and functional

brain networks (16). Cross-sectional studies consistently reveal

significant topological abnormalities in brain networks of

adolescents with MDD (17–19), while longitudinal research

further demonstrates that these networks undergo topological

changes following 8 weeks of SSRIs treatment (20). Critically,

graph-theoretical analyses in adult MDD populations indicate

that reduced degree centrality in the dorsomedial prefrontal

cortex (dmPFC) post-SSRIs treatment significantly correlates with

clinical improvement (21). This evidence suggests that graph theory

can identify therapy-relevant topological features with potential

predictive utility for treatment response. Nevertheless, research

specifically characterizing brain network topology underlying

differential SSRIs responses in drug-naïve, first-episode adolescent

MDD patients remains scarce.

Therefore, this study aims to employ whole-brain resting-state

functional magnetic resonance imaging (fMRI) data from drug-

naïve, first-episode adolescent MDD patients and apply graph-

theoretic analysis to identify brain network topological features

predictive of SSRIs treatment response. These findings may inform

personalized treatment strategies to enhance clinical symptom

management in this population. We hypothesize that: (1) Pre-

treatment brain network topology significantly differs between

treatment responders and non-responders following 8 weeks of

SSRIs therapy; (2) Specific topological metrics correlate with clinical

symptom improvement and demonstrate predictive potential for

SSRIs response.
2 Materials and methods

2.1 Participants

Sixty-nine adolescent MDD were recruited through the

Department of Psychiatry at The First Affiliated Hospital of

Chongqing Medical University. The conduct of this study was

approved by the Ethics Committee of the First Affiliated Hospital
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of Chongqing Medical University (Ethical approval No. 2020–864).

All participants received a diagnosis of MDD based on the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-5), confirmed through Structured Clinical

Interviews (SCID) conducted by two board-certified psychiatrists.

Demographic and clinical information was systematically collected

for all included patients. Participants met the following criteria: (1)

aged 13–18 years; (2) The 17-item Hamilton Depression Rating

Scale (HAMD-17) score >7; (3) first depressive episode and

psychotropic medication-naïve; (4) right-handed; (5) absence of

severe medical/neurological conditions, psychiatric disorders other

than MDD, substance abuse/dependence, or head trauma with loss

of consciousness; and (6) no comorbid psychotic disorders—with

the exception that anxiety comorbidity was permitted if MDD was

the principal diagnosis and primary reason for clinical presentation;

(7) Individuals with MRI contraindications were excluded. Written

informed consent was obtained from all adolescent participants and

their legal guardians.
2.2 Symptom assessment and grouping

HAMD-17 and Hamilton Anxiety Scale (HAMA) were

administered to evaluate Severity of the patient’s depressive and

anxiety symptoms. All patients underwent 8 weeks of SSRIs

treatment and were subsequently stratified into responder (n=37)

and non-responder (n=32) groups based on HAMD-17 score

reduction rates (≥50% for responders; <50% for non-responders).

The HAMA score is primarily used to describe pre-treatment

clinical characteristics of the sample and to assess comparability

between responder and non-responder groups regarding baseline

anxiety levels in subsequent analyses.
2.3 MRI data acquisition

All participants underwent scanning using a 3.0-T MRI system

(Skyra, Siemens Healthcare, Erlangen, Germany) with a 32-channel

head coil, where foam pads and earplugs were utilized to minimize

head motion and attenuate scanner noise. Participants were

instructed to remain relaxed with closed eyes while maintaining

wakefulness; no subjects reported discomfort or sleep onset during

scanning. Conventional axial T2-weighted and fluid-attenuated

inversion recovery (FLAIR) images (5-mm slice thickness) were

acquired for lesion screening, followed by whole-brain resting-state

fMRI data acquisition via gradient-echo echo-planar imaging

(GRE-EPI) sequence with these parameters: 36 axial slices; 3-mm

slice thickness (no gap); repetition time (TR)=2,000 ms; echo time

(TE)=30 ms; flip angle=90°; matrix=64 × 64; voxel size=3.4 × 3.4 × 3

mm³; field of view (FOV)=220 × 220 mm². This 8-minute fMRI

scan yielded 240 volumes per participant. High-resolution

structural images were then obtained using a magnetization-

prepared rapid gradient-echo (MPRAGE) T1-weighted sequence

with parameters: 192 sagittal slices; 1-mm slice thickness (no gap);

TR=2,000 ms; TE=2.56 ms; flip angle=9°; matrix=256 × 256;
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isotropic voxel size=1 × 1 × 1 mm³; FOV=256 × 256 mm².

Finally, two radiologists performed visual quality control on all

images to exclude lesions and artifacts.
2.4 Data processing

DICOM raw images were converted to NIFTI format using

dcm2nii software. Resting-state fMRI data preprocessing was

performed in MATLAB 2023a (MathWorks, Natick, MA, USA)

via DPABI V9.0 (http://rfmri.org/DPABI) (22), which operates on

the SPM12 platform. The preprocessing pipeline comprised: (1)

removal of the first 10 time points, (2) slice timing correction, (3)

three-dimensional rigid-body motion correction, and (4) spatial

normalization to echo-planar imaging (EPI) template space with 3

× 3 × 3 mm³ resampling. Normalized images were smoothed with a

6-mm full-width-at-half-maximum (FWHM) Gaussian kernel

followed by linear detrending. Nuisance covariates—including

Friston-24 head motion parameters and white matter signals—

were regressed from the fMRI time series. Temporal bandpass

filtering (0.01–0.08 Hz) was subsequently applied. Volumetric

outliers were scrubbed using framewise displacement (FD)

thresholding (FD > 0.5 mm). Participants exhibiting excessive

motion (>2.5 mm translation, >2.5° rotation, or >50% scrubbed

volumes) were excluded from subsequent analyses. Functional

networks were then constructed in DPABI using preprocessed

fMRI data. The automated anatomical labeling (AAL) atlas

parcellated the brain into 90 regions of interest (ROIs), serving as

network nodes. For each subject, a 90 × 90 functional connectivity

matrix was generated by computing Pearson correlation coefficients

between regional time series.

Graph theoretical analysis was conducted using DPABINet 1.3

(http://rfmri.org/DPABI) to quantify topological properties of

functional brain networks. Global topological metrics included:

global efficiency (Eglob), local efficiency (Eloc), clustering

coefficient (Cp), characteristic path length (Lp), normalized

clustering coefficient (g), normalized characteristic path length

(l), small-worldness scalar (s), assortativity and modularity.

Nodal topological properties (degree centrality, nodal efficiency,

betweenness, and clustering coefficient) were additionally analyzed

across all parcellated regions. We also computed the degree and link

weight distribution for each patient group. The degree of a node was

defined as the number of connections it possessed within the binary

network. The degree distribution was extracted for each subject, and

scatter plots were generated to compare the distributions between

the two groups. The link weight distribution was defined as the

probability distribution composed of the strength values of all

existing functional connections. For each subject, all functional

connectivity strength values were extracted from the functional

connectivity matrix. Scatter plots were subsequently created to

visualize and compare the link weight distributions of the two

groups. Following established methodology (23), topological

metrics were computed across a sparsity threshold range of 0.10–

0.34 (incremental step=0.01) to ensure measurement robustness.

For each topological metric, the area under the curve (AUC) was
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calculated over this sparsity range to generate threshold-insensitive

integrated indices for network normalization.
2.5 Statistical analysis

Demographic and clinical characteristics between responders and

non-responders were compared employing: Mann-Whitney U tests

for non-normal continuous variables (age), chi-square tests for

categorical variables (gender), and independent t-tests for normally

distributed clinical scores (HAMD-17, HAMA). Group differences in

network properties were assessed using nonparametric permutation

tests on the AUC of each topological metric based on MATLAB. For

each metric, all values were randomly assigned to two groups, and the

inter-group mean difference was calculated. This randomization

procedure was iterated 10,000 times, and the 95th percentile of

each distribution was used as the critical value for a two-tailed test

of the null hypothesis with a type I error of 0.05. Statistical

significance for nodal measures was then corrected using false

discovery rate (FDR) method (a=5%). We performed Kolmogorov-

Smirnov (K-S) tests and Mann-Whitney U tests to statistically

compare the degree and link weight distributions between the two

groups. Partial correlation analyses-controlling for age and gender-

examined relationships between network topology indices and

symptom measures (Pre-treatment HAMD-17, DHAMD-17), with

statistical significance defined as P<0.05. Significant global and nodal

attributes identified through univariate regression subsequently

underwent forward likelihood ratio (LR) binary logistic regression

to identify SSRIs treatment response predictors.
3 Results

3.1 Demographic characteristics

Pre-treatment MRI and clinical data were collected from 69

adolescent MDD patients. Following 8 weeks of SSRIs treatment,

37 patients were classified as responders and 32 as non-responders.

As presented in Table 1, the groups showed no statistically significant

differences (P > 0.05) in age, sex distribution, BodyMass Index (BMI)

or Pre-treatment scores on the HAMD-17 and HAMA scores.
3.2 Comparison of graph theory indicators

Compared to responders, non-responders exhibited

significantly increased values in global network metrics including

normalized Cp, Eloc, modularity, and s (Figure 1, Table 2). At the

nodal level: Higher nodal efficiency was observed in non-responders

within the left middle frontal gyrus (MFG), left hippocampus, left

parahippocampal gyrus, right inferior parietal lobule (IPL), and

right angular gyrus. Elevated betweenness centrality occurred in the

left pallidum, left postcentral gyrus, left cuneus, and right

parahippocampal gyrus. Increased clustering coefficients were

found in the left hippocampus, left parahippocampal gyrus, right

IPL, and left amygdala but decreased in the bilateral putamen and
Frontiers in Psychiatry 04
left pallidum. Higher degree centrality was identified in the right

anterior cingulate cortex (ACC), whereas reduced degree centrality

was observed in both the right fusiform gyrus and the left

supramarginal gyrus (P <0.05) (Figure 2, Table 3). For degree and

link weight distribution, there was no statistically significant

difference in degree distribution between the two patient groups,

while the response group exhibited a higher link weight

distribution. (see Supplementary Figures 1, 2).
3.3 Correlation with clinical symptoms

Partial correlation analyses controlling for age and sex revealed

no significant associations between global network metrics and

DHAMD-17 scores (P > 0.05). However, nodal metrics

demonstrated significant correlations: betweenness centrality in the

left cuneus, left postcentral gyrus and left pallidum; nodal efficiency in

the left MFG, left hippocampus, left parahippocampal gyrus and right

angular gyrus; and degree centrality in the right ACC showed

negative correlations with DHAMD-17 (all P<0.05). Conversely,

positive correlations were observed for the clustering coefficient in

the left putamen and degree centrality in the right fusiform gyrus and

left supramarginal gyrus (all P<0.05). Critically, nodal efficiency in the

left MFG and degree centrality in the right ACC were negatively

correlated with absolute HAMD-17 scores (P<0.05)(Figure 3).

Subsequent binary logistic regression identified lower nodal

efficiency in the right IPL (sensitivity=0.459, specificity=0.906,

AUC=0.692) and higher clustering coefficient in the left pallidum

(sensitivity=0.703, specificity=0.594, AUC=0.655) as significant

predictors of 8-week SSRIs treatment response (Figure 4, Table 4).
4 Discussion

This resting-state fMRI study identified potential biomarkers

predictive of SSRIs treatment response by comparing Pre-treatment
TABLE 1 Demographic and clinical characteristics.

Characteristics
Responders
(n=37)

Non-
responders
(n=32)

P-value

Age 15.57 ± 1.80 15.28 ± 1.20 0.3831

Sex(male/female) 14/23 6/26 0.0812

BMI 20.64 ± 3.14 21.43 ± 3.84 0.1813

Pre-treatment
HAMD-17

18.32 ± 4.74 18.47 ± 6.26 0.9143

Pre-treatment
HAMA

15.70 ± 6.67 15.03 ± 6.74 0.6793

After-treatment
HAMD-17

3.68 ± 3.50 17.14 ± 6.60 <0.001

After-treatment
HAMA

3.06 ± 3.20 14.69 ± 8.75 <0.001
fro
HAMD-17, The 17-item Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Scale;
1Mann-Whitney U test; 2chi-square tests; 3t-tests.
ntiersin.org

https://doi.org/10.3389/fpsyt.2025.1675719
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mo et al. 10.3389/fpsyt.2025.1675719
functional brain network topology between treatment responders

and non-responders in first-episode, drug-naïve adolescents with

MDD. We detected significant between-group differences in global

network properties and nodal metrics across key brain regions at

pre-treatment. Critically, lower nodal efficiency in the right IPL and

higher clustering coefficients in the left pallidum emerged as

predictors of treatment response. These findings demonstrate that

graph-theoretic analysis effectively captures treatment-predictive

topological features in brain networks.

This study reveals that non-responders to SSRIs exhibit

treatment significantly elevated global network segregation

metrics (g , Eloc, modularity) compared to responders.
Frontiers in Psychiatry 05
Furthermore, non-responders showed a pronounced rise in s and

a notable reduction in link weight distribution. This decrease in link

weight distribution may reflect a relative loss of redundant

connections, which could potentially improve the efficiency of

information integration within brain networks. This finding

aligns with enhanced small-world characteristics in the non-

responders. These results point to a more severe segregation-

integration imbalance potentially underlying pharmacoresistance

in non-responders (24, 25). Supporting evidence links global

topology to SSRIs efficacy: Wang et al. demonstrated negative

correlations between pre-treatment Lp, l and HAMD-17

reduction after 8-week antidepressant treatment in adult MDD,

while Eglob showed a positive correlation (26). Similarly, Nakamura

et al. observed increased small-world efficiency and modularity

paralleling clinical improvement in escitalopram-treated obsessive-

compulsive disorder (OCD) patients after 16 weeks (27).

Collectively, these results-including ours-position global

topological metrics as transdiagnostic predictors of SSRIs

response. Nevertheless, significant heterogeneity across studies

necessitates large-sample longitudinal validation through graph-

theoretic approaches.

Our findings revealed that elevated nodal efficiency in the left

MFG of non-responders, indicating enhanced local information

integration, is associated with unfavorable treatment outcomes. The

MFG, a core component of the dorsolateral prefrontal cortex

(DLPFC), plays well-established roles in cognitive control, working

memory, and emotion regulation (28–30). Convergent longitudinal

evidence demonstrates that escitalopram responders exhibit reduced

resting-state functional connectivity (rsFC) between the right DLPFC

and left MFG after 8-week treatment, while non-responders show no

such change (10). Similarly, reduced left MFG activation during

verbal working memory (VWM) task-fMRI at baseline correlates
FIGURE 1

Group differences in global topological properties. Eloc: local efficiency; g: normalized clustering coefficient; s: small-worldness scalar. AUC, area
under the receiver operating characteristic curve.
TABLE 2 Group differences in global topological properties.

Global
topological
properties

Responders
Non-
responders

P-value

Clustering coefficient 0.1418 ± 0.0065 0.1445 ± 0.0048 0.058

Characteristic path length 0.4632 ± 0.0241 0.4606 ± 0.0157 0.613

Normalized Clustering
coefficient

0.4463 ± 0.0640 0.4804 ± 0.0672 0.0351

normalized Characteristic
path length

0.2644 ± 0.0079 0.2638 ± 0.0061 0.767

Small-worldness scalar 0.4029 ± 0.0634 0.4332 ± 0.0617 0.0491

Local efficiency 0.1808 ± 0.0055 0.1841 ± 0.0047 0.0101

Global efficiency 0.1277 ± 0.0058 0.1283 ± 0.0037 0.597

Assortativity 0.0482 ± 0.0173 0.0546 ± 0.0241 0.209

Modularity 0.0830 ± 0.0108 0.0889 ± 0.0108 0.0291
1P<0.05.
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with better clinical outcomes (31), and structural MRI studies

associate greater left MFG grey matter density with favorable SSRIs

response (32). Additionally, we observed between-group differences

in the betweenness centrality of the left postcentral gyrus, nodal

efficiency and clustering coefficient of the right IPL- regions

comprising the frontoparietal control network (FPCN) with the left

MFG. The FPCN mediates executive control and coordinates goal-

directed behaviors (33, 34). Notably, pre-treatment thalamo-FPCN

functional connectivity predicts sertraline outcomes in adult MDD

with moderate accuracy (R²=0.63) (35), further supporting FPCN’s

predictive utility for SSRIs response. Collectively, these findings

highlight both the left MFG and its embedded FPCN circuitry as

critical neural substrates influencing SSRI response, warranting future

multicenter studies that integrate these multimodal features via

machine learning into robust, precision treatment prediction models.
Frontiers in Psychiatry 06
Our study reveals elevated degree centrality in the right anterior

cingulate cortex (ACC) of SSRI non-responders compared to

responders, indicating hyperintegration of information processing

in this key region for emotional regulation. The ACC mediates

emotional regulation through its coordination of cognitive and

affective processes within the prefrontal circuitry (36, 37). What

we found aligns with task-based fMRI evidence linking ACC

overactivation to poor antidepressant outcomes: symptom

improvement in SSRI-treated adolescent MDD correlates with

reduced activation in the rostral subgenual ACC during negative

emotion tasks (38). Convergent evidence demonstrates that lower

pre-treatment ACC responses during verbal working memory

(VWM) tasks predict better clinical outcomes (31), while

heightened pre-treatment ACC-amygdala connectivity during

negative emotional processing predicts treatment non-response
FIGURE 2

Group differences in nodal property metrics. Spheres represent brain regions showing significant differences between non-responders and
responders. Red indicates higher values in non-responders; blue indicates lower values in non-responders relative to responders. (A) Degree
centrality; (B) Nodal efficiency; (C) Betweenness; (D) Clustering coefficient. SMG.L, Left supramarginal gyrus; ACG.R, Right anterior cingulate gyrus;
FFG.R, Right fusiform gyrus; MFG.L, Left middle frontal gyrus; HIP.L, Left hippocampus; PHG.L, Left parahippocampal gyrus; IPL.R, Right inferior
parietal lobule; PoCG.L, Left postcentral gyrus; PAL.L, Left pallidum; CUN.L, Left cuneus; PHG.R, Right parahippocampal gyrus; PUT.L, Left putamen;
AMYG.L, Left amygdala; PUT.R, Right putamen.
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(39). Critically, ACC metrics show direct predictive utility: pre-

treatment subgenual ACC (sgACC) resting-state functional

connectivity achieves 72.64% accuracy in predicting 12-week

escitalopram response (40), and support vector machine (SVM)

models incorporating ACC features achieved 79.41% accuracy for

SSRIs response prediction (41). Collectively, these findings establish

pre-treatment ACC functional features—particularly its

hyperconnectivity—as a robust predictor of SSRI treatment

response, offering significant potential for guiding personalized

treatment selection.

Our findings reveal elevated clustering coefficients in the left

amygdala of SSRI non-responders compared to responders,

indicating altered local functional integration within this key

affective hub, which aligns with convergent evidence linking

aberrant left amygdala activity and connectivity to poor

antidepressant outcomes. The amygdala serves as a hub of the

affective network (AN), critically enabling higher-order emotional
Frontiers in Psychiatry 07
processing including emotion perception, emotional memory

formation, and affect regulation (42, 43). Evidence indicates left

amygdala dominance, with preferential activation during affective

challenges and unique responsiveness to top-down regulation (44,

45), suggesting heightened susceptibility to prefrontal modulation

in affective pathology. Our finding aligns with reports that reduced

left amygdala activation during masked emotional face tasks

predicts superior citalopram response at 8 weeks (46), while pre-

treatment hyperconnectivity between the amygdala and left

supplementary motor area (SMA) correlates with SSRI non-

response in adolescent MDD (47). Collectively, these differential

left amygdala alterations hold promise for predicting SSRI efficacy.

Future multicenter longitudinal studies should leverage multimodal

MRI (structural, functional, connectomic) and machine learning to

validate amygdala-based biomarkers for SSRI response prediction.

This study identifies elevated nodal efficiency and clustering

coefficient in the left hippocampus/parahippocampal gyrus of SSRI

non-responders compared to responders, suggesting aberrant local

functional integration and heightened network engagement within

these core limbic structures, which aligns with convergent evidence

implicating left hippocampal/parahippocampal alterations in poor

treatment outcomes. The hippocampus and parahippocampal gyrus

constitute core limbic structures essential for emotion regulation,

memory encoding and retrieval (36, 38, 48). We observed elevated

nodal efficiency and clustering coefficient in the left hippocampus/

parahippocampal gyrus of non-responders, suggesting aberrant

local functional integration and heightened network engagement.

This aligns with task-fMRI evidence linking reduced left

hippocampal activation during positive word-pair encoding to

poor treatment response (49). Structural MRI studies further

associate baseline gray matter density/volume in these regions

with SSRI outcomes (32, 50). However, divergent findings exist-

such as positive correlations between left hippocampal nodal

efficiency and early antidepressant symptom changes in adult

MDD (51) - potentially attributable to treatment duration, illness

chronicity, or sample size limitations. Additionally, non-responders

exhibited increased nodal efficiency in the right angular gyrus and

decreased degree centrality in the left supramarginal gyrus-regions

belonging to the default mode network (DMN) alongside the

hippocampal complex. The DMN supports self-referential

processing, autobiographical memory, and social cognition (52,

53), with its hyperactivity potentially reflecting pathological self-

focus in MDD. Crucially, DMN connectivity patterns (intra-

and inter-network) demonstrate predictive utility for SSRIs

treatment efficacy (54–57), solidifying its role as a key predictor.

Collectively, these findings highlight both the left hippocampal/

parahippocampal and their embedded DMN circuitry as potential

SSRI response predictors. Future large-scale longitudinal studies

integrating dynamic network analysis and machine learning should

establish robust biomarkers.

Critically, this study identifies distinct pre-treatment alterations

in the right inferior parietal lobule (IPL) and left pallidum as

potential predictors of SSRI treatment response, with lower nodal

efficiency in the right IPL and higher clustering coefficient in the left
TABLE 3 Group differences in nodal property metrics.

Nodal property
metrics

Brain regions T-value P-value

Degree centrality Right anterior
cingulate cortex

2.40 0.019

Right fusiform gyrus -2.26 0.027

Left supramarginal
gyrus

-2.38 0.020

Nodal efficiency Left middle frontal
gyrus

2.23 0.029

Left hippocampus 2.13 0.037

Left parahippocampal
gyrus

2.74 0.008

Right inferior parietal
lobule

2.07 0.042

Right angular gyrus 2.07 0.042

Betweenness Right
parahippocampal

gyrus
2.11 0.039

Left cuneus 2.03 0.046

Left postcentral gyrus 2.19 0.032

Left pallidum 2.38 0.020

Clustering coefficient Left hippocampus 2.40 0.019

Left parahippocampal
gyrus

2.41 0.019

Left amygdala 2.17 0.034

Right inferior parietal
lobule

2.61 0.011

Left putamen -2.45 0.017

Right putamen -2.17 0.034

Left pallidum -2.21 0.031
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pallidum specifically associated with favorable outcomes. Non-

responders exhibited elevated nodal efficiency in the right IPL but

reduced clustering coefficient in the left pallidum compared to

responders. The IPL mediates fundamental attention, language, and
Frontiers in Psychiatry 08
social cognition (58). Relevant evidence demonstrates IPL’s

predictive relevance: structural MRI reveals significantly greater

post-treatment cortical thickness increases in the right IPL of

remitters after 8-week antidepressant therapy (59), while task-
FIGURE 3

Association between nodal properties and DHAMD-17 scores. DHAMD-17: Pre-treatment HAMD-17 score minus Post-treatment HAMD-17 score;
(A) CUN.L (Betweeness), Betweeness in the left cuneus; (B) PoCG.L (Betweeness), Betweeness in the left postcentral gyrus; (C) PAL.L (Betweeness),
Betweeness in the left postcentral gyrus; (D) MFG.L (NE), Nodal efficiency in the left middle frontal gyrus; (E) PHG.L (NE), Nodal efficiency in the left
parahippocampal gyrus; (F) AG.R (NE), Nodal efficiency in the right angular gyrus; (G) HIP.L (CC), Clustering coefficient in the left hippocampus;
(H) PHG.L (CC), Clustering coefficient in the left parahippocampal gyrus; (I) AMYG.L (CC), Clustering coefficient in the left amygdala; (J) ACC.R (DC),
Degree centrality in the right anterior cingulate cortex; (K) PUT.L (CC), Clustering coefficient in the left putamen; (L) FFG.R (DC), Degree centrality in
the right fusiform gyrus; (M) SMG.R (DC), Degree centrality in the left supramarginal gyrus.
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fMRI shows greater pre-treatment right IPL activation during Go/

No Go tasks in eventual SSRIs remitters (60). Similarly, the

pallidum contributes to emotional processing and antidepressant

neuromodulation (61). Strikingly analogous to our results,

fluoxetine responders exhibit a transient metabolic increase

followed by a decrease in the left pallidum (62), with pre-

treatment temporal variability in this region predicting 2-week

HAMD reduction (r=0.62, P<0.01) (63). These converging lines

of evidence establish both right IPL and left pallidum as robust

predictors of SSRIs efficacy.

This study has several limitations. First, although all

participants received SSRIs as primary treatment, potential

confounding e ff ec t s f rom concomi tant medica t ions

(e.g.mirtazapine, buspirone) cannot be fully excluded in real-

world clinical settings. Future studies should implement stricter

enrollment criteria, medication stratification, or subgroup analyses

to address this limitation. Second, the moderate sample size (n=69)

constrains generalizability; multicenter collaborations with

expanded cohorts are essential. Third, it should be noted that

spatial smoothing was applied during preprocessing. This process
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may influence the estimation of the functional connectivity matrix

and consequently bias the subsequent calculation of network

metrics (64). To further demonstrate the robustness of our

results, we repeated the analyses using unsmoothed data. The

statistical results were similar to those obtained with smoothed

data, suggesting that smoothing did not unduly affect our

conclusions (see Supplementary Table 1). Fourth, the use of the

AAL atlas for parcellation represents another potential limitation,

as the choice of atlas can influence estimates of network topology

(65). Future studies should therefore compare graph-theoretic

results across multiple parcellation schemes. Fifth, the exclusive

reliance on baseline MRI data precludes longitudinal assessment;

future work should incorporate serial neuroimaging to

establish causal relationships between network dynamics and

treatment outcomes.
5 Conclusion

This study pioneers graph-theoretical analysis of pre-treatment

functional brain networks to predict SSRI response in first-episode,

drug-naïve adolescent MDD, revealing significant topological

differences between responders and non-responders. Critically,

reduced nodal efficiency in the right IPL and elevated clustering

coefficient in the left pallidum emerged as key predictors of

treatment response. These topology-based features offer potential

neuroimaging indicators for precision medicine. Future

multicenter longitudinal studies should validate these predictors

using multimodal MRI, while machine learning frameworks

integrating neuroimaging, genomics, and metabolomics could
FIGURE 4

Receiver operating characteristic (ROC) curves. The curves demonstrating the performance of (A) nodal efficiency in the right inferior parietal lobule
and (B) clustering coefficient in the left pallidum in predicting treatment response.
TABLE 4 Binary logistic regression analysis of nodal property metrics.

Nodal property metric OR(95%CI) P-value

Right inferior parietal lobule
nodal efficiency

0.002(0.000~0.258) 0.012

Left pallidum
clustering coefficient

54.944
(1.626~1857.049)

0.026
OR (95%CI): Odds ratios (OR) and 95% confidence intervals (95% CI) for predicting
treatment response compared to the non-responders group.
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elucidate biological mechanisms and advance precision psychiatry

for MDD.
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